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Abstract. In this paper, we propose the task of learning complex logical map-
pings between ontologies as a challenging task for ILP research. We motivate the
need for complex ontology mappings using an example, formally define the task
of learning complex mappings and identify a number of challenges for research
on this issue in terms of tractability and uncertainty handling.

1 Background: Ontology Alignment

The integration of information from heterogeneous sources is one of the major chal-
lenges of modern information technology. Researchers from different areas including
databases, knowledge representation and more recently in semantic web technologies
have addressed this problem. Ontologies have been identified as a key technology for
resolving semantic heterogeneity by providing common terms as well as formal specifi-
cations of their intended meaning in some logic. In large distributed environments with
a high number of different information sources, however, it is unlikely that people will
agree on a single ontology as the basis for integrating information. Here, we often face
a situation where multiple ontologies describing the very same domain co-exist. In such
a situation, we first have to integrate the different ontologies before they can serve as a
basis for integrating information.

A common way of integrating different ontologies describing the same or largely
overlapping domains is to use formal representations of semantic correspondences be-
tween their concepts and relations - also referred to as ’ontology mappings’. Manual
approaches for identifying semantic correspondences are often not feasible since real
world ontologies, for example in the medical domain, often contain several thousand
concepts. As a response to this problem, a number of automatic and semi-automatic
tools for generating hypotheses about semantic correspondences have been developed
(see [4] for an overview).

A serious limitation of almost all existing tools is the inability to identify complex
mappings. In particular, most systems are only able to identify simple equivalence state-
ments between class or relation names. The true semantic relation between elements of
different ontologies, however, is often more complex. In the following section, we give
an example that illustrates the need for complex mappings and the limitations of exist-
ing systems. We propose the automatic identification of complex mappings between on-
tologies as an interesting and relevant challenge for the ILP community. The problem is



Fig. 1. An example of two ontology fragments describing employees and projects of a company.
A labeled square represents a concept, a labeled ellipse a datatype, and a labeled arrow a role.
The subsumption hierarchy of concepts is represented by indentation. Domain and range of a
property are restricted to be the concepts connected by the accordant arrow.

of great practical importance as ontology matching is the Achilles heal of important re-
search areas with a high potential impact, in particular the semantic web and enterprise
application integration. Further, as we will argue below, the use of ILP as a paradigm
for addressing the problem is a natural fit as the goal is to learn complex logical rules
based on instances and background knowledge.

2 An Example Scenario

In the following example we focus on two ontologies describing human resources,
projects and related topics. These ontologies are presented in figure 1. We refer to the
ontologies as O1 (left side of the figure) and O2 (right side), and we use prefix i# to
refer to the entities of Oi. While both ontologies share some essential concepts, they
differ especially with respect to the relations expressed via the properties. In particular
these differences make the alignment process erroneous and require complex corre-
spondences to express the correct semantic relations.

To better understand the capabilities of todays state of the art matching systems,
we aligned these two ontologies with the Falcon-AO matching system [8], one of the
top matching systems participating at the ontology alignment evaluation 2006 and 2007
[3]. As a result Falcon-AO generates two correspondences, namely 1#Project(x) ↔
2#Project(x) and 1#Person(x) ↔ 2#Person(x). Are these correspondences sufficient
to express the semantic relations that we might be interested in? Suppose that we would
like to transfer instance data from O1 to O2. Which projects in O1 have to be classified
as top projects in O2? These are projects with a high level of importance. We could for



example use the following rule for migrating these projects to O2.

2#TopProject(x)← 1#Project(x) ∧ 1#hasImportanceLevel(x, 3) (1)

What about the deadline of a project? This relation is modeled via a single datatype
property in O2 while we find a chain of properties in O1. Rule (2) represents this de-
pendency.

2#endsAt(x, z)← 1#endsWith(x, y) ∧ 1#hasDate(y, z) (2)

When we like to know which person are working in which projects, things are getting
even more complicated, because the 1#incorporates property relates both employees
and workgroups to projects. We have to use the two rules to cope with the different
modeling.

