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Abstract. We propose a framework for automated multi-attribute decision mak-
ing, employing the probabilistic non-monotonic description logics proposed by
Lukasiewicz in 2008. Using this framework, we can model artificial agents in
decision-making situation, wherein background knowledge, available alternatives
and weighted attributes are represented via probabilistic ontologies. It turns out
that extending traditional utility theory with such description logics, enables us to
model decision-making problems where probabilistic ignorance and default rea-
soning plays an important role. We provide several decision functions using the
notions of expected utility and probability intervals, and study their properties.

1 Introduction

Preference representation and its link to decision support systems is an ongoing research
problem in artificial intelligence, gaining more attention every day. This interest has led,
on the one hand, to the analysis of decision-theoretic problems using methods common
in A.I. and knowledge representation, and, on the other hand, to apply methods from
classical decision theory to improve decision support systems. In this regard there has
been a growing interest over the last decade in the use of logics to model preferences,
see [1, 19, 18, 3, 16, 17, 14, 15].

Description Logics (DLs) are a family of knowledge representation languages that
are based on (mostly) decidable fragments of first order logic. They were designed as a
formal languages for knowledge representation, becoming one of the major formalisms
in this field over the last decade. Alongside this, and from a more practical point of view,
they constitute one of the main underpinnings of the Semantic Web, as they constitute
the theoretical foundation of the OWL Web Ontology Language1, the Semantic Web key
representation and ontology standard (defined by the World Wide Web Consortium).

In this work, we propose a formal framework which is based on expressive prob-
abilistic DLs [13], viz., the non-monotonic P-SHOIN (D) family of DL languages,
designed to model uncertainty and uncertain reasoning.

In such languages one can express objective (statistical) uncertainty (terminological
knowledge concerning concepts), as well as subjective (epistemic) uncertainty (asser-
tional knowledge concerning individuals). Furthermore, due to their non-monotonicity,
one can represent and reason with default knowledge. Also, their probabilistic com-
ponent employs imprecise probabilities to model uncertainty, which in turn allows to

1 http://www.w3.org/TR/owl-features/



model probabilistic ignorance with considerable flexibility, in contrast to classical prob-
ability theory.

We show that our framework can represent decision-theoretic problems and solve
them using DL inference services, taking advantage of imprecise probabilities and back-
ground knowledge (as represented by ontologies) to compute expected utilities in a fine-
grained manner that goes beyond traditional decision theory. One reason why this is
possible within a DL-based decision making framework, is because one can express the
various dependency relations between attributes/decision criteria with rich DL concept
hierarchies and evaluate thereafter alternatives in terms of their logical implications.

Our framework can be interpreted as modeling the behavior of an agent, or as a
model for systems that support group decisions. In this work, we pursue the former in-
terpretation and focus on modeling artificial agents where each attribute/decision crite-
rion has an independent local utility value (weight). We consider available alternatives
in the form of DL individuals, and attributes in the form of DL concepts. Finally, we
represent the agent’s background knowledge and beliefs via a probabilistic DL knowl-
edge base.

In this work, we present several decision functions in order to model agents with
different characteristics. Furthermore, the employed logic’s use of imprecise probabili-
ties to model uncertainty, allows considerable expressive power to model non-standard
decision behaviour that violates classical axioms of expected utility e.g., Ellsberg para-
dox. Using the framework, we show that it is straightforward to provide decision func-
tions which model ambiguity averse decision-making. In so doing, we investigate the
various properties of such decision functions as well as their connection to ontological
knowledge.

2 Preliminaries

Preferences and Utility Traditional utility theory [10] models the behavior of rational
agents, by quantifying their available choices in terms of their utility, modeling prefer-
ence (and eventual courses of action) in terms of the induced partial orders and utility
maximization.

Let A = {a1, . . . , an} be a set of alternatives, and a (rational) preference is a
complete and transitive binary relation � on A. Then, for any ai, aj ∈ A where
i, j ∈ {1 . . . n}, strict preference and indifference is defined as follows: ai � aj iff
ai � aj and aj 6� ai (Strict preference), ai ∼ aj iff ai � aj and aj � ai (Indifference).

It is said that, a is weakly preferred2 (strictly preferred) to bwhenever a � b (a � b),
a is indifferent to b whenever a ∼ b. Moreover, a, a′ is incomparable iff a || a′ ⇐⇒
a 6� a′ and a′ 6� a, which implies that � is a partial ordering.

In order to represent the preference relation compactly, one introduces the term
utility, which is is a function that maps an alternative to a positive real number reflecting
the degree of desire. For a decision theoretic framework, two questions are essential;
given a (finite) set of alternatives (i) which alternative is the best one(s)? (ii) How does

2 It is also called preference-indifference relation, since it is the union of strict preference and
indifference relation.



the whole preference relation look like i.e., a complete list of order of alternatives e.g.,
a1 � a3 � . . .). Throughout the paper, these two main questions will also be of our
concern, along with a restriction to single (non-sequential) decisions.

Formally, given a finite set of alternatives A = {a1, . . . , an}, and preference � on
A, u : A → R is a utility function iff for any ai, aj ∈ A with i, j ≤ n, ai � aj ⇐⇒
u(ai) > u(aj), ai � aj ⇐⇒ u(ai) ≥ u(aj),ai ∼ aj ⇐⇒ u(ai) = u(aj).

For the proof that such a function exists, we refer the reader to the so-called repre-
sentation theorems in [7].

