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Abstract. Formal, logic-based semantics have long been neglected in ontology
matching. As a result, almost all matching systems produce incoherent align-
ments of ontologies. In this paper we propose a new method for repairing such
incoherent alignments that extends previous work on this subject. We describe
our approach within the theory of diagnosis and introduce the notion of a lo-
cal optimal diagnosis. We argue that computing a local optimal diagnosis is a
reasonable choice for resolving alignment incoherence and suggest an efficient
algorithm. This algorithm partially exploits incomplete reasoning techniques to
increase runtime performance. Nevertheless, the completeness and optimality of
the solution is still preserved. Finally, we test our approach in an experimental
study and discuss results with respect to runtime and diagnostic quality.1

1 Introduction

It has widely been acknowledged that logical semantics and reasoning are the basis of
intelligent applications on the semantic web. This is underlined by the design of stan-
dard languages, like the Web Ontology Language (OWL), which have a clearly defined
logical semantics. Contrary to this, in the area of ontology matching the use of logical
semantics as a guiding principle has long been neglected. Existing matching systems are
primarily based on lexical and heuristic methods [2] that often result in alignments that
contain logical contradictions. At first glimpse some systems seem to be an exception,
for example ASMOV and S-Match. ASMOV [5] has become a successful participant of
the OAEI over the last years. One of its constituents is a semantic verification compo-
nent used to filter out conflicting correspondence. In particular, a comprehensive set of
pattern is applied to detect certain kind of conflicts. However, ASMOV lacks a well de-
fined alignment semantics and notions as correctness or completeness are thus not appli-
cable. The S-Match system [4], on the contrary, employs sound and complete reasoning
procedures. Nevertheless, the underlying semantics is restricted to propositional logic
due to the fact that ontologies are interpreted as tree-like structures. S-Match can thus
not guarantee to generate a coherent alignment between expressive OWL-ontologies.
We have already argued that the problem of generating coherent alignments can best
be solved by applying principles of diagnostic reasoning [11]. In this paper, we extend
previous work on this topic in different directions.

1 An extended version of this paper is available as technical report at http://webrum.
uni-mannheim.de/math/lski/matching/lod/.



– We define the general notion of a reductionistic alignment semantics and introduce
a natural interpretation as concrete specification. Contrary to previous work, we
support different alignment semantics within our framework.

– As extension of our previous work we do not only cover concept correspondences
but additionally support correspondences between properties.

– We describe the problem of repairing incoherent alignments in terms of Reiters
theory of diagnosis [14] and introduce the notion of a local optimal diagnosis.

– We present an algorithm for constructing a local optimal diagnosis - based on the
algorithm described in [12] - and show how this algorithm can be enhanced by
partially exploiting efficient but incomplete reasoning methods.

– We report on several experiments concerned with both the diagnostic quality as
well as the runtime of both algorithms.

In Section 2 we define our terminology and introduce some definitions centered
around the the notion of alignment incoherence. In Section 3 we argue that repairing
an incoherent alignment can be understood as diagnosis task. In particular, we intro-
duce the notion of a local optimal diagnosis. In Section 4 we briefly introduce different
reasoning techniques and algorithms exploiting these reasoning techniques in order to
compute a local optimal diagnosis. These algorithms are applied on different datasets in
Section 5 where we also discuss the results and compare them against other approaches.
In Section 6 we end with a short summary and some concluding remarks.

2 Preliminaries

The task of aligning two ontologies O1 and O2 (sets of axioms) can be understood
as detecting links between elements of O1 and O2. These links are referred to as cor-
respondences and express a semantic relation. According to Euzenat and Shvaiko [2]
we define a correspondence as follows and introduce an alignment as set of correspon-
dences.

Definition 1 (Correspondence and Alignment). Given ontologies O1 and O2, let Q
be a function that defines sets of matchable elements Q(O1) and Q(O2). A corre-
spondence between O1 and O2 is a 4-tuple 〈e, e′, r, n〉 such that e ∈ Q(O1) and
e′ ∈ Q(O2), r is a semantic relation, and n ∈ [0, 1] is a confidence value. An alignment
A between O1 and O2 is a set of correspondences between O1 and O2.

