A pattern-based ontology matching approach for
detecting complex correspondences

Dominique Ritze', Christian Meilicke!, Ondfej Svab-Zamazal?, and Heiner
Stuckenschmidt!

"University of Mannheim,
dritze @mail.uni-mannheim.de, {christian, heiner } @informatik.uni-mannheim.de
2University of Economics, Prague, ondrej.zamazal @vse.cz

Abstract. State of the art ontology matching techniques are limited to detect
simple correspondences between atomic concepts and properties. Nevertheless,
for many concepts and properties atomic counterparts will not exist, while it is
possible to construct equivalent complex concept and property descriptions. We
define a correspondence where at least one of the linked entities is non-atomic as
complex correspondence. Further, we introduce several patterns describing com-
plex correspondences. In particular, we focus on methods for automatically de-
tecting complex correspondences. These methods are based on a combination of
basic matching techniques. We conduct experiments with different datasets and
discuss the results.

1 Introduction

Ontology matching is referred to as a means for resolving the problem of semantic het-
erogeneity [3]. This problem is caused by the possibility to describe the same domain
by the use of ontologies that differ to a large degree. Ontology engineers might, for ex-
ample, chose different vocabularies to describe the same entities. There might also be
ontologies where some parts are modeled in a fine grained way, while in other ontolo-
gies there are only shallow concept hierarchies in the relevant branches. These kinds of
heterogeneities can be resolved by state of the art ontology matching systems, which
might e.g. detect that hasAuthor and writtenBy are equivalent properties and only dif-
ferent vocabulary is used. Moreover a matching system might identify, that Author is
more general as both concepts FirstAuthor and CoAuthor.

However, ontological heterogeneities are not restricted to these kind of problems:
different modeling styles might require more than equivalence or subsumption corre-
spondences between atomic concepts and properties.! Semantic relations between com-
plex descriptions become necessary. This is illustrated by the following example: While
in one ontology we have an atomic concept AcceptedPaper, in another ontology we have
the general concept Paper and the boolean property accepted. An AcceptedPaper in the
first ontology corresponds in the second ontology to a Paper that has been accepted.
Such a correspondence, where at least one of the linked entities is a complex concept

! Atomic concepts/properties are sometimes also referred to as named concepts/properties resp.
concept/property names.

or property description, is referred to as complex correspondence in the following. As
main contribution of this paper we suggest an automated pattern based approach to de-
tect certain types of complex correspondences and study its performance by applying
it on different datasets. Even though different researchers were concerned with similar
topics (see [11]), to our knowledge none of the resulting works was concerned with au-
tomated detection in an experimental setting. Exceptions can be found in the machine
learning community (see Section 2).

We first discuss related work centered around the notion of a complex correspon-
dence in Section 2. We then present four patterns of complex correspondences in Sec-
tion 3. In Section 4 we suggest the algorithms we designed to detect occurrences of
these patterns. Each of these algorithms is described as a conjunction of conditions,
which are easy to check by basic matching techniques. In Section 5 we apply the algo-
rithms on two datasets from the OAEI and show that the proposed techniques can be
used to detect a significant amount of complex correspondences. We end with a conclu-
sion in Section 6.

2 Related Work

Complex matching is a well known topic in database schema matching. In [1] the au-
thors describe complex matches as matching corresponding attributes on which some
operation was applied, e.g. a name is equivalent with concatenation of a first-name and a
last-name. There are several systems dealing with this kind of database schema match-
ing. On the other hand complex matching is relatively new in the ontology matching
field. Most of the state of the art matchers just find (simple) correspondences between
two atomic terms. However, pragmatic concerns call for complex matching. We also
experienced this during discussions at the OM-2008. It turns out that simple corre-
spondences are too limited to capture all meaningful relations between concepts and
properties of two related ontologies. This is an important aspect with respect to ap-
plication scenarios making use of alignments e.g. instance migration scenarios. There
are three diverse aspects of complex correspondences: designing (defining), finding and
representing them.

