
Towards Large-Scale Probabilistic OBDA

Joerg Schoenfisch and Heiner Stuckenschmidt

Data- and Web Science Group, University of Mannheim
B6 26, 68159 Mannheim, Germany

{joerg,heiner}@informatik.uni-mannheim.de

Abstract. Ontology-based Data Access has intensively been studied as a very
relevant problem in connection with semantic web data. Often it is assumed, that
the accessed data behaves like a classical database, i.e. it is known which facts
hold for certain. Many Web applications, especially those involving information
extraction from text, have to deal with uncertainty about the truth of information.
In this paper, we introduce an implementation and a benchmark of such a system
on top of relational databases. Furthermore, we propose a novel benchmark for
systems handling large probabilistic ontologies. We describe the benchmark de-
sign and show its characteristics based on the evaluation of our implementation.

1 Motivation

Ontology-based Data Access (ODBA) has received a lot of attention in the Semantic
Web Community. In particular, results on light weight description logics that allow
efficient reasoning and query answering provide new possibilities for using ontologies
in data access. One approach for ontology-based data access is to rewrite a given query
based on the background ontology in such a way that the resulting – more complex –
query can directly be executed on a relational database. This is possible for different
light-weight ontology languages, in particular the DL-Lite family [1].

At the same time, it becomes more and more clear that many applications in par-
ticular on the (Semantic) Web have to deal with uncertainty in the data. Examples are
large-scale information extraction from text or the integration of heterogeneous infor-
mation sources. To cope with uncertainty, the database community has investigated
probabilistic databases where each tuple in the database is associated with a probability
indicating the belief in the truth of the respective statement. Querying a probabilistic
database requires not only to retrieve tuples that match the query, but also to compute a
correct probability for each answer.

The goal of our work is to develop data access methods that can use background
knowledge in terms of a light weight ontology and also deal with uncertainty in the
data. A promising idea for efficiently computing probabilistic query answers is to use
existing approaches for OBDA based on query rewriting and pose the resulting query
against a probabilistic database that computes answers with associated probabilities.

A number of approaches have been proposed for combining description logics with
probabilistic reasoning. An overview of early approaches is [2], more recent approaches
include DISPONTE/BUNDLE [3, 4] or Pronto [5], and Log-linear Description Logics [6].
On the other hand, the logic programming and statistical relational learning community
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has developed probabilistic versions of datalog-style languages (e.g. Problog [7]) that
can be used to partially model ontological background knowledge. While for many of
these languages efficient subsets have been identified (e.g. [4, 5]) and optimized reason-
ing algorithms have been proposed, none of the existing approaches is really designed
to handle large amounts of data as we find on the Web. For example, the full dataset
extracted from Web pages by the NELL (Never Ending Language Learning) Project [8]
currently contains about 50 million statements with associated probabilities.

Jung et al. have shown that query rewriting for OBDA can directly be lifted to
the probabilistic case [9]. Furthermore, they prove that the complexity results and the
dichotomy of safe (data complexity in PTIME) and unsafe (#P-hard) queries also carries
over. Furthermore, they prove that the complexity results and the dichotomy of safe
(data complexity in PTIME) and unsafe (in #P-hard) queries also carries over. To the
best of our knowledge, no evaluation on the performance and scalability of the approach
was conducted, and there exists no implemented system. We believe, that combining the
power of probabilistic database systems with the DL-Lite approach to ODBA – namely
rewriting the query using the background ontology in such a way that the resulting query
posed against a database returns the correct results – is a way to scale up to datasets of
the size of NELL and beyond.

The main contributions presented in the paper are the following:

– a preliminary implementation of a system that can answer safe probabilistic queries
over large probabilistic knowledge bases up to several hundred millions of facts.