Our approach is applicable to alignments between ontologies represented in De-
scription Logics, e.g. to alignments between OWL-DL ontologies. In this work the
matchable elements Q(O) are restricted to be atomic concepts or atomic properties.
Further r is a semantic relation expressing equivalence or subsumption. We use the
symbols ↔≡ ,↔v and ↔w to refer to these relations. The semantics of these symbols has
not yet been specified, although we might have a rough idea about their interpretation.
The confidence value n describes the trust in the correctness of a correspondence. Given
a correspondence c, we use conf(c) = n to refer to the confidence of c. Additionally, we
require that in an alignment A there exist no c 6= c′ ∈ A such that conf(c) = conf(c′).
We know that most matching systems will not fullfill this requirement. Another source



of evidence has to decide which correspondence should be annoted with higher confi-
dence. Thus, we avoid an explicit treatment of different total orderings derivable from
the partial order of confidence values.2 In the following we frequently need to talk
about concepts or properties of an ontologyOi. We use prefix notation i#e to uniquely
determine that an entity e belongs to the signature of Oi.

A concept i#C is defined to be unsatisfiable iff all models of Oi interpret i#C
as empty set. We use the notion of unsatisfiability in a wider sense and define it with
respect to both concepts and properties.

Definition 2 (Unsatisfiability). A concept or property i#e is unsatisfiable in ontology
Oi, iff for all models I of Oi we have i#eI = ∅. Otherwise i#e is satisfiable in Oi.

Usually, an ontology is referred to as incoherent whenever it contains an atomic
unsatisfiable concept. We define ontology incoherence as follows.

Definition 3 (Ontology Incoherence). An ontology O is incoherent iff there exists an
atomic unsatisfiable concept or property in O. Otherwise O is coherent.

There are two ways to introduce the notion of alignment incoherence. The first ap-
proach requires a specific model-theoretic alignment semantics. Distributed Description
Logics (DDL)[1] is an example for such a specific semantics, which we focused on in
previous work [11]. The second approach, already sketched in [7], is based on inter-
preting an alignment as a set of axioms X in a merged ontology. Given an alignment A
betweenO1 andO2, the (in)coherence ofA is reduced to the (in)coherenceO1∪O2∪X .
We refer to such a semantics as reductionistic alignment semantics.

Definition 4 (Reductionistic Semantics). Given an alignment A between ontologies
O1 andO2. A reductionistic alignment semantics S = 〈ext , trans〉 is a pair of functions
where ext maps an ontology to a set of axioms (extension function) and trans maps an
alignment to a set of axioms (translation function).

Considering its role in the context of a merged ontology, it becomes clear how to apply
such a reductionistic alignment semantics, abbreviated as alignment semantics in the
following.

Definition 5 (Merged ontology). Given an alignment A between ontologies O1 and
O2 and an alignment semantics S = 〈ext , trans〉. The merged ontology is defined as
O1 ∪SA O2 = O1 ∪ O2 ∪ ext(O1) ∪ ext(O2) ∪ trans(A).

The merged ontology is merely a technical means to treat different semantics within
a similar framework. Based on this framework we apply the definition of ontology in-
coherence in the context of a merged ontology resulting in the notion of alignment
incoherence.

2 For the experiments reported on in Section 5 we derived a total order - given correspondences
with the same confidence value - from the lexicographical ordering of the URIs of the matched
entities. Experiments with different orderings resulted in insignificant differences.



Definition 6 (Alignment Incoherence). Given an alignmentA between ontologiesO1

and O2 and an alignment semantics S. A is incoherent with respect to O1 and O2

according to S, iff there exists an atomic concept or property i#C with i ∈ {1, 2} that
is satisfiable in Oi and unsatisfiable in O1 ∪SA O2. Otherwise A is coherent.

We now introduce an example of a reductionistic alignment semantics, primarily
defined in [7] and [8] with respect to a less general framework.

Definition 7 (Natural Semantics). Given an alignment A and an ontology O. The
natural semantics Sn = 〈extn, transn〉 is defined by a specification of its components
extn (O) 7→ ∅ and transn (A) 7→ {tn(c)|c ∈ A} where tn is defined as

tn(c) 7→


1#e ≡ 2#e ′ if r =↔≡
1#e v 2#e ′ if r =↔v
1#e w 2#e ′ if r =↔w

The natural alignment semantics consists of an empty extension function ext and a
translation function trans that maps correspondences one-to-one to axioms. It can be
seen as self-evident and straightforward way to interpret correspondences as axioms.