The basic principle in utility theory is that a rational agent should always try to
maximize its utility, or should take the choice with the highest utility. Utility func-
tions which are defined to model behaviours that is based on more than one attributes
(i.e., n-ary) are called multi-attribute utility functions. . Let X = {X1, . . . , Xn} be
the set of attributes where n ≥ 2, and Ω = X1 × · · · × Xn be the set of outcomes
over which the agent’s preference relation is defined. An alternative/outcome is a tu-
ple (x1, . . . , xn) ∈ Ω. Let � be the preference relation defined over X , then u is
a multi-attribute utility function representing � iff ∀(x1, . . . , xn), (y1, . . . , yn) ∈ X ,
(x1, . . . , xn) � (y1, . . . , yn) ⇐⇒ u(x1, . . . , xn) ≥ u(y1, . . . , yn). For a seminal
work on multi-attribute utility theory, see [10].

Moreover, a utility function u is said to be unique up to affine transformation iff for
any a > 0 and b, u(x) ≥ u(x′) iff au(x) + b ≥ au(x′) + b.

Along the paper, we will use two running examples to point out two important
limitations of traditional decision theory that we will overcome with description logics.
theoretic: Ellsberg’s Paradox and a a touristic agent example.

Ellsberg’s paradox Assume that there is an urn, full with three different colours of
balls, namely red, black, and yellow. What you only know is that, 1/3 of the balls are
red, and the black and yellow balls together makes the rest 2/3. However, it is possible
that either there is no single black ball (that is all of them are yellow) or all black.
Now, before randomly picking up a ball from the urn, you are asked to make a guess,
choosing red or black with the following two gambles:

1st Gamble: If you guess correctly, you get the prize.
2nd Gamble: If you guess correctly, or the ball is yellow, you get the prize.

If you prefer to choose red to black (i.e., red � black ) in Gamble A, then following
the sure-thing principle, you are supposed to also have red � black in Gamble B, since

U(r) · Pr(r) > U(b) · Pr(b)
=⇒

U(r) · (Pr(r) + Pr(y)) > U(b) · (Pr(b) + Pr(y)).

However, people usually choose red � black in the first gamble, and black � red in
the second. This particular situation is called Ellsberg’s paradox [6] and is not compat-
ible with the preferential predictions that ensue from subjective utility theory (which
we will not mention here (see [7] for details), and arises in the presence of ambiguity in
probabilities [6].



Table 1. Syntax and semantics of the DL SHOIN (D). Notice that D refers to concrete domains.
The first block introduces individuals. The second block recursively defines concepts (others
can be introduced by explicit definition), while the third does it with roles. The fourth formally
introduces terminological statements, resp., concept (ISA) and role inclusion statements. Finally,
the fifth block introduces assertional facts a.k.a. membership assertions, resp. concept and role
membership assertions. A TBox T is a set of terminological statements, an ABox A is a set of
assertions, and a KB is a pair T = (T ,A). Entailment and satisfiability are defined in the usual
way. The syntax and semantics of P-SHOIN (D) extend this definition.

Syntax Semantics w.r.t. classical interpretation I = (∆I , ·I)
i iI ∈ ∆I

A AI ⊆ ∆I

D DI ⊆ D = NUM ∪ STRING

OneOf(i1, . . . , in) (OneOf(i1, . . . , in))I := {i1, . . . , in}
¬φ (¬φ)I := ∆I \ φI
∃r.φ (∃r.φ)I := {d | exists e s.t. (d, e) ∈ rI and e ∈ φI}
∃≤kr (∃≤kr)

I := {d | exists at most kes s.t. (d, e) ∈ rI}
φ1 u φ2 (φ1 u φ2)

I := φI ∩ φ′I

p pI ⊆ ∆I ×∆I
r− (r−)I := {(d, e) | (d, e) ∈ rI}

Tr(r) (Tr(r))I := the transitive closure of r in ∆I ×∆I

φ1 v φ2 I |= φ1 v φ2 iff φI1 ⊆ φI2
r1 v r2 I |= r1 v r2 iff rI1 ⊆ rI2
φ(i) I |= φ(i) iff iI ∈ φI
r(i, j) I |= r(i, j) iff (i, j)I ∈ rI

The Tourist Example Imagine a tourist trying to decide in which hotel to stay. He/she
would rather stay at a 5 star hotel, rather than a 4 star hotel (among other features he
may desire). But what if the hotel suggested in his trip has a bad reputation? Intuitively,
we know that this has a negative impact, but how do we factor in background knowledge
about, say, hotels? This example will be used to motivate the importance of using struc-
tured knowledge (e.g., ontologies, concept hierarchies) in decision making in order to
perform logical reasoning.

The P-SHOIN (D) Probabilistic DL Lukasiewicz’s probabilistic description logics
(DLs), see [13], extend classical DLs with probabilistic, non-monotonic reasoning. DLs
are logics –typically fragments of first order logic– specifically designed to represent
and reason on structured knowledge, where domains of interest are represented as com-
posed of objects structured into: (i) concepts, corresponding to classes, denoting sets
of objects; (ii) roles, corresponding to (binary) relationships, denoting binary relations
on objects. Knowledge is predicated through so-called assertions, i.e., logical axioms,
organized into an intensional component (called TBox, for “terminological box”), and
an extensional one (called ABox, for “assertional box”), viz. the former consists of a
set of universal statements and the latter of a set of atomic facts. A DL knowledge base
(KB) is then defined as the combination of a TBox and an ABox.