– a synthetic benchmark dataset for probabilistic OBDA on the basis of the LUBM
benchmark that can be scaled to an arbitrary number of probabilistic statements

– a comparison of the prototype to a state of the art system using that dataset and a
real world knowledge base

The paper is structured as follows: We show how the distribution semantics is ap-
plied to DL-Lite in Section 2. Section 3 is concerned with implementing reasoning on
top of probabilistic databases. In Section 4 we describe the datasets that can be used
for benchmarking probabilistic OBDA. An experimental evaluation of a prototype for
large-scale probabilistic OBDA is given in Section 5. Related work is discussed in Sec-
tion 6 and we conclude and give an outlook in Section 7.

2 DL-LiteR and the Distribution Semantics

In this section we briefly introduce DL-Lite , the description logic underlying the OWL
2 QL profile. Then we detail how the distribution semantics for probabilistic description
logics [4] is applied to DL-LiteR .

In DL-LiteR concepts and roles are formed in the following syntax [10]:

B → A | ∃R C → B | ¬B
R→ P | P− E → R | ¬R

whereA denotes an atomic concept, P an atomic role, and P− the inverse of the atomic
role P .B denotes a basic concept, i.e. either an atomic concept or a concept of the form
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∃R, where R denotes a basic role, that is, either an atomic role or the inverse of an
atomic role. C denotes a general concept, which can be a basic concept or its negation,
and E denotes a general role, which can be a basic role or its negation.

A DL-LiteR knowledge base (KB) K = 〈T ,A〉 models a domain in terms of a
TBox T and an ABoxA. A TBox is formed by a finite set of inclusion assertions of the
formB v C orR v E. An ABox is formed by a finite set of membership assertions on
atomic concepts and on atomic roles, of the form A(a) or P (a, b) stating respectively
that the object denoted by the constant a is an instance of A and that the pair of objects
denoted by the pair of constants (a, b) is an instance of the role P .

The semantics of a DL is as an interpretation I = (∆I , ·I), consisting of a nonempty
interpretation domain ∆I and an interpretation function ·I that assigns to each concept
C a subset CI of ∆I , and to each role R a binary relation RI over ∆I :

AI ⊆ ∆I

P I ⊆ ∆I ×∆I

(P )I = {(o2, o1)|(o1, o2) ∈ P I}
(∃R)I = {o | ∃o′.(o, o′) ∈ RI}
(¬B)I = ∆I \BI

(¬R)I = ∆I ×∆I \RI

An interpretation I is a model of C1 v C2, where C1,C2 are general concepts if
CI1 ⊆ CI2 . Similarly, I is a model of E1 v E2, where E1, E2 are general roles if
EI1 ⊆ EI2 .

To specify the semantics of membership assertions, the interpretation function is
extended to constants, by assigning to each constant a a distinct object aI ∈ ∆I . This
enforces the unique name assumption on constants. An interpretation I is a model of a
membership assertion A(a) (resp., P (a, b)), if aI ∈ AI (resp., (aI , bI) ∈ P I).

Given an assertion α and an interpretation I, I � α denotes the fact that I is a
model of α. Given a (finite) set of assertions λ, I � λ denotes the fact that I is a
model of every assertion in λ. A model of a KB K = 〈T,A〉 is an interpretation I
such that I � T and I � A. A KB is satisfiable if it has at least one model. A KB K
logically implies an assertion α, written K � α, if all models of K are also models of
α. Similarly, a TBox T logically implies an assertion α, written T � α, if all models of
T are also models of α.

To account for uncertainty, the distribution – or possible world – semantics is widely
used in logic programming. The basic idea is to allow the annotation of axioms in a
knowledge base with probabilities, under the assumption that all axioms are mutually
independent. Riguzzi et al. applied the semantics to description logics [4]. They pre-
sented a prototypical application to the DL SHOIN (D) and gave an approach for
performing inference. Transferring the semantics to DL-LiteR is straightforward.

Following the syntax and notation of Riguzzi et al., a probabilistic DL-LiteR knowl-
edge baseK is a set of certain axioms C and probabilistic axioms E . Certain axioms have
the form of regular DL axioms. Probabilistic axioms are in the form p :: E where p is a
real-valued probability in (0,1), andE is a DL axiom. The probability p is interpreted as
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epistemic probability, i.e. as a degree of belief or subjective probability, not a statistical
or objective probability.