In [8] complex correspondences are mainly considered from design and representa-
tion aspects. Complex correspondences are captured as correspondence patterns. They
are solutions for recurring mismatches being raised during aligning two ontologies.
These patterns are now being included within Ontology Design Patterns (ODP)?. This
work considers complex matching as task that had to be conducted by a human user,
which might e.g. be a domain expert. Experts can take advantage of diverse templates
for capturing complex and correct matching. However, this collection of patterns can
also be exploited by some automated matching approach, as suggested and shown in
this paper.

In [11] authors tried to find complex correspondences using pattern-based detection
of different semantic structures in ontologies. The most refined pattern is concerned

% In the taxonomy of patterns at the ODP portal (http://ontologydesignpatterns.
org/wiki/OPTypes) category AlignmentODP corresponds best with the patterns in this
paper, while category CorrespondeceODP is a more general category.

with "N-ary’ relation detection. After detecting an instance of the pattern (using query
language and some string-based heuristics) additional conditions (mainly string-based
comparisons) over related entities wrt. matching are checked. While there are some
experiments with pattern detection in one ontology, experiments with matching tasks
are missing.

Furthermore, in [12] the authors consider an approach for pattern-based ontology
transformation useful for diverse purposes. One particular use case is ontology match-
ing where this method enables finding further originally missed correspondences. On-
tologies are transformed according to transformation patterns and then any matcher
can be applied. Authors hypothesize that matchers can work with some structures bet-
ter than with others. This approach uses Expressive alignment language® based on [2]
which extends the original INRIA alignment format. This language enables to express
complex structures on each side of an alignment (set operators, restriction for entities
and relations). Furthermore it is possible to use variables and transformation functions
for transforming attribute values. “Basically, complex correspondences are employed
indirectly in the ontology matching process at a pre-processing step where ontology pat-
terns are detected and transformed [13].” Unlike, in this paper complex correspondences
are detected directly taking advantage of information from not only two ontologies be-
ing aligned but also from a reference alignment composed of simple correspondences.

Regarding ontology matching, there are a few matchers trying to find complex cor-
respondences based on machine learning approaches (see [9] for a general description).
A concrete matching system is presented in [6]. These approaches take correspondences
with more than two atomic terms into account, but require the ontologies to include
matchable instances. However, ontologies often contain disjoint sets of instances, such
that for each instance of one ontology there exists no counterpart in the other ontology
and vice versa. The approach proposed in this paper does not require the existence of
matchable instances at all.

3 Complex Correspondence Patterns

In the following we propose four patterns for complex correspondences that, due to a
preparatory study, we expect to occur frequently within ontology matching problems.
We first report about our preparatory study, followed by a detailed presentation of each
pattern. Each pattern is also explained by an example depicted in Figure 1. Without
explicitly mentioning it, we will refer to Figure 1 throughout this section. Further we
use 07 and Os to refer to two aligned ontologies, and we use prefix notation i#C' to
refer to an entity C' from ontology O;.

First of all we had to collect different types of complex correspondences. We con-
sidered the examples found in [9] and also profited from the discussion of the consensus
track at OM 2008, which highlighted the need for complex correspondences.* After we
had a few ideas, we started observing two sets of ontologies manually to detect concrete
examples for complex correspondences. The specific ontologies which we examined are
the SIGKDD, CMT, EKAW, IASTED, and CONFOF ontologies of the conference dataset

http://alignapi.gforge.inria.fr/language.html
“http://nb.vse.cz/~svabo/0aei2008/cbw08.pdf

Perzon

submission

IIg

Organization

researchedBy ! Parson U

hasEvaluati -

6

boolean

hasAuthor

Topic

|
I
I
_ i. Organizatign :

author

SubmittedPaper

% Positive Reviewe dPaper |

% MeutralReviewedPaper |

—| MNegative ReviewedPaper |

Fig. 1. Two example ontologies to explain the complex patterns

and ontologies 101, 301, 302, 303, and 304 of the benchmark track. The first dataset
describes the domain of conferences. This seems to be suitable [10] because most per-
sons dealing with ontologies are academics and know this topic already. Therefore it is
easier to understand complex interdependencies in this domain instead compared to an
unfamiliar domain like e.g. medical domains. The OAEI Benchmark ontologies attend
the domain bibliography which is also well-known by academics. Another reason for
choosing these ontologies are the existing and freely available reference alignments. For
the conference dataset an alignment is available for every pair of two ontologies. Only
for each combination with ontology 101 an alignment is available for the benchmark
ontologies, resulting in four matching tasks. In Section 4 we will explain in how far and
for which purpose a reference alignment, which consists of simple correspondences, is
required.