For example, consider a DL ontology concerning hotels: TBox T = {OneStarHotel
v Hotelu∃hasService.ExtendedBreakfast}, which says every one star hotel is an
hotel and there is an extended breakfast service, andABoxA = {OneStarHotel(tapir)},
which says i.e., Tapir is a one star hotel. 3 Following the formal semantics, we can
conclude that Tapir is a hotel and it has an extended breakfast service (T,A) |=
Hotel u ∃hasService.ExtendedBreakfast(tapir).

For simplicity, we restrict the discussion in this paper to the P-SHOIN (D) family
of probabilistic logics, which is an extension of the known SHOIN (D) DL whose
syntax and semantics we briefly recall in Table 1. SHOIN (D) underpins the OWL-
DL fragment of OWL (in the OWL 1.1 standard).

Given that their semantics is very rich, we avoid giving a full description of it (which
would go beyond the scope of this paper), and provide, rather a basic overview of their
syntax and semantics, and cover its main properties (on which our results rely) in a
succinct Appendix. For its full definition and properties, we refer the reader to [13].

A general remark is that the framework that we present here is (w.l.o.g.) independent
from a particular choice of P-DL. That is, it can easily be adapted with various less
expressive fragments e.g., tractable classical DLs (e.g., DL-Lite, EL + +) as well as
their probabilistic extensions. On the expressive side, one motivation is to be able to
work with numeric domains (data types).

Syntax The P-SHOIN (D) family extends the syntax of SHOIN (D) with the lan-
guage of conditional constraints defined as follows: IP is the set of probabilistic individ-
uals o, disjoint from classical individuals IC = I\IP , C is a finite nonempty set of basic
classification concepts or basic c-concepts, which are (not necessarily atomic) concepts
in SHOIN (D) that are free of individuals from IP . Informally, they are the DL con-
cepts relevant for defining probabilistic relationships. In what follows we overload the
notation for concepts with that of c-concepts.

In addition to probabilistic individuals, TBoxes and ABoxes can be extended in P-
SHOIN (D) to probabilistic TBoxes (PTBoxes P ) and ABoxes (PABoxes Po), via so-
called conditional constraints, expressing (or encoding) uncertain, default knowledge
about domains of interest. A PTBox conditional constraint is an expression (ψ|φ)[l, u],
where ψ and φ are c-concepts, and l, u ∈ [1, 0]. Informally, (ψ|φ)[l, u] encodes that the
probability of ψ given φ lies, by default, within [l, u]. A PABox constraint o : (ψ|φ)[l, u]
relativizes on the other hand constraint (ψ|φ)[l, u] to the individual o.

A probabilistic KB K = (T, P, (Po)o∈IP ) consists of T a classical KB 4, P is a
PTBox (a set of conditional constraints), and a collection of PABoxes, each of which is
a (possibly empty) set of relativized conditional for each probabilistic o ∈ IP .

Semantics A world I is a finite set of basic c-concepts φ ∈ C such that {φ(i) | φ ∈
I} ∪ {¬φ(i) | φ ∈ C\I}. IC is the set of all worlds relative to C. I |= T iff T ∪ {φ(i) |
φ ∈ I} ∪ {¬φ(i) | φ ∈ C\I} is satisfiable where i is a new individual. I |= φ iff

3 Conventionally, objects are written with lower case.
4 Note that T is not used to denote a classical TBox anymore but rather the whole classical

knowledge base, TBox and ABox.



φ ∈ I . I |= ¬φ iff I |= φ does not hold. For c-concepts φ and ψ, I |= ψ u φ iff I |= ψ
and I |= φ. Note that above notion of satisfiability based on worlds is compatible with
the satisfiability of classical knowledge bases, that is, there is a classical interpretation
I = (∆I , ·I) that satisfies T iff there is a world I ∈ IC that satisfies T .5

A probabilistic interpretation Pr is a probability function Pr : IC → [0, 1] with∑
I∈IC Pr(I) = 1. Pr |= T , iff I |= T for every I ∈ IC such that Pr(I) > 0. The

probability of a c-concept φ in Pr is defined as Pr(φ) =
∑
I|=φ Pr(I). For c-concepts

φ and ψ with Pr(φ) > 0, we write Pr(ψ|φ) to abbreviate Pr(ψ u φ)/Pr(φ). For a
conditional constraint (ψ|φ)[l, u], Pr |= (ψ|φ)[l, u] iff Pr(φ) = 0 or Pr(ψ|φ) ∈ [l, u].
For a set of conditional constraints F , Pr |= F iff Pr |= F for all F ∈ F . Notice
that T has a satisfying classical interpretation I = (∆I , ·I) iff Pr |= T 6. We provide
further technical details in the Appendix.

Satisfaction and entailment in SHOIN (D) can be extended to probabilistic in-
terpretations Pr, see the Appendix and [13]. More important for our purposes are
the defeasable entailment relations induced by P-SHOIN (D), viz., lexicographic en-
tailment ||∼lex and tight lexicographic entailment ||∼lextight. Probabilistic KBs in general
and conditional constraints in particular encode as we said probable, default knowledge,
and tolerate to some degree inconsistency (w.r.t. classical knowledge). Lexicographic
entailment supports such tolerance by intuitively: (i) partitioning P (ii) selecting the
lexicographically least set in such partition consistent with T . See the Appendix for the
technicalities.

Reasoning Problems A reasoning problem that will be of our interest is probabilistic
membership PCMEM(probabilistic concept membership): given a consistent probabilis-
tic KB K, a probabilistic individual o ∈ IP , and a c-concept ψ, compute l, u ∈ [0, 1]
such that K ||∼lextight (ψ|>)[l, u] for o.