2#worksForProject(x, z)← 1#incorporates(x, z) ∧ 1#Employee(z) (3)
2#worksForProject(x, z)← 1#incorporates(x, y) ∧ 1#hasMember(y, z) (4)

We conclude that ontology alignment requires the use of complex and non-trivial cor-
respondences. Otherwise the completeness of the alignment cannot be guaranteed and
the semantic gap between different ontologies cannot be bridged in an appropriate way.

3 Formalization of the Problem

Based on [4] we can formalize the ontology matching problem as follows: Without loss
of generality, we consider the case where we have two first-order theories or ontologies
O1 = T1∪A1 andO2 = T2∪A2 given. The T component of an ontology determines the
terminological knowledge definition and the A component determines the association
of instances with predicates. Each of the ontologies Oi is represented in the language
Li and each of the ontologies has elements that can be defined by means of elements in
the other ontology. Those elements are called the set of matchable elements Q(O) of
the ontology O. Note that the set of matchable elements of an ontology depends of the
other ontology that is involved in the matching process. The task of ontology match-
ing is now to find correspondences between matchable elements in the two ontologies.
Correspondences are 4-tuples {e1, e2, r, n} such that

– n, a number between 0 and 1, expresses the degree of confidence in the correspon-
dence.

– r is a relation between e1 and e2. We only consider implication between formulae
as well as statements of the form e1 = e2 where e1 and e2 are constants. Statements
of the latter form are called instance equivalences.

– each ei is a formula represented in Li. In the spirit of [4], we distinguish between
three levels of expressivity. Given a level 0 correspondence, the formulae ei con-
sist simply of a single predicate. Level 1 corresponds to conjunctions of predicates
on the right hand side of the implication relation ← while the left hand side re-
mains a single predicate. The final level 3 corresponds to arbitrary expressions in
the languages Li.



Based on these definitions, we can now more precisely define the learning task
associated with the creation of complex ontology mappings as the ones described in the
example above.

Definition 1 (Learning Task). Given ontologies O1 = T1 ∪A1 and O2 = T2 ∪A2 in
languages L1 and L2. Further given a mappingM that defines implications between
predicates in T1 and T2 as well as equalities between constants in A1 and A2. Then the
complex mapping learning problem is to find a set H of first order sentences such that:

1. Elements of H are of the form: e2 ← e1 where e1 and e2 are defined as above
2. (T1 ∪ T2 ∪M) ∧A1 ∧H |= A2

3. (O1 ∪ O2 ∪M) ∧H 6|= ⊥

From the point of view of Knowledge-Based Inductive Learning, the terminologi-
cal part of the aligned ontologies together with the level 0 mappings and the instance
equivalences play the role of background knowledge, while the instance information is
used as training examples. More precisely, the hypothesis should explain the occurrence
of instances in terms of A2 based on their occurrence in A1. Suppose for example that in
A2 we have instance 1#p-1762 with 1#Project(1#p-1762) and 1#hasImportanceLevel(1#p-1762, 3).
If H contains equation 1 we can conclude that 2#TopProject(1#p-1762). Further sup-
pose that M contains instance equivalence 1#p-1762 = 2#P1762. Finally, we can
conclude that 2#TopProject(2#P1762) and thus give a (partial) explanation of A2. Fur-
ther, we claim that the overall model consisting of the two ontologies, pre-existing and
learned mappings is consistent to avoid solutions that trivially satisfy the second condi-
tion in the definition.

4 Problems and Challenges

The definition above seems to suggest that learning complex ontology mappings is quite
straightforward as it can be phrased as a standard ILP learning problem. A closer look
reveals, however, that there are a number of practical problems that make the task a
challenging one. In this section we discuss three of these problems that we consider to
be central to the endeavor and could be starting points for research in this area.