Each probabilistic axiom is associated with a Boolean random variable. Different
possible worlds are then obtained by assigning values to every random variable. A pos-
sible world w is a set of axioms containing all certain axioms and all axioms whose
Boolean variable has the value 1.

Again following [4], the semantics are formalized as follows: A tuple (Ei, k) is
called atomic choice. Ei is the i-th probabilistic axiom and k ∈ {0, 1} indicates if Ei
is included in the current world. All choice are assumed to be mutually independent.
For a set κ of atomic choices to be consistent, there may only exist one choice for each
probabilistic axiom. If κ is consistent it is also called composite choice. A selection σ
is a total composite choice, i.e. it contains an atomic choice (Ei, k) for every Ei ∈ K.
A selection σ identifies a possible world wσ in this way: wσ = C ∪ {Ei|(Ei, 1) ∈
σ}. WK is the set of all possible worlds. The probability of world wσ is P (wσ) =∏

(Ei,1)∈σ pi
∏

(Ei,0)∈σ 1− pi, where pi is the probability for axiom Ei. P (wσ) is a
probability distribution over worlds, i.e.

∑
w∈WK

P (w) = 1.
In general, the distribution semantics allows probabilistic axioms in the TBox and

the ABox. However, in this paper we restrict the uncertainty to the ABox to facilitate
the rewriting step and the aggregation of the final result. Only modeling uncertainty in
the ABox is common in knowledge extraction frameworks for the web like NELL, and
thus has largely no impact on the general applicability of our approach. During the rest
of this paper we call the probabilistic description logic defined above ProbQL.

3 Implementing Reasoning on Top of Probabilistic Databases

In this section, we first briefly recall the idea of first-order rewritability of queries in
DL-Lite and then show that the query rewriting approach proposed by [10] can be used
on top of tuple independent probabilistic databases for answering queries in ProbQL
without changing the semantics of answers.

3.1 Query Rewriting

Query processing in DL-LiteR is based on the idea of first-order reducibility. This
means that for every conjunctive query q we can find a query q′ that produces the
same answers as q by just looking at the A-Box. Calvanese et al. also define a rewriting
algorithm that computes a q′ for every q by applying transformations that depend on the
T-Box axioms.

Given a consistent T-Box T the algorithm takes a conjunctive query q0 and expands
it into a union of conjunctive queries U starting with U = {q0}. The algorithm succes-
sively extends U by applying the following rule:

U = U ∪ {q[l/r(l, I)]}

where q is a query in U , l is a literal in q, I is an inclusion axiom from T and r is a
replacement function that is defined as follows:
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l I r(l, I)

A(x) A′ v A A′(x)
A(x) ∃P v A P (x, )
A(x) ∃P− v A P ( , x)
P (x, ) A v ∃P A(x)
P (x, ) ∃P ′ v ∃P P ′(x, )
P (x, ) ∃P ′− v ∃P P ′( , x)

l I r(l, I)

P ( , x) A v ∃P− A(x)
P ( , x) ∃P ′ v P− P ′(x, )
P ( , x) ∃P ′− v ∃P− P ′( , x)
P (x, y) P ′ v P P ′(x, y)
P (x, y) P ′− v P− P ′(x, y)
P (x, y) P ′ v P− P ′(y, x)
P (x, y) P ′− v P P ′(y, x)

Here ’ ’ denotes an unbound variable, i.e., a variable that does not occur in any other
literal of any of the queries.

3.2 Correctness of Query Processing

Implementing ProbQL on top of probabilistic databases can now be done in the fol-
lowing way. The A-Box is stored in the probabilistic database, the query is rewritten
and posed against the database. It can easily be shown that the idea that a rewritten
query has the same probability given a knowledge base with empty T-Box as the orig-
inal query given a complete knowledge base. Further, the semantics of queries over a
ProbQL A-Box with empty T-Box directly corresponds to the tuple-independence se-
mantics used in probabilistic databases [11], thus queries posed to correctly constructed
probabilistic database have the same probability as a ProbQL query with empty T-Box.
Results on first-order rewritabnility of DL-lite we get, that P (Q|KB) does not change
as T ,A |= Q if and only if A |= Q′. Further, as P (KB|T KB) only depends on A this
part also stays unchanged.