An example for an alignment semantics with ext (O) 6= ∅ is given by DDL. DDL is
a formalism for supporting distributed reasoning based on a semantics where each on-
tology is interpreted within its own domain interrelated via bridge rules. Nevertheless,
it is also possible to reduce DDL to ordinary DL [1]. As a result we obtain a reduc-
tionistic alignment semantics where the extension function maps O1 and O2 to a non
empty set of additional axioms while the translation function differs significantly from
the translation function of the natural semantics.

3 Problem Statement

In this section we show that the problem of debugging alignments can be understood
as diagnostic problem and characterize a certain type of diagnosis. Throughout the re-
maining parts we use A to refer to an alignment, we use O with or without subscript to
refer to an ontology, and S to refer to some reductionistic alignment semantics.

In ontology debugging a minimal incoherency preserving sub-TBox (MIPS)M ⊆
O is an incoherent set of axioms while any proper subsetM′ ⊂ M is coherent [15].
The same notion can be applied to the field of alignment debugging where we have to
consider sets of correspondences instead of axioms.

Definition 8 (MIPS Alignment).M ⊆ A is a minimal incoherence preserving sub-
alignment (MIPS alignment), iffM is incoherent with respect to O1 and O2 and there
exists noM′ ⊂M such thatM′ is coherent with respect toO1 andO2. The collection
of all MIPS alignments is referred to as MIPSS (A,O1,O2).

As already indicated in [11], the problem of debugging an incoherent alignment can
be understood in terms of Reiters theory of diagnosis [14]. Reiter describes a diagnostic
problem in terms of a system and its components. The need for a diagnosis arises, when
the observed system behavior differs from the expected behaviour. According to Reiter,



the diagnostic problem is to determine a set of those system components which, when
assumed to be functioning abnormally, explain the discrepancy between observed and
correct behaviour. If this set of components is minimal, it is referred to as diagnosis ∆.
In our context a system is a tuple 〈A,O1,O2,S〉. The discrepancies between observed
and correct behaviour are the terminological entities that were satisfiable in O1 and O2

and have become unsatisfiable in O1 ∪SA O2. The components of the system are the
axioms of O1 and O2 as well as the correspondences of A. Nevertheless, with respect
to alignment debugging the set of possibly erroneous components is restricted to the
correspondences of A. We conclude, that an alignment diagnosis should be defined as
a minimal set ∆ ⊆ A such that A \∆ is coherent.

Definition 9 (Alignment Diagnosis). ∆ ⊆ A is a diagnosis for A with respect to O1

and O2 iff A \ ∆ is coherent with respect to O1 and O2 and for each ∆′ ⊂ ∆ the
alignment A \∆′ is incoherent with respect to O1 and O2.

Reiter argues that a diagnosis is a minimal hitting set over the set of all minimal
conflict sets. A minimal conflict set in the general theory of diagnosis is equivalent to a
MIPS in the context of diagnosing ontology alignments. A diagnosis for an incoherent
alignment A is thus a minimal hitting set for MIPSS (A,O1,O2).

Proposition 1 (Diagnosis and Minimal Hitting Set). Given an alignment A between
ontologies O1 and O2. ∆ ⊆ A is a diagnosis for A with respect to O1 and O2, iff ∆ is
a minimal hitting set for MIPSS (A,O1,O2).

Proposition 1 is a special case of corollary 4.5 in [14] where an accordant proof is
given. In general there exist many different diagnosis for an incoherent alignment. Re-
iter proposes the hitting set tree algorithm for enumerating all minimal hitting sets.
With respect to our problem we will not be able to compute a complete hitting set tree
for large matching problems. Instead of that we focus on a specific type of diagnosis
explained by discussing the example alignments AI to AIV depicted in Figure 1.
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Fig. 1. Four examples for an alignment and its MIPS alignments. Correspondences are denoted
by letters a, b, . . ., their confidence values are specified in upper script.

AI is an alignment that contains only one MIPS M = {a, b, c}. Thus, there are
exactly three diagnosis {a}, {b} and {c}. Taking the confidence values into account,
the most reasonable choice for fixing the incoherence is obviously the removal of the



’weakest correspondence’ in M, namely argminx∈Mconf(x ). Therefore, we prefer
∆ = {c} as diagnosis. Does the naive strategy to remove the correspondence with
lowest confidence from each MIPS always result in a diagnosis? AII disproves this
assumption. Following the naive approach we would remove both c and d, although, it
is sufficient to remove c. The following recursive definition introduces the notion of an
accused correspondence to cope with this problem.