Tractability Work in inductive logic programming often focusses on supporting effi-
cient subsets of first-order logic. In particular, there is a focus on first-order horn rules
as a target language for learning and encoding background knowledge. In the context
of ontologies, there is also some work concerned with languages that fall into this cat-
egory (e.g. [6]). However, OWL-Lite and OWL-DL, the primary ontology languages,
are based on expressive description logics SHIF(D) and SHOIN (D), respectively.
It has been shown that disjunctive Datalog is needed to perform the kind of reason-
ing needed for testing the second condition of the definition [7]. Even worse, checking
the consistency of the overall model cannot be done by a reduction to disjunctive Dat-
alog but requires reasoning about a combined model consisting of description logic
ontologies and rule-based mappings. It has been shown that reasoning for such models
is highly intractable even for rather inexpressive ontology and rule languages. Recent



work on a first major revision of the OWL language (OWL 2.0) addresses this prob-
lem and proposes an integration of ontologies and rules that can be reduced to a very
expressive but still decidable description logic SROIQ [5]. While this enables us in
principle to test condition 3 in the definition, tractability is still a major issue claiming
for highly optimized learning methods. While existing work on optimizing ILP seems
to focus on the problem of dealing with large instance sets, learning ontology mappings
comes with new challenges with respect to dealing with expressive models background
knowledge that can also be very large - some ontologies contain tens of thousands of
axioms.

Uncertainty The approach described above relies on the existence of an initial mapping
between predicates and instances in the two ontologies. In order to determine these ini-
tial mappings an additional matching step is necessary (compare e.g. [10]). This prob-
lem which is referred to as entity and schema matching, respectively, is a research area
in its own rights and a variety of methods have been proposed for this purpose. Most
of these methods are based on weak criteria such as structural or linguistic similarity.
As a result, the learning process has to cope with a significant degree of noise (recent
papers report an F-Value of 70% to 90% for the instance matching task). For the prob-
lem of creating simple mappings as part of the background knowledge state of the art
systems reach a performance of 60% to 90% on real world ontologies [3] which adds
additional uncertainty into the learning process. This means that the development of
highly robust learning methods is necessary to cope with the task. A possible way to go
is to explicitly take the uncertainty introduced by entity and ontology into account [1].
As discussed above, mappings are annotated with a degree of confidence that can be
interpreted in thee context of probabilistic ILP approaches [2]. This, however, requires
that only probabilistic matching methods have been used to create simple mappings and
entity correspondences. The majority of the existing approaches, however are based on
different notions of similarity. Providing ways to exploit these similarities in the learn-
ing process would be a bit step forward.

Incompleteness and Inconsistency The third condition in our definition that claims the
consistency of the overall model poses an additional and unexpected challenge to the
learning task. We have shown that existing matching systems cannot guarantee that their
result leads to a consistent model. This means that in many cases (O1 ∪ O2 ∪M) is
already inconsistent. As the logical languages currently used for ontologies and map-
pings are monotonic, the third condition will never be satisfied in many cases. If we still
want to learn complex mappings, we first have to fix the inconsistencies in the simple
mappings. This is normally done by removing mappings fromM that cause the overall
model to become inconsistent. Simply removing all potential causes of inconsistency,
however, will in cases remove too many mappings reducing the degree of overlap be-
tween the two ontologies which in turn can be expected to have a negative impact on
the accuracy of the learning result. We therefore have to find a way to only remove the
’right’ mappings in the sense that the set of removed mappings is minimal and contains
only such mappings that are ’wrong’ in the sense that their content does not correspond
to reality. There are first results in this direction that apply techniques from model-based



diagnoses to the debugging of inconsistent ontology mappings [9], but there is still a lot
of space for improvement to get an optimal basis for learning complex mappings.

5 Summary and Conclusions

In this paper, we discussed the generation of complex ontology mappings as a chal-
lenging problem to be addressed by the ILP community. We think that this problem is
interesting for ILP researchers because (1) the use of ILP for addressing this problem is
a natural choice as the definition of the learning problem perfectly matches the ideas of
ILP and because (2) a closer look reveals that the problem comes with some interesting
challenges with respect to scalability and accuracy. In particular, ILP cannot be seen
in isolation here, because the result of the learning phase is directly influenced by the
quality of the instance and schema matching step. It is likely that there can be syner-
gies between these two steps that have not been investigated so far, leaving space for
interesting and challenging research on the border between ILP and semantic matching.
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