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Abstract

In this paper, we show how to model the matching problem
as a problem of joint inference. In opposite to existing ap-
proaches, we distinguish between the layer of labels and the
layer of concepts and properties. Entities from both layers
appear as first class citizens in our model. We present an ex-
ample and explain the benefits of our approach. Moreover,
we argue that our approach can be extended to generate cor-
respondences involving complex concept descriptions.

Introduction
In open systems, different parties will define different on-
tologies, in the following referred to as O1 and O2, to de-
scribe the same or overlapping domains. Ontology match-
ing systems implement algorithms to create links between
concepts and properties defined in O1 and O2 (Euzenat and
Shvaiko 2007). These links are called correspondences, a set
of correspondences is called an alignment. Typical examples
for correspondences, if interpreted in a strict way, are equiv-
alence axioms between concepts from O1 and O2.

The matching process can be divided into the phase of
generating matching hypotheses, and the phase of selecting
the final alignment from these hypotheses. With respect to
the second phase, it has been proposed to select a coher-
ent alignment that is optimal with respect to the confidence
values of the incoming hypotheses (Niepert, Meilicke, and
Stuckenschmidt 2010; Albagli, Ben-Eliyahu-Zohary, and
Shimony 2012). Such approaches are based on the strict dis-
tinction between the first and the second phase.We propose a
model that weakens the border between those two phases. In
particular, we do not add correspondences as hypotheses to
the optimization problem, but hypotheses about the meaning
of tokens that appear in the labels.

Motivation
Figure 1 depicts fragments of the concept hierarchy of O1

and O2. Both ontologies are based on a similar concep-
tualization. However, O1 uses the word Contribution,
while O2 uses the word Paper. This choice is reflected in
the whole fragment shown and might also appear at other
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Figure 1: Fragments of ontologies O1 (left) and O2 (right).

labels in O1 or O2, e.g., a label reviewContribution
might be used to describe a property in O1.

Now suppose that a matching system cannot detect that
Contribution and Paper have the same meaning. This
will also have an impact on the analysis of the compound
labels. The outcome of the first phase will be an empty set,
and the same will be the case for the whole process.

However, each of the concepts in O1 has an equivalent
counterpart in O2. Thus, an alignment A should consist of
four correspondences. Several observations can be treated as
evidence for A. The modifiers Submitted, Accepted,
and Rejected appear in concept labels in both O1 and
O2. Moreover, A is coherent and obeys to the subsump-
tion hierarchy of O1 and O2. The only reason for not gen-
erating A is based on the missing link between the words
Contribution and Paper. We show how to model the
matching problem as a problem of joint inference taking this
evidence into account in order to detect the missing link and
to generate the final set of correspondences.

Approach
In the following, we distinguish explicitly between the layer
of ontological entities (concepts and properties) and the
layer of tokens that appear in concept and property labels.
Let i#X refer to a concept X in Oi, e.g., 1#AcceptedPaper,
and let i:X refer to a label or a part of a label that describes
the ontological entities in Oi, e.g., 1:Accepted.

It has already been shown in (Niepert, Meilicke, and
Stuckenschmidt 2010) how to model the second phase as op-
timization problem. Niepert et al. transform the problem to a
Markov logic network (MLN) and compute via a maximum
a-posteriori query the most probable state of the MLN. In
Markov logic (Richardson and Domingos 2006) real-valued



weights are assigned to first-order clauses. Intuitively, the
higher the weight of a clause, the less probable is a possible
state violating groundings of said clause. The most probably
state corresponds finally to the chosen alignment. According
to (Niepert, Meilicke, and Stuckenschmidt 2010) the MLN
can be constructed as follows.

(A) Add literals weighted with confidences to model the set
of matching hypotheses generated in the first phase.

(B) Model the terminological hierarchies including dis-
jointness and domain/range restrictions in the MLN.

(C) Add hard constraints, using an infinite weight, to ensure
that the final solution is a coherent one-to-one alignment.

(D) Add soft constraints to make a solution more probable
that does not change the hierarchy of O1 and O2.