3.3 Safe Queries and Query Rewriting

Over the past decade, the database community has developed efficient methods for
querying uncertain information in probabilistic databases. Important results are the in-
troduction of the independent tuple model for probabilistic data as well as a complete
characterization of queries that can be computed in polynomial time. We briefly review
these results in this section.

Extensional Query Processing It has been shown that the key to efficient query pro-
cessing in probabilistic databases is to avoid the computation of complex event descrip-
tions and to directly compute the probability of a complex query from the probabilities
of subqueries. This approach, referred to as extensional query processing, has been
shown to correctly compute the probability of queries for the class of tractable queries
using the following recursive algorithm:
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Algorithm 1 Extensionally compute P(Q) (from [12])
Require: A conjunctive query Q in CNF, a tuple independent probabilistic database
1: Q is a conjunctive query in CNF: Compute symbol components Q = Q1 ∧ · · · ∧Qm

2: if m ≥ 2 then
3: return

∏
i=1,··· ,m P (Qi)

4: end if
5:
6: Q = Q1 ∧ · · · ∧Qk is a symbol-connected query in CNF:
7: if k ≥ 2 then
8: return −

∑
s⊆[n],s6=∅(−1)

|s|P
(∨

i∈s Qi

)
9: end if

10:
11: Q is a disjunctive query: Compute symbol components Q = Q1 ∨ · · · ∨Qm

12: if m ≥ 2 then
13: return 1−

(∏
i=1,··· ,n 1− P (Qi)

)
14: end if
15:
16: Q = Q1 ∨ · · · ∨Qk is a symbol-connected disjunctive query:
17: if Q = t has no variables then
18: return P (t)
19: end if
20:
21: if Q has a separator variable z then
22: return 1−

(∏
a∈ADom 1− P (Q[a/x])

)
23: else
24: return false
25: end if

Symbol components are defined as follows [11]: Let Q = d1∧ . . .∧dk be a UCQ in
CNF, and K1, . . . ,Km the connected components for the set of queries {d1, . . . , dk}.
The symbol-components of Q are Q1 =

∧
i∈K1

di, . . . , Qm =
∧
i∈Km

di. Then the
probability P (Q) = P (Q1) · . . . · P (Qm). If m = 1, then Q is symbol-connected.

Each recursion of the algorithm processes a simpler subexpression, until the prob-
ability of an individual can be read directly from the database. Queries that can be
completely processed using the steps above are called safe. It has been shown that safe
queries exactly correspond to queries that can be computed in PTIME whereas queries
that cannot be completely processed using these steps – in particular queries for which
we cannot find a separator variable in line 19 – are in #P-hard. This means that we
can use the notion of safeness and the processing steps above to analyze the general
complexity of certain classes of queries.

3.4 Mapping Safe Queries to SQL

The mapping of safe conjunctive queries to SQL has two main parts: 1. Translating
single atoms and queries to SELECT statements. 2. Extensional query processing to
calculate the probability of each answer (row in the SQL result).
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Translating the CQs to SQL is basically done by creating a sub-select for each atom
in the query and joining them on shared variables. This translation step is already part
of existing non-probabilistic OBDA systems that use query rewriting. The probabilistic
reasoning additionally needs four functions to calculate probabilities:

– Independent Join (line 3 of Algorithm 1): Calculating the probability of an inde-
pendent join is implemented in the SELECT of the query. The (aggregated) proba-
bilities of the joined tables or sub-selects are multiplied for each result row.

– Möbius Inversion Formula (line 8): Similarly, the Möbius Inversion Formula is
also computed inside the SELECT. To handle the changing signs and subsets of the
query, it has to be wrapped in another sub-select.

– Independent Union (line 13): The independent union is implemented as a custom
aggregate in the database. The aggregate function multiplies the inverse probability
of each row and returns the inverse of that product.

– Independent Project (line 22): The independent project is implemented analogously
to the independent join, but using the inverse probabilities.