Definition 10 (Accused Correspondence). A correspondence c ∈ A is accused by A
with respect to O1 and O2, iff there exists someM ∈ MIPSS (A,O2,O2) with c ∈ M
such that for all c′ ∈ M \ {c} it holds that (1) conf(c′) > conf(c) and (2) c′ is not
accused by A with respect to O1 and O2.

We have chosen the term ’accused correspondence’ because the correspondence
with lowest confidence in a MIPS alignmentM is ‘accused’ to cause the problem. This
charge will be rebuted if one of the other correspondences inM is already accused due
to the existence of another MIPS alignment. We can apply this definition on the example
alignmentAII . Correspondence c is an accused correspondence, while correspondence
d is not accused due to condidtion (2) in Definition 10. Obviously, the removal of the
accused correspondence seems to be the most reasonable decision. In particular, it can
be shown by induction that the set of accused correspondences is a diagnosis. Due to
the lack of space we have to refer the reader to [9] where an accordant proof is given.

Proposition 2. The alignment ∆ ⊆ A which consists of all correspondences accused
by A with respect to O1 and O2 is a diagnosis for A with respect to O1 and O2.

The set of accused correspondences is defined in a way where the whole collection
MIPSS (A,O1,O2) is not taken into account from a global point of view. At the same
time each removal decision seems to be the optimal choice with respect to the MIPS
under discussion. Therefore, it is referred to as local optimal diagnosis in the following.

Definition 11 (Local Optimal Diagnosis). A diagnosis ∆ such that all c ∈ ∆ are
accused by A with respect to O1 and O2 is referred to as local optimal diagnosis.

For the third alignment depicted in Figure 1 the set ∆ = {b, d, f} is a local optimal
diagnosis. The effects of a local removal decision can have strong effects on the whole
diagnosis. One of the MIPS ofA′ is depicted with dashed lines. Suppose that we would
not know this MIPS. As a result we would compute ∆ = {b, e} as diagnosis. This
small example indicates that each decision might have effects on a chain of consequent
decisions. Thus, we need to construct an algorithm that is complete with respect to
the detection of incoherence, because missing out a reason for incoherence might have
significant effects on the whole diagnosis.

We discussed examples where the removal of the accused correspondences is a rea-
sonable choice, nevertheless, it is disputable whether a local optimal diagnosis is the
best choice among all diagnosis. Instead of comparing confidences within a MIPS, it is
e.g. also possible to aggregate (e.g. sum up) the confidences of ∆ as proposed in [7].
In our framework we would refer to such a diagnosis as a global optimal diagnosis.
The fourth alignment AIV is an example where local optimal diagnosis ∆L and global
optimal diagnosis ∆G differ, in particular we have ∆L = {b, c} and global optimal



diagnosis ∆G = {a, d}. We will see in Section 4 that a local optimal diagnosis can be
computed in polynomial time (leaving aside the complexity of the reasoning involved).
Opposed to this, we have to solve the weighted variant of the hitting set problem to
construct a global optimal solution, which is known to be a NP-complete problem [3].
The experimental results presented in Section 5 will also show that the removal of a
local optimal diagnosis has positive effects on the quality of the alignment.

4 Algorithms

A straightforward way to check the coherence of an alignment can be described as
follows. We have to iterate over the atomic entities i#ei∈{1,2} of both O1 and O2

each time checking whether i#e is unsatisfiable in O1 ∪SA O2 and satisfiable in Oi.
The (un)satisfiability of a property i#R is decided via checking the (un)satisfiability of
∃i#R.>. Given a coherent alignment A, we have to iterate over all atomic entities to
conclude thatA is coherent. IfA is incoherent we can stop until we detect a first unsat-
isfiable class. Alternatively, we might also completely classify O1 ∪SA O2 and ask the
reasoner for unsatisfiable classes. In the following we refer to the application of such a
strategy by the procedure call ISCOHERENTALIGNMENT(A, O1, O2).