3 Representing Decision Making Problems

In this section we introduce probabilistic DL decision bases. Regarding notation, we
will try to stick to that in [13] as much as possible, to give the reader easy access to the
referred paper.

Outcomes and Preferences We define the set of possible outcomes Ω as IX where
X ⊆ C is the non-empty set of attributes (recall that C is the set of basic-c concepts).
Informally, every outcome is a world that is defined over attributes. We will assume that
the set of attributes X possibly contains redundancies.

Decision Base We define a decision base that models an agent in a decision situation;
background knowledge of the agent is modelled by a probabilistic knowledge base, the
finite set of available alternatives are modelled by a set of individuals, and a weight

5 See Proposition 4.8 in [13] .
6 See Proposition 4.9 in [13].



function that is defined over the set of attributes which will be used to derive the pref-
erence relation of the agent.

Definition 1 (Decision Base). A probabilistic description logic decision base is a triple
D = (K,A,U) where:

– K = (T, P, (Po)o∈IP ) is a consistent probabilistic knowledge base which is the
background knowledge,

– A ⊆ I is the set of alternatives,
– U is UBox, that is a finite graph of a bounded real-valued function w : X −→ R+

with w(⊥) = 0. †

Informally, the role of K is to provide assertional information about the alternatives
at hand, along with the general terminological knowledge information that the agent
may require to reason further over alternatives; indeed X is the set of concepts φ such
that K logically entails φ(a). Moreover, U can be defined to include negative weights
as well, (i.e., w : X −→ R instead or R+) to model undesirable outcomes or punish-
ments. 7 However, for the sake of brevity, we will consider here only positive weights.

Alternatives with Classical Knowledge Here is the case that we have certain informa-
tion about the alternatives, and we concern ourselves only with the certain subsumption
relation between concepts.

Below, we provide a value function which defines the value of an alternative, which
applies to the classical part of the framework (i.e., classical description logic knowledge
bases).

Definition 2 (Utility of an Alternative). Given a decision base D = (K,A,U), the
utility of an alternative a ∈ A is,

U(a) =
∑
{w(φ) | T |= φ(a) ∧ φ ∈ X}. (1)

where K = (T, P, (Po)o∈IP ) and a ∈ IC . †

In this work, for the sake of simplicity, we take U as
∑

. However, we still note that,
U could be any utility function instead, specific for modeling purposes e.g., 2(p1w(φ) ·
p2w(ψ)) + p3 exp(w(γ)) + c for ψ, φ, γ ∈ X , and any constant c ∈ R. Furthermore,
we assume that w is defined without knowing the exact knowledge base and its transi-
tive closure on subsumption, without having complete knowledge about the ontological
relations between attributes.

Notice that each alternative corresponds to an outcome. Using U , we define the
preference relation � over alternatives: a1 � a2 iff U(a1) > U(a2); � and ∼ are
defined similarly in an obvious sense.

7 Alternatively, U can be studied in two partition, that is, the set of pairs with non-negative
(denoted U+) and negative weights (denoted U−). In extreme cases, U = U+ when U− = ∅
(similarly for U = U+).



Definition 3 (Optimal Choice). Given a decision base D = (K,A,U), the optimal
choice w.r.t. D is,

Opt(A) := argmax
a∈A

U(a) (2)

That is, an alternative gets a reward for satisfying each attribute independently. †

Intuitively, the function U measures the value of an alternative with respect to the
concepts (possibly deduced) that it belongs. The following proposition is an immediate
result of that.

Proposition 1. Let T be a classical part of the knowledge base of D and a1, a2 ∈ A
be any two alternatives. If for every φ ∈ X with T |= φ(a1), there is a ψ ∈ X with
T |= ψ(a2) such that T |= φ v ψ, then a1 � a2.

Proof. ψ be any basic c-concept such that T |= ψ(a2) and (ψ,w(ψ)) ∈ U , then
U(a2) ≥ w(ψ). By assumption, there is a φ ∈ X such that T |= φ v ψ and T |= φ(a),
hence T |= ψ(a). It follows that U(a1) ≥ w(ψ), therefore a1 � a2. ut

Intuitively, ceteris paribus any thing that belongs to a subconcept should be at least
as desirable as something that belongs to a superconcept; for instance, a black sport car
is at least as desirable as a sport car (since anything that is a black sport car is a sport
car i.e., black sport car v sport car).8 Following proposition says that two alternatives
are of same desirability if they belong to exactly the same concepts.

Corollary 1. a1 ∼ a2 iff
⋃

ψ∈X,
a1∈ψ

ψ =
⋃

φ∈X,
a1∈φ

φ.

Proof. By applying Proposition 1 in both directions (i.e, a1 ∼ a2 =⇒ a1 � a2 and
a2 � a1). ut

The intuitive explanation for Corollary 1 is that we measure the desirability (and
non-desirability) of things, according to what they are, or which concepts do they belong
to. This brings forward the importance of reasoning, since it might not be obvious at all
that two alternatives actually belong to exactly the same concepts w.r.t attributes.

Example 1. Consider the following decision base about choosing a trip:

T = {hasHotel(trip1,merdan), hasHotel(trip2, armada)
FiveStarHotel(meridian), Expensive v ¬Economic,

ThreeStarHotel(armada),∃hasHotel.F iveStarHotel v Expensive,
∃hasHotel.ThreeStarHotel v Economic}

U = {(Expensive, 10), (Economic, 15)} A = {trip1, trip2}

Here U(trip1) = 10, since the agent knows that trip1 has a hotel which has 5 star
which means, it is an Expensive hotel. Similarly, U(trip2) = 15, therefore trip2 �
trip1. Opt(A) = trip2. ♣

8 Recall that we concern ourselves with desirable attributes, i.e., weights are non-negative.



Properties of the Utility Function As it was mentioned before, since every individual
is represented by a world I , and outcomes are worlds (i.e., IX ⊆ IC), U is implicitly
defined over outcomes. Hence, in this section we will treat U as if it is formally defined
over set of concepts X , rather than individuals, so that we can discuss some properties
of U following the definitions given in [3].