Independent Join, Möbius Inversion Formula and Independent Project process elements
of a single result row, whereas Independent Union aggregates the final probabilities of
multiple rows.

4 Benchmark Data for Probabilistic OBDA

We use two different datasets for our experimental evaluation. The first dataset is the
ontology and knowledge base created by NELL, which presents a large real-world
dataset consisting of uncertain data. Second, to assess the scalability of the approach, we
created a modified version of the Lehigh University Benchmark (LUBM), a synthetic
benchmark for OWL reasoners that generates datasets of various sizes.

4.1 NELL

NELL is an Open Information extraction system that extracts facts from text found in a
large corpus of web pages. As a result, NELL generates triples like wifeof(katie -
holmes, cruise), called candidate beliefs, that are annotated with different levels
of confidence in terms of a number in the range (0, 1].

Within the context of our approach these candidate beliefs form the A-Box of our
ProbQL knowledge base, while the confidences are interpreted as probabilities. NELL
organizes extracted facts in a terminology consisting of concepts (called categories in
NELL context) and roles (relations) and specifies domain and range restrictions, prop-
erty symmetry, and disjointness of concepts and properties. We use the DL-LiteR frag-
ment of this terminology as T-Box of our ProbQL knowledge base. We use the high
confidence knowledge base of NELL (iteration 860) which contains only facts with a
score of at least 0.75. It contains 2.3 million extracted facts about 1.8 million objects as
compared to the full dataset with about 50 million. The T-Box, which is the same for
all datasets, consists of 558 concepts, 1 255 properties, and 5 132 axioms.
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Dataset Assertions
NELL full 2 259 750
NELL filtered 467 943

Dataset Assertions % distinct
LUBM 1 717 250 54.77
LUBM 10 7 232 663 55.69
LUBM 100 71 698 666 55.66
LUBM 200 143 311 100 55.67
LUBM 500 361 432 844 55.12
LUBM 1000 719 097 512 55.32

Table 1. Size of the different NELL and LUBM datasets.

To show the benefits and the scalability of our approach, we defined the following
queries that are posed against the ProbQL version of NELL.

QA(X)⇐person(X)

QB(X)⇐person(X), bornin(X, paris)

QC(X)⇐book(X),movie(X)

QD(Z)⇐hasParent(X,Y ), hasparent(Y,Z)

QE(X)⇐actor(X), directordirectedmovie(X,Y ), writerwrotebook(X,Z)

QF (X)⇐politician(X), actor(X), hasoffice(X, president)

We use this dataset mainly to investigate the benefits of using background knowledge
and reasoning on top of probabilistic data in terms of increased recall.

4.2 Probabilistic LUBM

The Lehigh University Benchmark (LUBM) [13] is a well known and widely used
benchmark for OWL-based reasoning systems. Lutz et al. published a DL-LiteR ver-
sion of LUBM [14]. Additionally, to restricting the expressivity of the ontology, they
modified it to make it more suitable in an OBDA setting: First, they added multiple con-
cept inclusions with existential restriction on the right hand side, second they extended
the class hierarchy to be closer to real-world ontologies in its size.

We chose to extend LUBM over other synthetic benchmarks like SP2Bench [15],
BSBM [16], or FishMark [17]. SP2Bench and BSBM only provide a very simple or
no ontology, but rather focus on complex queries. FishMark contains an expressive
ontology more suitable for our evaluation. However, it does not provide a generator for
datasets of various sizes. Lutz et al.’s version of the LUBM ontology is of sufficient
complexity to evaluate the scalability of reasoning in an OBDA setting, and it offers the
possibility to generate datasets of different sizes.