There exists an approach to decide the coherence for most dual-element alignments
which outperforms ISCOHERENTALIGNMENT by far. This approach and its application
requires to introduce the notion of a conflict pair. A conflict pair is an incoherent subset
of an alignment that contains exactly two correspondences. Moreover, it turns out that
most elements in MIPSSn

(A,O1,O2) are conflict pairs of a certain type. We believe
that there exists a pattern based reasoning method for each alignment semantics that
detects a (large) fraction of all conflict pairs within an alignment. We present such
a reasoning method for the natural semantics Sn and argue finally how to develop a
similar method for other alignment semantics using the example of DDL.
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Fig. 2. Subsumption and disjointness propagation pattern. Arrows represent correspondences,
solid lines represent axioms or entailed statements in Oi resp. Oj , and dashed lines represent
statements entailed by the merged ontology. Figure taken from [10], where these patterns have
been used to support manual mapping revision.

First, we focus on the pattern depicted on the left of Figure 2. Given correspon-
dences

〈
i#A, j#B ,↔w , n

〉
and

〈
i#C , j#D ,↔v , n′

〉
as well as axiom i#A v i#C we

can conclude that Oi ∪Sn

A Oj |= j#B v j#D and thus Oi ∪Sn

A Oj |= j#E v j#D for



each subconcept j#E of j#B . Now we have Oi ∪Sn

A Oj |= ⊥ w j#E whenever Oj

entails the disjointness of j#E and j#D . In such a case we detected a conflict pair given
the satisfiability of j#E in Oj . The disjointness propagation pattern works similar. We
abstain from a detailed description and refer the reader to the presentation in Figure 2.
If we combine both patterns and check their occurrence in all possible combinations
given a pair of correspondences, we end up with a sound but incomplete algorithm for
deciding the incoherence of an alignment that contains exactly two correspondences.
We will refer to this algorithm as POSSIBLYCOHERENT(c1, c2,Oi,Oj) with c1, c2 ∈ A.
Sn might in general induce complex interdependences between A, O1 and O2. There-
fore, neither are all conflict pairs detectable by the pattern-based approach, nor are all
MIPS conflict pairs.

We extend our algorithms (respectively the described pattern) to correspondences
between properties by replacing i#A by ∃i#A.> in case that i#A is a property (the
same for i#B , i#C , and i#D). This allows us to consider dependencies between do-
main restrictions and the subsumption hierarchy within our pattern based reasoning
approach. The patterns depicted in Figure 2 are specific to the natural semantics Sn.
Similar patterns very likely exist for any reductionistic alignment semantics. For DLL
e.g. it is possible to construct corresponding patterns easily. The subsumption propaga-
tion pattern is a specific case of (and in particular inspired by) the general propagation
rule used within the tableau algorithm proposed in [16], while the disjointness propa-
gation pattern does not hold in DDL.

In the following we need to enumerate the correspondences of an alignment to ac-
cess elements or subsets of the alignment by index or range. Thus, we sometimes treat
an alignment A as a field using a notation A[i] to refer to the i-th element of A and
A[j . . . k] to refer to {A[i] ∈ A | j ≤ i ≤ k}. For the sake of convenience we use
A[. . . k] to refer to A[0 . . . k], similar we use A[j . . .] to refer to A[j . . . |A| − 1]. Fur-
ther, let the index of an alignment start at 0.

Algorithm 1
BRUTEFORCELOD(A, O1, O2)
1: if ISCOHERENTALIGNMENT(A, O1, O2) then
2: return ∅
3: else
4: B sort A descending according to confidence values
5: A′ ← ∅
6: for all c ∈ A do
7: if ISCOHERENTALIGNMENT(A′ ∪ {c}, O1, O2) then
8: A′ ← A′ ∪ {c}
9: end if

10: end for
11: return A \ A′
12: end if

We already argued that the set of accused correspondences forms a special kind of
diagnosis referred to as local optimal diagnosis. Algorithm 1, which has been proposed



in [12], is an iterative procedure that computes such a diagnosis. First, we check the
coherence of A and return ∅ as diagnosis for a coherent alignment. Given A’s incoher-
ence, we have to order A by descending confidence values. Then an empty alignment
A′ is step by step extended by adding correspondences c ∈ A. Whenever A′ ∪ c be-
comes incoherent, which is decided by reasoning in the merged ontology, c is not added.
Finally, we end up with a local optimal diagnosis A \ A′.

Proposition 3. BRUTEFORCELOD(A, O1, O2) is a local optimal diagnosis for A with
respect to O1 and O2.