The first three patterns are very similar, nevertheless, it will turn out that different al-
gorithms are required to detect concrete complex correspondences. In accordance with
[8] we will refer to them as Class by Attribute Type pattern, Class by Inverse Attribute
Type pattern, and Class by Attribute Value pattern. In the following we give a formal
description as well as an example for each pattern.

Class by Attribute Type pattern (CAT) This pattern occurs very often when we have
disjoint sibling concept. In such a situation the same pattern can be used to define each
of the sibling concepts.

Formal Pattern: 1#A = A24#R.2#B
Example: 1#PositiveReviewedPaper = 32#hasFEvaluation.2#Positive

With respect to the ontologies depicted in Figure 1 we can construct correspondences
of this type for the concepts Positive-, Neutral-, and NegativeReviewedPaper.

Class by Inverse Attribute Type pattern (CAT—!) The following pattern requires
to make use of the inverse 2#R~! of property 2#R, since we want to define 1#A as
subconcept of 2#R’s range.

Formal Pattern: 1#A = 2#B N32#R~1. T
Example: 2#Researcher = 1#Person N 31#tresearchedBy~1. T

Given an ontology which contains a property and its inverse property as named entities,
it is possible to describe the same correspondences as Class by Attribute Type pattern
and as Class by Inverse Attribute Type pattern. Nevertheless, an inverse property might
often not be defined as atomic entity in the ontology or might be named in a way which
makes a correct matching harder.

Class by Attribute Value pattern (CAV) While in the Class by Attribute Type pattern
membership to a concept was a necessary condition, we now make use of nominals
defined by concrete data values.

Formal Pattern: 1#A = 32#R.{...} (where {...} is a set of concrete data values)
Example: 1#submittedPaper = 324#submission.{true}

Another typical example is the distinction between LateRegisteredParticipant and Ear-
lyRegisteredParticipant. In particular, the boolean variant of the pattern occurs to dis-
tinguish between complementary subclasses. However, in general there might be more
than two relevant values. The following correspondence is a more complex example:
1#StudentPassedExam = 32#hasExamScore.{A, B, C, D}.

Property Chain pattern (PC) ° In the following we assume that in ; property
1#author relates a paper to the name of its author, while in Oy 2#author relates a
paper to its author and the datatype property 2#name relates a person to its name. Un-
der these circumstances a chain of properties in O, is equivalent to an atomic property
in 01.

Formal Pattern: 1#R = 2#P o 24#Q
Example: 1#author = 2#hasAuthor o 2#name

Conventional matching systems focus only on correspondences between atomic enti-
ties. Therefore, a matcher might detect a similarity between /#R and 2#P and one
between 1#R and 24#(), but will finally decide to output the one with higher simi-
larity. This observation already indicates that state of the art matching techniques can

3 Correspondence patterns library [8] explicitly contains (CAT) and (CAV), other two patterns
(PC) and (CAT™') are not explicitly presented there.

be exploited to generate complex correspondences. In particular, we will argue in the
next section, that it is possible to detect complex correspondences by combining simple
techniques in an intelligent way.®

4 Algorithms

The techniques we are using for detecting complex correspondences are based on com-
binations of both linguistic and structural methods. In the following we shortly list and
describe these approaches. The structural techniques require the existence of a reference
alignment R that consists of simple equivalence correspondences between atomic con-
cepts. In particular, it would also be possible to use a matcher generated (and partially
incorrect) alignment, but in our first experiments we wanted to avoid any additional
source of error.

Structural Criteria To decide whether two or more entities are related via complex
correspondences, information about their position in the ontology hierarchy is re-
quired. Therefore, we have to check whether two concepts are in a subclass resp.
superclass relation, or are even equivalent concepts. It might also be important to
know if two concepts are non overlapping, disjoint concepts. Properties are con-
nected to the concepts hierarchy via domain and range restrictions, which are thus
also important context information. All of these notions are clearly defined within
a single ontology, however, we extend these notions to a pair of aligned ontologies.
1#C is also referred to as a subconcept of 2#D if there exists a correspondence
1#C" = 24D’ € R such that Oy | 1#C C 1#C' and Os | 2#D’ C 2#D.