In our modeling approach we stick to (B), (C), and (D)
and replace (A) by a set of formulae introduced in the fol-
lowing. We first add weighted literals to model the similarity
between tokens. We add, for example, (1) and (2) to express
our confidence that two tokens have (or do not have) a simi-
lar meaning.

sim(1:Accepted, 2:Accepted), 1.0 (1)
sim(1:Contribution, 2:Paper),−1.0 (2)

Now we need to establish a connection between ontolog-
ical entities and token entities. With respect to our example,
we want to say that tokens appear in the role of a headnoun
or as a modifier within a label of a certain concept.

headnoun(1:Contribution, 1#AcceptedContribution) (3)
modifier(1:Accepted, 1#AcceptedContribution) (4)

Two types of constraints are now required to model de-
pendencies between the two layers.

(I) If the tokens assigned to the concepts have a similar
meaning, then these concepts should be matched.

(II) If two concepts are matched on each other, then their
labels should have a similar meaning.

At first glimpse it might be unclear why to introduce
(II) as the counterpart of (I). By adding (II), any solution
that results in A will also force sim(1:Contribution, 2:Pa-
per) to be in the solution as well as the sim literals re-
lated to the corresponding modifiers. The negative weight of
sim(1:Contribution, 2:Paper) needs to be overruled by (B),
(C), and (D) and by the similarity of the other tokens. Thus,
we have defined a problem of joint inference. A solution to
this problem both results in an alignment between ontolog-
ical entities and contains statements related to the meaning
of the tokens that appear in the labels.

We have implemented a first prototype based on the de-
scribed approach. It generates A if applied to our example
ontologies O1 and O2. We observed positive results in fur-
ther experiments including larger, only partially overlapping
ontologies. Furthermore, our experiments have shown that

all constraints are required, i.e., if we drop one of the model-
ing components, the solution is incomplete or incorrect. The
solution of the optimization problem does not only contain
the generated correspondences, but also the ground atoms on
the token level that resulted in the final choice. For example,
1#AcceptedContribution is matched on 1#AcceptedPaper,
while at the same time the solution contains the informa-
tion that 1:Contribution and 2:Paper are assumed to have a
similar meaning.

Complex Matching
Suppose now that there are no named concepts to re-
fer to accepted contributions in O1. Instead of that, there
exists a property 1#acceptedBy and 1#Contribution u
∃1#acceptedBy.> is equivalent to the named concept
2#AcceptedPaper.

We can extend our approach to generate such a complex
correspondence. For that purpose, we have to describe the
linguistic roles of tokens more precisely. Moreover, we have
to state that the verb form in the label of 1#acceptedBy and
the modifier in the label of 2#AcceptedPaper stem from the
same word. Then we have to add a set of rules to describe the
relation between the formulae that we added and the com-
plex correspondence we want to generate. This approach
can be extended in several directions. We might for example
state that a token is the passive voice of another token. This
information can then be exploited to detect correspondences
between a property and an inverse property.

Note that similar approaches have already been proposed
for generating complex matches (Ritze et al. 2010). How-
ever, these techniques have been designed as a set of rules
that are always triggered if certain conditions hold. Contrary
to this, we exploit the various dependencies between logical
reasoning and a fine-grained analysis related to the linguistic
roles of labels in the context of an optimization problem.

Final Remarks
To our knowledge, the proposed approach is a novel con-
tribution to the field of ontology matching. An exception
can be seen in the ontology system S-Match (Giunchiglia,
Shvaiko, and Yatskevich 2004). S-Match splits concept la-
bels into tokens that are re-combined into complex concept
descriptions. This is exploited by transforming the match-
ing problem into a SAT problem where such concept de-
scriptions are treated as clauses. However, the complexity
of the concepts is limited to union and intersection derived
from labels that contain or, and or similar clues for logical
connectives. Moreover, the solution generated is not optimal
with respect to a well-defined criteria taking soft and hard
constraints into account.

Currently, our prototype requires a specific input format to
generate the formulae on the token level. Moreover, the ideas
discussed in the section on complex matching are not yet
implemented. In the future we will extend our prototype and
test it extensively on larger ontologies from various fields.
This will help us to better understand the impact of different
modeling styles and to learn how to cope with scalability
problems that might emerge.
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