Algorithm 1 is completely built on reasoning in the merged ontology and does not
exploit efficient reasoning techniques. A more efficient algorithm requires to solve the
following problem. Given an incoherent alignment A ordered descending according to
its confidences, we want to find an index i such thatA[. . . i−1] is coherent andA[. . . i]
is incoherent. Obviously, a binary search can be used to detect this index. The accor-
dant algorithm, referred to as SEARCHINDEXOFACCUSEDCORRESPONDENCE(A,O1,O2),
starts with an index m that splits the incoherent alignment A in two parts of equal size.
Let now i be the index we are searching for. IfA[. . .m] is coherent we know that i > m,
otherwise i ≤ m. Based on this observation we can start a binary search which finally
requires log2(|A|) iterations to terminate.

Algorithm 2
EFFICIENTLOD(A, O1, O2)
1: B sort A descending according to confidence values
2: A′ ← A, k ← 0
3: loop
4: for i← k to |A′| − 1 do
5: for j ← 0 to i− 1 do
6: if not POSSIBLYCOHERENT(A′[j], A′[i], O1, O2) then
7: A′ ← A′ \ {A′[i]}
8: i← i− 1 B adjust i to continue with next element of A′
9: break B exit inner for-loop

10: end if
11: end for
12: end for
13: k ← SEARCHINDEXOFACCUSEDCORRESPONDENCE(A′, O1, O2)
14: if k = NIL then
15: return A \ A′
16: end if
17: B let k∗ be the counterpart of k adjusted for A such that A[k∗] = A′[k]
18: A′ ← A′[. . . k − 1] ∪ A[k∗ + 1 . . .]
19: end loop

We are now prepared to construct an efficient algorithm to compute a local optimal
diagnosis (LOD) (Algorithm 2). First we have to sort the input alignment A, prepare
a copy A′ of A, and init an index k = 0. Variable k works as a separator between



the part of A′ that has already been processed successfully and the part of A′ that has
not yet been processed or has not been processed successfully. More precisely, it holds
thatA[. . . k∗] \A′[. . . k] is a LOD forA[. . . k∗] where k∗ is an index such thatA′[k] =
A[k∗]. Within the main loop we have two nested loops. These are used to check whether
correspondence A′[i]i≥k possibly conflicts with one of A′[j]j<i. In case a conflict has
been detected,A′[i] is removed fromA′. Notice that this approach would directly result
in a LOD if both (1) allM ∈ MIPSS (A,O1,O2) were conflict pairs, and all conflict
pairs were detectable by procedure POSSIBLYCOHERENT. Obviously, these assumptions
are not correct and thus we have to search for an index k such thatA[. . . k∗]\A′[. . . k] is
a LOD for A[. . . k∗]. Index k is determined by the binary search presented above. If no
such index could be detected, we know that A \ A′ is a LOD (line 14-16). Otherwise,
the value of A′ is readjusted to the union of A′[. . . k − 1], which can be understood
as the validated part of A′, and A[k∗ + 1 . . .], which is the remaining part of A to be
processed in the next iteration. A′[k] is removed from A′ and thus becomes a part of
the diagnosis returned finally.

Proposition 4. EFFICIENTLOD(A, O1, O2) is a local optimal diagnosis for A with re-
spect to O1 and O2.

Suppose now that ∆′ is a LOD for a subset of MIPSS (A,O1,O2), namely those
that are detected by our pattern based reasoning approach, while ∆ is the LOD for the
complete set MIPSS (A,O1,O2). The correctness of Proposition 4 is based on the fact,
that ∆′ can be split in a correct and an incorrect part. The correspondence where the
correct part ends is exactly the correspondences that is detected by the binary search.
Due to the stable ordering, the correct part can be extended over several iterations until
we finally end up with a complete and correct local optimal diagnosis ∆.

5 Experiments

Our experiments are based on datasets used within two subtracks of the Ontology Align-
ment Evaluation Initiative (OAEI). These tracks are the benchmark track about the do-
main of publications and the conference track. In opposite to the other OAEI tracks, the
reference alignments of these tracks are open available.