Proposition 2. Suppose that U is a value function. Then U is (a) normalized, (b) non-
negative, (c) is monotone, (d) super-additive, (e) convex, (f) unique up to positive affine
transformation.

Proof. We deal with each property separately:

(a) This holds when the individual does not satisfy any attributes, whence U(∅) = 0.
(b) Follows from Proposition 1 and property (a).
(c) Follows from Proposition 1.
(d) Let Y,Z ⊆ X , if Y ∩ Z = ∅, then |Y ∪ Z| = |Y | + |Z| which means there is no

recurring element, hence U(Y ∪ Z) = U(Y ) + U(Z). If Y ∩ Z 6= ∅, then either
for any φ ∈ Y ∩ Z, either w(φ) = 0 which yields the former case, or there is a
w(φ) > 0. This concludes U(Y ∪ Z) = U(Y ) + U(Z)− U(Y ∩ Z).

(e) Follows from (d).
(f) Let Y, Z ∈ IX with U(Y ) ≥ U(Z) and M(x) = ax+ b with a > 0 and b,

M(U(Y )) ≥M(U(Z)) ⇐⇒ a ·
∑
ψ∈Y

w(ψ) + b ≥ a ·
∑
ψ∈Z

w(ψ) + b

⇐⇒
∑
ψ∈Y

w(ψ) ≥
∑
ψ∈Z

w(ψ)

which follows from the assumption. ut

Decisions with Default Ontological Reasoning In many situations, preferential state-
ments that are done by human agents are not meant to be strict statements, say, as in
formal sciences or concerning full ontological knowledge into account. That is, when
someone asserts that she prefers a suite to a standard room (i.e., suit � standardroom),
it is often the case that the statement is not meant to hold for every suite e.g., a a burned
suite (burned suite 6� standardroom). Such preferential statements are rather general
statements which violates the message in Proposition 1, therefore in an ontological ap-
proach to modelling preferences, it is desirable to be able to deal with such cases. Note
that the decision rule for classical ontologies (Definition 3) cannot deal with such cases.
Is there a way out without using negative weights (i.e., U−)? 9

Example 2 (cont’d). Now consider the previous example extended with the following
knowledge P and T :

T ={BadFamedFiveStarHotel v FiveStarHotel}
P ={(Desirable|∃hasHotel.F iveStarHotel)[1, 1],

(¬Desirable|∃hasHotel.BadFamedFiveStarHotel)[1, 1]}
U = {Desirable, 10}

9 Simply by extending U with assigning a negative weight to burned suite.



which encodes the following knowledge: A bad famed five star hotel is a five star hotel.
Generally, a trip which has a five star hotel is desirable. Generally, a trip which has a
bad famed five star hotel is undesirable. ♣

With the classical reasoning, it follows that any trip that has a bad famed five star
hotel is a trip that has five star hotel (i.e., ∃hasHotel.BadFamedFiveStarHotel v
∃hasHotel.F iveStarHotel)). Note that in the light of this information, it is entailed
that trip1 is desirable. However, if agent also learns (added to its knowledge base) that
meridian is a bad famed five star hotel, then trip1 will not be desirable anymore 10.

Decisions with Ontological Probabilistic Reasoning In this section, we will gen-
eralize our previously introduces choice functions with probabilities, that will result
in different behavioral characteristics in the presence of uncertainty. Those behavioral
characteristics can be interpreted as different types of agents (optimistic, pessimistic
etc.), or a decision support system that orders alternatives with respect to different cri-
teria (best possible uncertain outcome, worst possible uncertain outcome etc.) and user
preferences.

A remark on notation before defining expected utility intervals: we will use the
notation [PCMEM(K, a, φ)] to denote the tight interval [l, u] that is the answer to the
query PCMEM, with regard to knowledge base K, individual a ∈ IP and c-concept φ.
Moreover, l = xPCMEM(K, a, φ)y and r = pPCMEM(K, a, φ)q

As we have a set of probability functions instead of a single probability function
which results in probability intervals, we get an interval of the expected utilities. That
is, EU(a) =

∑
φ∈X Pr(φ) · w(φ) is the expected utility of an alternative a w.r.t. Pr,

and EI is the expected utility interval defined as follows.

Definition 4 (Expected Utility Interval of an Alternative). Given a decision base D,
the expected utility interval of an alternative a ∈ A is,

EI(a) =
[ ∑
φ∈X

xPCMEM(K, a, φ)y · w(φ),
∑
φ∈X

pPCMEM(K, a, φ)q · w(φ)] (3)

Notice that each element in the interval is an expected utility, defined via a (potentially)
distinct probability distribution. †

Now, using expected utility intervals, we will define some decision functions (mainly
from the literature of imprecise probabilities) which in turn generalizes the notion of
choices by maximum expected utility. We define a decision function as a function δ that
maps a non-empty set of alternatives A to a subset of A where a ∈ δ(A) iff a � a′ for
every a′ ∈ A. 11.