We generated the benchmark dataset for probabilistic OBDA in two steps: 1. We
extended the generator to create probabilistic ABoxes. 2. To increase the complexity
of the probabilistic reasoning, we created redundancies in the dataset. In the first step
we extended the implementation of the data generator to attach probabilities to every
ABox axiom. Those probabilities are randomly distributed in (0,1]. We did not include
a fixed percentage of certain axioms. The generator thus creates datasets of various
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size with probabilistic axioms. However, each axiom is contained exactly once, thereby
trivializing the calculation of the final probabilities in a result set. To alleviate this,
we used the option to change the seed that LUBM uses to determine the number of
instances of departments, professors, students, etc. For every dataset size, we generated
five ABoxes each with a different seed (0, 1, 42, 776, 141984). Combined, these five
ABox serve as one probabilistic benchmark dataset. Note that our probabilistic version
of LUBM is roughly five times larger than the normal LUBM of the same size, i.e.
LUBM 1 contains only one university, whereas probabilistic LUBM 1 contains five
different versions of that university, with different numbers of departments, professors,
students, etc.

In the evaluation we used the original LUBM queries for which probabilities can be
computed efficiently, i.e. queries 1, 3–6, and 10–14:

Q1(X)⇐ takesCourse(X,univ0 dept0), type(X, graduateStudent)

Q3(X,Y1, Y2, Y3)⇐ publicationAuthor(X,univ0 asstProf0), type(X, publication)

Q4(X)⇐ worksFor(X,univ0 dept0), name(X,Y1), emailAddress(X,Y2),

telephone(X,Y3), type(X, professor)

Q5(X)⇐ memberOf(X,univ0 dept0), type(X, person)

Q6(Z)⇐ type(X, student)

Q10(X)⇐ takesCourse(X,univ0 graduateCourse0), type(X, student)

Q11(X)⇐ subOrgOf(X,univ0), type(X, researchGroup)

Q12(X,Y )⇐ worksFor(X,Y ), type(X, chair), subOrgOf(Y, univ0),

type(Y, department)

Q13(X)⇐ hasAlumnus(univ0, X), type(X, person)

Q14(X)⇐ type(X,undergraduateStudent)

Q11 and Q12 require the reasoner to handle the transitive object property subOrgOf.
However, transitive object properties are not allowed in DL-LiteR . To circumvent this
and still be able to use this query in the evaluation, we manually extended those queries
to handle transitivity up to the maximum depth occurring in the data (in this case 2).

5 Experimental Evaluation

We evaluate our implementation of query processing for ProbQL on the two datasets
presented in the previous section. Our main goal is to show that our implementation
scales to vers large A-Boxes and outperforms existing methods on safe queries.

5.1 Setting

Within our experiments we focus on answering the following two questions:

1. What are the benefits of exploiting the TBox by using it in the query rewriting
process for a dataset like NELL?

2. How well does our algorithm scale with respect to different types of queries and
subsets of NELL and a probabilistic LUBM, and compared to another system?
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For answering the first question, we compare query results with and without query
rewriting. We expect that rewriting the queries yields larger result sets. In particular,
we expect that many interesting results are missed out when we ask the query directly
without any expansion.

For answering the second question, we compare our implementation against the
ProbLog system [7], which also uses the independent tuple semantics. While ProbLog
does not support the complete expressivity of DL-Lite1, it returns identical results for
any safe conjunctive query over the dataset. For the comparison with ProbLog, we used
a subset of the data consisting of about half a million facts. Additionally, to assess the
general scalability of the approach, we run our implementation on different sizes of
probabilistic LUBM, i.e. 1, 10, 100, 200, 500, and 1000 universities.

Experiments were run on a virtual machine with 4 cores (2.4GHz) and 16GB RAM
running Ubuntu 14.10 Server. We used PostgreSQL 9.4 64bit and ProbLog 2. We used
to default settings of the database and did no special tuning apart from increasing the
available RAM. The NELL dataset was loaded into a single table. The LUBM datasets
use different tables for class, object, and data property assertions, one of each for dif-
ferent sizes of the benchmark. Query rewriting was done manually at this point, but we
do not expect a significant impact on this step on the overall performance. As ProbLog
always has to load all the data and does not provide persistent storage like a database
system, we measured the time ProbLog takes to parse the file without a query and sub-
tracted that amount from the query time.

An existing probabilistic database like MayBMS was not used, as we encountered
serious issues with complex JOINs resulting from the query rewriting.