Syntactical Criteria The most efficient methods used in ontology matching are based
on string comparisons e.g. comparing concept id (the fragment of the concepts URI)
resp. label to compute a similarity between ontological elements. We also make
use of this basic method by computing a similarity measure between normalized
strings based on the Levenshtein measure [4]. For the sake of simplicity we refer
to the maximum value obtained from id and label comparison as label similarity in
the following. For some operations we need to determine the head noun of a given
compound concept/property label. Thus, we can e.g. detect that Reviewer is the
head noun of ExternalReviewer. Sometimes we are simply interested in the
first part of a label, sometimes in the head noun and sometimes in the remaining
parts.

Data type Compatibility Two data types are compatible if one data type can be trans-
lated into the other and vice versa. This becomes relevant whenever datatype prop-
erties are involved. We determined compatibility in a wide sense. E.g. data type
String is compatible to every other data type while Date is not compatible to
Boolean.

® Even experts tend to avoid the introduction of complex correspondences. The property
chain 1#R = 2#P o 2#Q), for example, is sometimes reflected by one (two) correspon-
dence(s) 1#R = 2#P or (and) I1#R = 2#(). See for example the reference alignment
for OAEI benchmark test case 301 where 101#date = 301#hasYear and 101#year =
301#thas Year which should be replaced by 101#date o 101#year = 301#hasYear.

A more detailed description can be found in [7]. Overall we emphasize that our
methodology does not exceed basic functionalities which we normally would expect to
be part of any state of the art matching system.

Class by Attribute Type pattern A correspondence 1#A = I2#R.2#B of the CAT
type is generated by our algorithm, if all following conditions hold.

1. The string that results from removing the head noun from the label of 1#A is
similar to the label of 2#B.

2. There exists a class 2#C' that is a superclass of 2#B, range of 2#R and has also a
label similar to 2#R.

3. The domain of 2#R is a superclass of 1#A due to R.

Notice that these conditions are a complete description of our approach for detect-
ing the CAT pattern. The following example will clarify why such a straightforward
approach works.

01 | Accepted_Paper I c » Paper 02
A

domain

f 1
not headnoun headnoun

Accepted range similar
|
similar #
Lh

H Acceptance I

Fig.2. Conditions relevant for detecting CAT correspondence I#Accepted_Paper =
J2#hasDecision.24#Acceptance.

With respect to the ontologies depicted in Figure 2 our approach will detect that
14 Accepted_Paper = 32#hasDecision. 24#Acceptance. The label of Accepted_Paper
can be split up into prefix Accepted and head noun Paper. On the one hand the
string Accepted is similar to Acceptance, but on the other hand Accepted_Paper =
Acceptance is not contained in R. Object property hasDecision accomplishes all con-
ditions required by our algorithm: Acceptance has a superclass Decision which is the
range of hasDecision and the labels Decision and hasDecision are similar. More-
over the domain of hasDecision is a superclass of Accepted_Paper due R, which con-
tains correspondence 1#Paper = 2#Paper.

Class by Inverse Attribute Type pattern A correspondence 1#A = 24#BM3A2#R~1.T
of the CAT! type is generated if all following conditions hold.

1. The labels of 1#A and 2#R are similar.
2. There exists a concept 2#B which both is a proper subset of the range of 2#R
3. and which is, due to the R, a superclass of 1#A.

Notice that for the CAT pattern we did not demand similarity between 7#A and
2#R. This is related to the fact that the label of a property often describes some aspects
of its range and not its domain (e.g. hasAuthor relates a paper to its author). Thus, the
label of a property is relevant for the inverse pattern CAT . The other two conditions
are related to structural aspects and filter out candidates that are caused by accidental
string similarities.

Class by Attribute Value pattern Although above we described the pattern CAV in
general, our algorithm will only detect the boolean variant of this pattern. A correspon-
dence 1#A = J2#R.{true} is generated by our algorithm, if all following conditions
hold.