10 This is done via Lehmann’s lexicographic entailment; in this particular example z-
partition is (P0, P1) where P0 = {(¬Desirable|∃hasHotel.F iveStarHotel)[1, 1]}
and P1 = {(Desirable|∃hasHotel.F iveStarHotel)[1, 1]} that is, (T, P ) ∪
BadFamedFiveStarHotel(meridian) ||∼lex ¬Desirable(trip1).

11 Note that, this definition coincides with choice functions from the imprecise probability liter-
ature [8], except the case that it is allowed to yield empty set



We define several decision functions. In terms of use of intervals, they are similar to
those Γ -maximax, Γ -minimax, Interval Dominance and E-admissibility in the literature
of imprecise probabilities [8].

Definition 5 (Optimistic, Pessimistic Choices). Given a decision baseD = (K,A,U),
and EI(a) = [EI(a), EI(a)] for any a ∈ A w.r.t. D, then δ is, resp. optimistic or pes-
simistic iff

Opt(A) := argmax
a∈A

EI(a) or Opt(A) := argmax
a∈A

EI(a). (4)

We denote the preference order w.r.t. optimistic and pessimistic choice with �opt, �opt
respectively. Strict orders are defined accordingly. †

Definition 6 (Cautious Choice). δ is cautious iff δid(A) := {a ∈ A | EI(a) ≥
EI(a′) for all a′ ∈ A}. †

We will denote the preference ordering of cautious choices with�id (id for interval
dominance). Interval dominance offers a formalisation for incomparability; that is, if
two given alternatives a and a′ have neither overlapping expected utility intervals (i.e.,
EI(a) 6= EI(a′)), nor domination on each other, which means agent cannot give a
decision between them, therefore a1 || a2. Notice that, �id is a partial weak order
whereas �opt and �opt are total-weak order.

We will name an agent after the decision function that it uses e.g, an agent which
uses a pessimistic decision function will be called as pessimistic agent, and so on.

Example 3. Consider an hotel choosing agent with the knowledge base K with

T ={GoodHotel v ¬BadHotel},
P ={((GoodHotel|FourStarHotel)[1, 1], (BadHotel|OneStarHotel)[1, 1]}

Pa1 ={(FourStarHotel|>)[0.5, 0.7]}, Pa2 = {(FourStarHotel|>)[0.3, 1]}
Pa3 ={(OneStarHotel|>)[0.1, 0.3]}

that is, it knows a good hotel is not a bad hotel (symmetrically), usually a four star
hotel is a good hotel, and usually one star hotel is a bad hotel and a1 is a four star
hotel with a probability of at least 0.3, and so on. Moreover, it has alternatives A =
{a1, a2, a3} and UBox U = {(GoodHotel, 10), (BadHotel, 0)}. In such a set-up, a
pessimistic agent will choose a3 since it is a Good Hotel with probability of at least 0.7,
(its preference is a3 �opt a1 �opt a2). An optimistic agent will instead choose a2 (i.e.,

a2 �opt a3 �opt a1). Finally, a cautious agent prefers a3 to a1. However, in general it
cannot make a choice, since a2 || a1 as well as a2 || a3. ♣

Notice that interval dominance is a very strict restriction that is not very help-
ful in normative settings. We give a less strict version based on Levi’s notion of E-
admissibility in [12, 8] (E for expected).

Definition 7 (E-Admissible Choice). An alternative a ∈ A is E-admissible (a ∈
δe(A)) iff for every φ ∈ X , there is a Pr(φ) ∈ [l, u] s.t. K ||∼lextight a : φ[l, u],
and for every a′ ∈ A\{a} and for every Pr′(φ) ∈ [l′, u′] s.t. K ||∼lextight a′ : φ[l′, u′],
Pr(φ) > Pr′(φ) holds. We denote the preference relation with �e. †



Informally, δe looks for a probability distribution that lets an alternative weakly domi-
nates every other.

Example 4. Consider alternatives A = {a1, a2, a3} with expected utility intervals on a
single attribute, that are [5, 7], [1, 10] and [1, 8]. Assume that there are two distributions
Pr and Pr′ such that expected utility of each alternatives w.r.t Pr is 5, 7, 6, and 6,
7, 8 w.r.t. Pr′. Also assume that there is no Pr′′ such that EU(a1) ≥ EU(a2) and
EU(a1) ≥ EU(a3). Then, δe(A) = {a2, a3}, that is, a3 ||e a2 and a2 �e a1 as well
as a3 �e a1.

Proposition 3. The following statements hold: (a)�opt =⇒ �e and (b)�id =⇒ �opt
∧ �opt.

Proof. We prove each condition separately:

(a) Since Opt(A) is argmaxa∈AEI(a), for every φ ∈ X , there is a Pr(φ) ∈ [l, u],
(indeed Pr(φ) = u) such that on the one hand EI(Opt(A)) = Pr(φ) · w(φ) and
EI(Opt(A)) ≥ EI(Opt(A\Opt(A))) on the other hand; this impliesOpt(A) ∈�e.

(b) Let a ∈�i d, it implies that EI(a) ≥ EI(a′) for all a′ ∈ A, which means a =
Opt(A). Analogous is the case for Opt(A), and we are done. ut

Modeling Ambiguity Averse Decisions As it is commonly motivated by imprecise
probability literature, the classical theory of probability is not able make distinctions
between different layers of uncertainty. One such common example is that under com-
plete ignorance.

In this section, we will encode the Ellsberg example in our framework and show
that it is possible to model ambiguity averse decisions.