The benchmark dataset consists of an ontology #101 and alignments to a set of arti-
ficial variations #1xx to #2xx. Furthermore, there are reference alignments to four real
ontologies known as #301 to #304. We have chosen these four ontologies for our ex-
periments to avoid any interdependencies between the specifics of the artificial test sets
and our approach. For our experimental study we had to apply some minor modifica-
tions. Neither ontology #101 nor ontologies #301 to #304 contain disjointness axioms;
even a highly incorrect alignment cannot introduce any incoherences. Therefore, we
decided to extend ontology #101 by disjointness axioms between sibling classes. In the
2008 evaluation 8 matching systems submitted results to the benchmark track that were
annotated with confidence values. In the following we refer to this dataset as Bd

08.
Our second dataset is based on the conference dataset. In 2008 for the first time

reference alignments between five ontologies (= 10 alignments) have been used as part



of the official OAEI evaluation. We had to reduce this set four ontologies (= 6 align-
ments), since one ontology, namely the IASTED ontology, resulted in reasoning prob-
lems when merging this ontology with one of the other ontologies. In particular, the run-
time behaviour of our algorithms was strongly affected by underlying reasoning prob-
lems with IASTED. Unfortunately, only three systems participated in the conference
track in 2008, only two of them distinguishing between different degrees of confidence.
Therefore, we also used the submissions to the 2007 campaign were we also had two
matching systems producing meaningful confidence values. We refer to the resulting
dataset as C07, respectively C08. Disjointness is modeled in this dataset incompletely
depending on the specific ontology. Thus, we decided to apply our approach to the offi-
cial OAEI dataset as well as to a dataset enriched with obvious disjointness statements
between sibling concepts. These disjointness statements have been manually added as
part of the work reported in [12]. The resulting datasets are referred to as Cd

07, respec-
tively Cd

08.
In our experiments we used the reasoner Pellet [17], in particular version 2RC2 to-

gether with the OWL API on a 2.26 GHz standard laptop with 2GB RAM. The complete
dataset as well as a more detailed presentation of the results is available at http://
webrum.uni-mannheim.de/math/lski/matching/lod/. Due to the lack
of space we can only present aggregated results in the following paragraphs.

Runtimes Results related to runtime efficiency are presented in Table 1. In each row we
aggregated the results of a specific matcher for one of the datasets explained above. For
both Algorithm 2 and its brute-force counterpart Algorithm 1 the total of runtimes is dis-
played in milliseconds. Obviously, Algorithm 2 outperforms the brute force approach.
Runtime performance increased by a coefficient of 1.8 to 9.3. To better understand un-
der which circumstances Algorithm 2 performs better, we added columns presenting
the size of the input alignment A, the size of the debugged alignment A′, and the size
of the diagnosis∆ = A\A′. Furthermore, the column captioned with ’k 6= NIL’ refers
to the number of correspondences that have additionally been detected due to complete
reasoning techniques. In particular, it displays how often k 6= NIL is evaluated as true
in line 14 of Algorithm 2. Finally, we analyze the fraction of those correspondences that
have been detected by efficient reasoning techniques.

Although we observe that absolute runtimes are affected by the alignment size (see
for example the C07-OLA row), the coefficient of runtimes seems not to be affected di-
rectly. The same holds for the size of the diagnosis ∆. Instead of that and in accordance
to our theoretical considerations the runtime coefficient correlates with the fraction of
conflicts that can be detected efficiently. While for the conference testcases results have
to be considered inconclusive, this pattern clearly emerges for the benchmark testcases.
The efficiency of Algorithm 2 is thus directly affected by the degree of completeness of
POSSIBLYCOHERENT invoked as subprocedure.

Diagnostic Quality In previous work we already argued that the coherence of an align-
ment is a quality of its own [8]. An incoherent alignment causes specific problems
depending on the scenario in which the alignment is used. We now additionally investi-
gate in how far the removal of the diagnosis increases the quality of the input alignment
A by comparing it against reference alignment R. In particular, we compute for both



Testcase Runtime Comparison Alignment Size & Deleted Correspondences

DS Matcher Alg.2 Alg.1 Coeff. |A| |A′| |∆| ’k 6= NIL’ Frac.

Bd
08

Aroma 8656 71846 8.3 202 194 8 2 75%
ASMOV 6226 47714 7.7 222 218 4 1 75%
CIDER 7530 70028 9.3 195 181 14 1 93%
DSSim 3922 36343 9.3 184 179 5 0 100%
Lily 15468 74352 4.8 218 210 8 4 50%
RiMOM 15942 78219 4.9 235 221 14 5 64%
SAMBO 3800 28655 7.5 197 196 1 0 100%
SAMBOdtf 8586 59211 6.9 206 202 4 2 50%

C07
Falcon 6847 12414 1.8 70 56 14 4 71%
OLA 39830 73497 1.8 404 228 176 27 85%

C08
ASMOV 13289 23425 1.8 153 128 25 10 60%
Lily 4604 14609 3.2 78 63 15 3 80%

Table 1. Aggregated Runtime of EFFICIENTLOD-Algorithm (Alg.2) and BRUTEFORCELOD-
Algorithm (Alg.1) and related characteristics.

the input alignmentA and the repaired alignmentA′ = A\∆ the classical measures of
precision and recall. The precision of an alignment describes its degree of correctness,
while recall describes its degree of completeness. A definition of these measures with
respect to alignment evaluation can be found in [2].