1. The range of the datatype property 2#R is Boolean.

2. In the following the label of 1#A is split into its head noun hn(/#A) and the
remaining part of the label —hn(1#A). Again, =hn(1#A) is split into a first part
—hnj(I#A) and a remaining part —hnq(1#A).
(a) hn(I1#A) is similar to the label of 2#4R’s domain.
(b) —hn(I1#A) is similar to the label of 2#R.
(¢) =hny(1#A) is similar to the label of 2#R.

3. The domain of 2#R is a superclass of 1#A due to R.

Given a non-boolean datatype property range, more sophisticated techniques are
required to decide which set of values is adequate for which concept. In our case this
distinction is based on condition 2c. If the similarity value does not exceed a certain
threshold, we generate 1#A = J2#R.{false} instead of 1#A = J2#R.{true}. An
example detected in our experimental study is I#FEarly_Registered_Participant =
324#earlyRegistration.{true} exploiting 1#Participant = 2#Participant in R.

Property Chain pattern A correspondence 1#R = 2#P o 2#(Q of type PC is gener-
ated, if all following conditions hold.

1. Due to R, the domain of 1#R is a subclass or superclass of the domain of 2#P.
2. The range of 2#P is a subclass or superclass of the domain of 2#(Q).

3. Datatype properties 1#R and 2#() have a compatible data range.

4. The labels of 1#R and 2#P are similar.

5. The label of 2#() is name or is contained in the label of 1#R resp. vice versa.

Due to the condition that range of 24P and domain of 2#() are in a superclass relation,
the successive application of the properties can be ensured. Often 7/#R maps a class
onto a name, therefore especially properties which are labeled with name are potential

mapping candidates. An example for this pattern has already been given in the previous
section. With respect to Figure 1 we have 1#R = 1#author, 24P = 24#hasAuthor,
2#@Q) = 2#name. The property 1#author relates a paper to the name of its author,
24#thasAuthor relates a paper to its author and 2#name an author to its name. Thus, a
chain of properties is required to express I#author in the terminology defined by Os.
A second set of conditions aims to cover a different naming strategy. The first three
conditions are the same as above, but the last ones have to be replaced as follows.

4. The labels of 1#R and 2#() are similar.
5. The labels of 2#P and its range or the labels of the properties 2#P and 2#() are
similar.

An example, depicted in Figure 4, of a property chain that fulfills these conditions:
1#thasYear = 24#date o 24#year where 24#date is an object property with 2#Date as
abstract range.

similar

Conference LI . .
<«—domain @ range—» Date <—domain range
Reference
similar

4l ompatible-
PN
= S
Entry |«—domain range >/nonNegat|ve}
- Integer
NS

N

Fig. 3. Conditions relevant for detecting PC correspondence 1#hasYear = 24#date o 24#year

For all patterns of the class by and property chain family we additionally check for
each candidate correspondence whether there exists a constituent that already occurs in
the reference alignment. In this case we trust the simple correspondence in the reference
alignment and do not generate the complex correspondence.

S Experiments

The algorithms described in the previous section have been implemented in a matching
tool available at http://dominique—-ritze.de/complex—mappings/. We
applied our tool on three datasets referred to as CONFERENCE 1, CONFERENCE 2 and
BENCHMARK. These datasets have been taken from corresponding tracks of the Ontol-
ogy Alignment Evaluation Initiative (OAEI). As BENCHMARK we refer to the matching
tasks #301 - #304 of the OAEI Benchmark track. We abstained from using the other test
cases, because they are generated by systematic variations of the #101 ontology, which

do not exceed a certain degree of structural difference. The CONFERENCE 1 dataset
consists of all pairs of ontologies for which a reference alignment is available. Addi-
tionally, we used the reference alignment between concepts created for the experiments
conducted in [5] to extend our datasets. This dataset is referred to as CONFERENCE 2
and has not been regarded while looking for complex correspondences.

Notice that all conditions in our algorithms express hard boolean constraints. The only
exception is the threshold that determines whether two strings are similar. Therefore,
we conducted our experiments with different thresholds from 0.6 to 0.9.