One popular interpretation for the behaviour explained in preliminary section is that,
human agents tend to prefer more precise outcomes to less precise ones. That is, one
feels safer where one has a idea about risk (one is less ignorant about the outcomes). The
theory of imprecise probabilities offers a straightforward representation of the problem.

Definition 8 (Ellsberg-like Choice). Given alternatives a, a′ ∈ A, a �ebg a′ holds iff
[EI(a)+EI(a)]/2 = [EI(a′)+EI(a′)]/2, and EI(a)−EI(a) < EI(a′)−EI(a′).
We will denote the corresponding decision function as δebg †

Informally, such a function chooses a tighter interval where means are the same. One
can confirm that the preference relation Ellsberg-dominates denoted �ebg , behaves ac-
cordingly to the experiment scenario given in Preliminaries.

Example 5. One possible encoding of the problem is as follows. For convenience, we
will give l, u ∈ Q.

T ={Y ellow v ¬Blue,Blue v ¬Red, Y ellow v ¬Red,
Chosen v Y ellow tRed tBlue,> v Y ellow tRed tBlue

Pact1 ={(Chosen|Red)[1/3, 1/3]}, Pact2 = {(Chosen|Blue)[0, 2/3]}
P =(Chosen|Y ellow tBlue)[2/3, 2/3]
U ={(Chosen, 10)},A = {act1, act2}



Notice that act1 �ebg act2. Now replace act1 and act2 with Pact3 = (Chosen|Red t
Y ellow)[1/3, 1] and Pact3 = (Chosen|Blue t Y ellow)[2/3, 2/3]. Notice also that
act3 �ebg act4.

Note that it is still too strict, which one may not expect to hold often. Below, we
will give a more tolerant form of this function.

Definition 9 (Ambiguity Averse Opportunist Choice). Given alternatives a, a′ ∈ A,
a �ag a′ iff EI(a) ≤ EI(a′), EI(a) ≥ EI(a′) and EI(a) − EI(a′) ≥ EI(a′) −
EI(a). †
Intuitively, it brings an extra condition such that the mean needs to be greater or equal.
The following result shows that �ebg is a special case for �ag .

Proposition 4. a �ebg a′ implies a �ag a′.

Proof. Assume that (i) [EI(a) + EI(a)]/2 = [EI(a′) + EI(a′)]/2 and also (ii)
EI(a) − EI(a) < EI(a′) − EI(a′). Then by (i), it follows that EI(a) + EI(a) =
EI(a′) + EI(a′) (iii), that is EI(a) − EI(a′) = EI(a′) − EI(a), hence EI(a) −
EI(a′)/EI(a′)−EI(a) =1. We know that EI(a) ≥ EI(a) and EI(a′) ≥ EI(a′). By
(ii),EI(a)−EI(a′) < EI(a′)−EI(a) (iv), and by (iii) and (iv),EI(a′)−EI(a) ≥ 0,
hence EI(a′) ≥ EI(a). Similarly for EI(a) ≥ EI(a′) ut

In a loose sense, one can combine them with the previously mentioned functions
(e.g., δe+ag) in order to model more complex behaviours. However, we leave their
compositions and compatibilities, along with subtle connections to the probabilistic
ontologies to future work.

4 Related Work

Our framework can be seen as a part of the literature on weighted logics for represent-
ing preferences [11, 3], with an emphasis on agent modeling. Our notion of UBox to
generate utility functions is based on goal bases (a multi-set occasionally), and akin to
work on propositional languages for preferences [11, 19], among others. There is also
a substantial tradition on defeasible reasoning for preferences, see [2, 4, 9, 5], on which
we have leveraged.

On the DL side, several weighted DL languages have been proposed, albeit with-
out covering uncertainty over instances [16, 17]. In them, constructs similar to goal
bases are used, called “preference sets”, and elements of multi-attribute utility theory
are partially incorporated into their settings.

Further recent works which can be considered to be loosely related (as sensu stricto
non utility-theoretic) recent approaches include: an application of DL-based ontolo-
gies to CP-Nets, see [15], and a probabilistic logic-based setting [14] based on Markov
Logics (precise probabilities) and using Markov networks to model and reason over
preferences.

An uncertainty-based approach which attempts to focus on multi-criteria decision
making (MCDM) problems is [18]; it is mainly based on the application of general
fuzzy logic to MCDM problems. Although the terms utility and preference are not ex-
plicitly used, it refers to preferences implicitly.



5 Conclusions and Further Work

We have introduced a description logic based framework, to effectively express and
solve non-sequential decision-making problems with multiple attributes.

As the major part of decision theory literature takes uncertainty into account, we
based our approach on the family of probabilistic description logics ([13]). We have
shown that it is straightforward to define decision functions representing ambiguity
aversion; a case that violates the axioms of expected utility. Therefore, one can define
preference relations from such decision functions that model better decisions by rational
(human) agents.

Another major direction is to investigate the value of information (structured knowl-
edge in this context) in different ontological frameworks, viz., to explore in which ways
and how much prior knowledge influences decisions about to be taken by agents.

Furthermore, it would be interesting to extend the framework to sequential decisions
(e.g., Di → Di+1, sequence of decision bases). This is possible, since the language
extensively uses conditional constraints. Once a sequential extension is defined, one
can express strategies and game-theoretic issues. Furthermore, it would be interesting
to apply the framework or an appropriate modification, to common problems such as
fair division, voting, preference aggregation etc.