5.2 Results

NELL Dataset Table 2 shows the results of comparing query answering with and
without rewriting.

Plain Rewritten
# res. # pred. # res. # pred.

QA 5 405 1 319 986 148
QB 1 2 4 152
QC 352 2 414 12
QD 0 2 80 40
QE 0 3 1 11
QF 2 4 14 29

Table 2. Number of results with and without reasoning, and increase in query size (predicates)

The number of results generally increases – sometimes dramatically (cf. QA) – and
we can even find answers toQD which produced no results without rewriting. The large
increase in results for QA is due to person being a very general concept of the NELL

1 In particular, axioms of the form A v ∃R cannot be represented in ProbLog.
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hierarchy and most instances are described using more specific concepts. QD has no
answers without rewriting because the relation personhasparent is never used, but only
its inverse parentofperson.

Exploiting the T-Box often changes the probabilities for an individual answer to a
query as new evidence is added to the computation. For example the probability for
concept:person:sandy being a person in QA or QB increase from 0.96875 to 1.0. The
knowledge base only states that Sandy is a person with probability 0.96875. Through
the rewriting step, the statement that Sandy graduated from State University with prob-
ability 1.0 is also included, resulting in her definitely being a person because of gradu-
atedfrom having person as domain.

Tables 3 and 4 show the results of comparing ProbQL with ProbLog.

full filtered
ProbLog 24.393 sec 5.383 sec
SQL Loading 193.040 sec 12.163 sec
SQL Indexing 1 007.291 sec 47.427 sec

Table 3. Dataset loading times (sec)

As expected our approach takes significantly more time loading the data as index
structures have to be created and ProbLog only seems to do minimal preprocessing. The
results in Table 4 show, however, that this effort is overcompensated by more efficient
query answering.

QA QB QC QD QE QF

ProbLog (filtered) - 97.667 1.812 - 2.673 9.589
ProbLog (full) - - - - - -
Prob. SQL (filtered) 10.423 3.524 0.107 0.024 1.421 0.628
Prob. SQL (full) 8.846 5.488 0.097 0.011 0.888 0.617
SQL (full) 5.002 3.196 0.017 0.009 0.637 0.340

Table 4. Query performance in seconds, averaged over 10 runs

Table 4 shows the time needed for answering queries over the full dataset and the
reduced one. To accommodate for the fact that ProbLog always has to load the data
anew, loading time has been subtracted from the query times for ProbLog shown in
Table 4.

The query response times clearly show that our database-driven approach is more
efficient for handling large datasets. ProbLog is not able to answer any of the questions
using the full dataset within a 30 minute timeout. Also for the filtered dataset, ProbLog
fails for QA and QD with an out of memory error and not with a timeout as for the
full dataset. For the queries where both return answers, our approach is between 15 and
30 times faster. We can observe that query processing even becomes more efficient for
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the larger dataset. After analyzing the generated query plans, we found that the query
planner chooses a suboptimal query plan for the smaller dataset. We suppose this is
due to weaker statistics. The overhead of the probabilistic SQL compared to the plain
rewritten SQL seems to be proportional to the number of computed answers. QA, QC
and QD, and QF , with a larger number of results, are twice to five times as slow as the
plain queries; QB and QE with very few results show almost no difference in query
time.

LUBM Dataset Table 5 shows the results using the probabilistic LUBM datasets. We
only compared the performance of our implementation on different size of the data. We
ran the queries with a timeout of 60 minutes. ProbLog is not able to handle even the
smallest of those datasets.

Q1 Q3 Q4 Q5 Q6 Q10 Q11 Q12 Q13 Q14
1 < 0.1 < 0.1 1.5 2.7 0.7 0.3 0.2 0.8 0.3 0.3
10 < 0.1 1.0 3.4 27.3 7.4 2.4 0.2 0.9 2.9 2.4
100 < 0.1 32.2 50.5 350.9 74.2 33.2 0.3 2.0 76.2 33.2
200 < 0.1 100.0 134.6 2 622.2 172.1 63.9 0.5 3.2 172.5 63.9
500 < 0.1 201.8 440.2 - 508.0 192.0 1.1 6.9 612.1 1 941.9
1000 < 0.1 643.8 904.7 - 874.7 365.1 1.6 232.3 1 430.3 -

Table 5. Query response times (seconds) of our implementation on various sizes of the proba-
bilistic LUBM dataset. A timeout (response time > 60 minutes) is denoted as ”-”.