Correct Correspondences (true positives) Incorrect Correspondences (false positives)
Type CAT & CAT™* PC) CAT & CAT* PC)
Threshold 0.6 0.7 0.8 0.9[0.6 0.7 0.8 0.9/0.6 0.7 0.8 0.9/0.6 0.7 0.8 0.9/0.6 0.7 0.8 0.9/0.6 0.7 0.8 0.9
CONFERENCE1| 7 5 5 O0(f1 1 1 1|8 6 6 116 8 6 2|5 3 2 1|21 11 8 3
CONFERENCE2(3 3 2 0|0 O O O3 3 2 0|8 6 5 0|14 11 11 7|22 17 16 7
BENCHMARK o 0 0 0|17 17 17 17|17 17 17 17)0 0 O O|2 2 1 02 2 1 0
> 10 8 7 0 |18 18 18 18|28 26 25 18|24 14 11 2 (21 16 14 8 (45 30 25 10

Table 1. Results with four different thresholds

Table 1 gives an overview on the results of our experiments. We carefully analyzed
all generated correspondences and divided them in correct (true positives) and incorrect
ones (false positives). One might first notice that we did not include a column for the
CAYV pattern. Unfortunately, only two correct and one incorrect correspondence of this
type have been detected in the CONFERENCE 1 dataset. Remember that we only focused
on boolean datatype properties. A more general strategy might result in higher recall.
Nevertheless, to our knowledge all correspondences of the boolean CAV have been
detected and even with low thresholds only one incorrect correspondence accrued.

Obviously there is a clear distinction between different datasets. While our match-
ing system detected correct complex correspondences of class by types in the CON-
FERENCE datasets, none have been detected in the BENCHMARK dataset. Nearly the
same holds vice versa. This is based on the fact that the ontologies of the BENCHMARK
dataset are dedicated to the very narrow domain of bibliography and do not strongly
vary with respect to their concept hierarchy, while differences can be found with re-
gard to the use of properties. The CONFERENCE ontologies on the other hand have very
different conceptual hierarchies.

Correspondences of the pattern CAT and CAT ! can be found in both CONFER-
ENCE 1 & 2 datasets. As expected we find the typical relation between precision and
recall on the one hand and the chosen threshold on the other hand: low thresholds cause
low precision of approx 30% and allow to detect a relatively high number of correct
correspondences. A nearly balanced ratio between true and false positives is reached
with a threshold of 0.8.

For the PC pattern a threshold of 0.6 results in 18 correct and 21 incorrect cor-
respondences. Surprisingly, the number of correct correspondences does not decrease
with increasing threshold, although the number of incorrect correspondences decreases

significantly. This is based on the fact that the relevant entities occurring in the PC pat-
tern are very often not only similar but identical after normalization (e.g. concept Date
and property date). This observation indicates that there is still room for improvement
by choosing different thresholds for different patterns.

Another surprising result is the high number of false property chains in the CON-
FERENCE 1 and in particular in the CONFERENCE 2 dataset compared to the BENCH-
MARK dataset. Due to the existence of a reference alignment with high coverage of
properties for the BENCHMARK dataset many incorrect property chains have not been
generated. Their constituents already occurred in simple correspondence of the refer-
ence alignment. The same does not hold for the CONFERENCE datasets. There are many
properties that have no counterpart in one of the other ontologies.

Our experimental study points to the problem of evaluating the quality of a complex
alignment. Due to the fact that complex correspondences are missing in the reference
alignments, our results cannot be compared against a gold standard, resulting in miss-
ing recall values. Even though it might be possible to construct a complete reference
alignment for a finite number of patterns, it will be extremely laborious to construct a
complete reference alignment, which contains all non-trivial complex correspondences.
Nevertheless, a comparison against the size of the simple reference alignments might
deliver some useful insights. The number of property correspondences in the union of
all BENCHMARK reference alignments is 139 (only 63 concept correspondences), while
we could find 17 additional property chains with our approach. For the CONFERENCE
datasets we counted 275 concept correspondences (only the CONFERENCE 1 dataset
comprised additionally 12 property correspondences). Here we detected 12 complex
correspondences of different class by types. These results indicate that the proposed
complex ontology matching strategy increased recall by approx. 4% with respect to
concept correspondences and by approx. 10% with repect to property correspondences.

Interpreting these results, we have to keep in mind that the generation of complex
correspondences is much harder compared to the generation of simple correspondences.
While a balanced rate of correct and incorrect correspondences will not be acceptable
for simple matching tasks, a similar result is positive with respect to the complex match-
ing task which we tackle with our approach.