We are currently working on the implementation of the framework as a Protégé12

plug-in. The development of our Protégé plugin is motivated by the idea to demonstrate
the benefits of our approach to a set of different application scenarios where decision
making is involved.
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Appendix

Consistency, Lexicographic and Logical Consequence A probabilistic interpretation
Pr verifies a conditional constraint (ψ|φ)[l, u] iff Pr(φ) = 1 and Pr(ψ) |= (ψ|φ)[l, u].
Moreover, Pr falsifies (ψ|φ)[l, u] iff Pr(φ) = 1 and Pr(ψ) 6|= (ψ|φ)[l, u]. A set of
conditional constraints F tolerates a conditional constraint (ψ|φ)[l, u] under a classical
knowledge base T , iff there is model Pr of T ∪ F that verifies (ψ|φ)[l, u] (i.e., Pr |=
T ∪ F ∪ {(ψ|φ)[l, u], (φ|>)[1, 1]}).

A PTBox PT = (T, P ) is consistent iff T is satisfiable, and there exists an ordered
partition (P0, . . . , Pk) of P such that each Pi (where i ∈ {0, . . . , k}) is the set of all
F ∈ P\(P0∪ . . .∪Pi−1) that are tolerated under T by P\(P0∪ . . .∪Pi−1). Following
[13], we note that such ordered partition of PT is unique if it exists, and is called



z-partition. A probabilistic knowledge base KB = (T, P, (Po)o∈IP ) is consistent iff
PT = (T, P ) is consistent, and for every probabilistic individuals o ∈ IP , there is a Pr
such that Pr |= T ∪ Po.

For probabilistic interpretations Pr and Pr′, Pr is lexicographically preferable (or
lex-preferable) to Pr′ iff there exists some i ∈ {0, . . . , k} such that |{F ∈ Pi | Pr |=
F}| > |{F ∈ Pi|Pr′ |= F}| and |{F ∈ Pj | Pr |= F}| = |{F ∈ Pj | Pr′ |= F}|
for all i < j ≤ k. A probabilistic interpretation Pr is a lexicographically minimal (or
lex-minimal) model of T ∪F iff Pr |= T ∪F and there is no Pr′ such that Pr′ |= T ∪F
and Pr′ is lex-preferable to Pr. A conditional constraint (ψ|φ)[l, u] is a lexicographic
consequence (or lex-consequence) of a set of conditional constraints F under a PTBox
PT (or F ||∼lex (ψ|φ)[l, u]) under PT, iff Pr(ψ) ∈ [l, u] for every lex-minimal model
Pr of T∪F∪{(φ|>)[1, 1]}. Moreover, PT ||∼lex F , iff ∅ ||∼lex F under PT . Note that
the notion of lex-consequence faithfully generalizes the classical class subsumption.
That is, given a consistent PTBox PT = (T, P ), a set of conditional constraints F , and
c-concepts φ and ψ, if T |= φ v ψ, then F ||∼lex (ψ|φ)[1, 1] under PT .13

Furthermore, we say that (ψ|φ)[l, u] is a tight lexicographic consequence (or tight
lex-consequence) of F under PT , denoted F ||∼lextight (ψ|φ)[l, u] under PT , iff l =
inf{Pr(ψ) | Pr ||∼lex T ∪ F ∪ {(φ|>)[1, 1]} and u = sup{Pr(ψ) | Pr ||∼lex
T ∪ F ∪ {(φ|>)[1, 1]}. Moreover, PT ||∼lextight F iff ∅ ||∼lex F . Note that [l, u] =
[1, 0] (empty interval) when there is no such model. 14 For a probabilistic knowledge
base KB = (T, P, (Po)o∈IP ), KB ||∼lex F where F is a conditional constraint for
o ∈ IP iff Po ||∼lex F under (T, P). Moreover, KB ||∼lextight F iff Po ||∼lextight F under
(T, P ). A conditional constraint (ψ|φ)[l, u] is a logical consequence of T ∪ F (i.e.,
T∪F |= (ψ|φ)[l, u]) iff each model of T∪F is also a model of (ψ|φ)[l, u]. Furthermore,
(ψ|φ)[l, u] is a tight logical consequence of T ∪ F (i.e., T ∪ F |=tight (ψ|φ)[l, u], iff
l = inf{Pr(ψ|φ) | Pr |= T ∪ F and Pr(φ) > 0} and u = sup{Pr(ψ|φ) | Pr |=
T ∪ F and Pr(φ) > 0}. Given a PTBox PT = (T, P ), Q ⊆ P is lexicographically
preferable (or lex-preferable) to Q′ ⊆ P iff there exists some i ∈ 0, . . . , k such that
|Q ∩ Pi| > |Q′ ∩ Pi| and |Q ∩ Pj | = |Q′ ∩ Pj | for all i < j ≤ k, where (P0, . . . , Pk)
is the z-partition of PT. Q is lexicographically minimal (or lex-minimal) in a set S
of subsets of P iff Q ∈ S and no Q′ ∈ S is lex-preferable to Q. Furthermore, let
F be a set of conditional constraints, and φ and ψ be two concepts, then a set Q of
lexicographically minimal subsets of P exists such that F ||∼lex (ψ|φ)[l, u] under PT
iff T ∪Q∪F ∪ (φ|>)[1, 1] |= (ψ|>)[l, u] for all Q ∈ Q. This is extended to tight case
lex-consequence. 15

13 Theorem 4.21 in [13].
14 Therefore, for inconsistent PTBoxes PT ,F ||∼lex (ψ|φ)[l, u] andF ||∼lex (ψ|φ)[1, 0] under
PT for all sets of conditional constraints F and all conditional tight constraints (ψ|φ)[l, u].

15 See Theorem 4.18 in [13].