The query response times show, that in general, the probabilistic reasoning does not
have a negative impact on scalability. Overall, the times increase linearly in the size
of the data. Query 1, which has a constant result that does not change with the size of
the dataset, also has a constant response time. When processing Query 5, the database
erroneously scans the complete table of data property assertions, which takes most of
the time for computing results. This could be alleviated by tuning the query planner,
resulting in a better query execution plan. Query 13 and especially Query 14 produce
a large number of results, thus they become I/O-bound for larger datasets, i.e. their
performance is limited by disk speed, resulting in a large jump in the query time. The
disks for our test virtual machine are attached via network, resulting in this large drop
in performance.

Dataset LUBM 1 LUBM 10 LUBM 100 LUBM 200
QMpH 418.6 66.4 5.4 0.2
Optimum 514.3 75.0 5.8 1.0
% 81.4% 88.5% 93.1% 20%

Table 6. Query mixes per hour (QMpH) for different dataset sizes. The number indicates how
often the set of benchmark queries could be executed within one hour. The queries are executed
in random order.
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To evaluate the scalability under a more realistic workload we tested how often the
set of all ten queries can be executed within one hour (inspired by the BSBM bench-
mark). The queries are executed in random order. Table 6 shows the number of query
mixes processed in an hour for different sizes of the LUBM dataset. Up to 70 million
facts, the performance scales well and is close to the expected optimum based on the
query times under ideal settings. For the smaller datasets, the response time are slightly
farther away from the optimum due to a relatively higher overhead of establishing a
database connection etc. Beyond 70 million facts, there is a huge drop in performance
due to I/O-bound queries and the poor I/O performance of the virtual machine.

6 Related Work

Apart from ProbLog, two other systems for probabilistic reasoning with a similar se-
mantic are Pronto [5] and BUNDLE [3]. They can handle probabilistic knowledge bases
formulated in SROIQ and SHOIN (D), respectively. However, their main focus is
not pOBDA, but probabilistic TBox reasoning (classification, satisfiability, . . . ), thus
their performance in query answering is very limited. Both can only run simple instance
checking for single individuals and classes. Probabilistic deductive databases [18] pro-
vide a similar solution, but to the best of our knowledge there is no system available
and thus it is hard to estimate their scalability to large-scale knowledge bases.

Regarding the benchmark dataset, Klinov et al. [19] proposed a systematic approach
to evaluate reasoning in probabilistic description logics which is, however, more geared
towards complex TBoxes and not large-scale query answering. Lanti et al. [20] very
recently published a dataset, based on real world data, specially tailored for benchmark-
ing OBDA systems. They also provide a generator to scale the dataset in size. It will
be interesting to analyze their dataset and also extend it for benchmarking probabilistic
OBDA systems.

7 Conclusion and Future Work

In this paper we described a preliminary implementation of a probabilistic OBDA sys-
tem for large-scale knowledge bases. It combines tractability for a certain class of
queries with the benefits of ontology-based query rewriting. While making many sim-
plifying assumptions the approach is well suited for large-scale knowledge bases with
facts generated using machine learning techniques and provides a pragmatic alternative
for theoretically more interesting but less feasible models as the one proposed in [3, 5].

We used the NELL knowledge base as a real-world example and a probabilistic ex-
tension of LUBM to evaluate the system. We demonstrated that it scales well compared
to another state-of-the-art system and is able to compute query answers in a reasonable
amount of time for knowledge bases containing several million facts.

We plan to provide a stable implementation of the approach in the near future and
address the problem of uncertain T-Box elements. Furthermore, we plan to develope a
more thorough benchmark based on recent proposals for benchmarks specifically aimed
at OBDA [20].
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