6 Conclusion

We proposed a pattern based approach to detect different types of complex correspon-
dences. Our approach does not rely on machine learning techniques, which require the
availability of instance correspondences. On the contrary, it is based on state of the
art matching techniques and additionally exploits an input alignment which consists of
simple correspondences. In an experimental study we have shown that our approach,
which is simply based on checking conditions specific to a particular pattern, is suffi-
cient to detect a significant amount of complex correspondences, while the number of
false positives is relatively low, if considering that complex correspondences are quite
hard to detect.

Although first results are promising, we know that the task of verifying the correct-
ness of complex correspondences requires human interaction. A pattern based approach,

as proposed in this paper, will in most cases fail to generate highly precise alignments.
This is based on the fact that the generation of complex correspondences is significantly
harder compared to the task of generating simple correspondences. Suppose, given con-
cept AcceptedPaper of Oy, a user is searching in Oy for an equivalent concept. First of
all, there are as much simple hypotheses available as there are atomic concepts in Os.
The situation changes dramatically when there exists no atomic counterpart and a com-
plex correspondence is required. The search space explodes and it becomes impossible
for a human expert to evaluate each possible combination. We know that the proposed
patterns covers only a small part of an infinite search space. Nevertheless, this small
part might still be large enough to find a significant fraction of those correspondences
that will not be detected at all without a supporting system.

Acknowledgment The work has been partially supported by the German Science Foun-
dation (DFG) under contract STU 266/3-1 and STU 266/5-1 and by the IGA VSE grant
no. 20/08 “Evaluation and matching ontologies via patterns”.

References

1. A. Doan and A. Y. Halevy. Semantic-integration research in the database community. Al
Magazine, pages 83-94, 2005.

2. J. Euzenat, F. Scharffe, and A. Zimmermann. Expressive alignment language and implemen-
tation. deliverable 2.2.10, Knowledge web, 2007.

3. J. Euzenat and P. Shvaiko. Ontology Matching. Springer, 2007.

4. V.1 Levenshtein. Binary codes capable of correcting deletions and insertions and reversals.
Doklady Akademii Nauk SSSR, pages 845-848, 1965. In Russian. English Translation in
Soviet Physics Doklady, 10(8) p. 707710, 1966.

5. C. Meilicke, A. Tamilin, and H. Stuckenschmidt. Repairing Ontology Mappings. In Pro-
ceedings of the 22nd Conference on Artificial Intelligence, Vancouver, Canada, 2007.

6. H. Qin, D. Dou, and P. LePendu. Discovering Executable Semantic Mappings Between
Ontologies. On the Move to Meaningful Internet Systems 2007: CooplS, DOA, ODBASE,
GADA, and IS, pages 832-849, 2007.

7. D. Ritze. Generating Complex Ontology Alignments, University Mannheim (Bachelor the-
sis), 2009.

8. F. Scharffe. Correspondence Patterns Representation. PhD thesis, University of Innsbruck,
20009.

9. H. Stuckenschmidt, L. Predoiu, and C. Meilicke. Learning Complex Ontology Alignments
A Challenge for ILP Research. In Proceedings of the 18th International Conference on
Inductive Logic Programming, 2008.

10. O. Svéb, V. Svitek, P. Berka, D. Rak, and P. Tomasek. OntoFarm: Towards an Experimental
Collection of Parallel Ontologies. In Poster Proceedings of the International Semantic Web
Conference, 2005.

11. O. Svdb-Zamazal and V. Svatek. Towards Ontology Matching via Pattern-Based Detection
of Semantic Structures in OWL Ontologies. In Proceedings of the Znalosti Czecho-Slovak
Knowledge Technology conference, 2009.

12. O. gvéb—Zamazal, V. Svitek, J. David, and F. Scharffe. Towards Metamorphic Semantic
Models. In Poster session at European Semantic Web Conference, 2009.

13. O. Svdb-Zamazal, V. Svitek, and F. Scharffe. Pattern-based Ontology Transformation Ser-
vice. In Proceedings of the Ist International Conference on Knowledge Engineering and
Ontology Development, 2009.