The results of our measurements are presented in Table 2. The first two columns
identify datasets, followed by columns presenting the size of the input alignment A,
the size of the diagnosis ∆ = A \ A′, and the number of removed correspondences
∆ \ R that are actually incorrect i.e. those correspondences that have been removed
correctly. The following three columns show how precision, recall and f-measure have
been affected by the application of our algorithm. In the Effect column the results are
aggregated as difference between the f-measure of the input alignment A and the f-
measure of the repaired alignment A′.

Based on the f-measure differences we conclude that in 13 of 16 testcases we in-
creased the overall quality of the alignment. Notice again that these results are aggre-
gated average values. Taking a closer look at the individual results for each generated
alignment (not depicted in Table 2), we observe that in 15 cases our approach has neg-
ative effects on the f-measure, in 14 cases we observed no effects at all, and in 51 cases
we measured an increased f-measure. Obviously, this effect is based on an increased
precision and a stable or only slightly decreased recall. Nevertheless, there are some
exceptions to this pattern.

On the one hand we have negative results for Bd
08-DSSim, C08-ASMOV and Cd

08-
ASMOV. Due to characteristics of a local optimal diagnosis an incorrect correspon-
dence might cause the removal of all conflicting correspondences with lower confidence
given that there exists no conflicting correspondence with higher confidence. An anal-
ysis of the individual results revealed that the negative effects are based on this pattern,
i.e. an incorrect correspondence has been annotated with very high confidence and no
’antagonist’ has been annotated with higher confidence.



DS Matcher |A| |∆| |∆ \ R| Prec. A A′ Rec. A A′ F-m. A A′ Effect

Bd
08

Aroma 202 8 7 80.2 83.0 70.1 69.7 74.8 75.8 +0.9
ASMOV 222 4 3 78.4 79.4 75.3 74.9 76.8 77.1 +0.2
CIDER 195 14 5 87.2 89.0 73.6 69.7 79.8 78.2 -1.7
DSSim 184 5 5 87.5 89.9 69.7 69.7 77.6 78.5 +0.9
Lily 218 8 8 83.0 86.2 78.4 78.4 80.6 82.1 +1.5
RiMOM 235 14 14 78.3 83.3 79.7 79.7 79.0 81.4 +2.4
SAMBO 197 1 1 91.9 92.3 78.4 78.4 84.6 84.8 +0.2
SAMBOdtf 206 4 4 88.3 90.1 78.8 78.8 83.3 84.1 +0.8

C07
Falcon 70 14 11 65.7 76.8 60.5 56.6 63.0 65.2 +2.1
OLA 404 176 174 12.4 21.1 65.8 63.2 20.8 31.6 +10.7

C08
ASMOV 153 25 20 22.9 23.4 46.1 39.5 30.6 29.4 -1.2
Lily 78 15 13 44.9 52.4 46.1 43.4 45.5 47.5 +2.0

Cd
07

Falcon 70 17 14 65.7 81.1 60.5 56.6 63.0 66.7 +3.7
OLA 404 228 226 12.4 27.3 65.8 63.2 20.8 38.1 +17.3

Cd
08

ASMOV 153 33 27 22.9 24.2 46.1 38.2 30.6 29.6 -1.0
Lily 78 21 17 44.9 54.4 46.1 40.8 45.5 46.6 +1.2

Table 2. Alignment size, size of diagnosis and number of correctly removed correspondences;
effects on precision, recall, and f-measure.

On the other hand we measured strong positive effects for the OLA system on the
conference dataset. These effects are associated with the large size of the alignments
generated by OLA. It seems that, compared to the other submissions, the matching
results of OLA have not been filtered or thresholded in an appropriate way. OLA gen-
erated a total of 404 correspondences with respect to our C datasets. For the original
dataset C (no disjointness axioms added) 176 of these correspondences have been auto-
matically removed by our approach and only 2 of these removals were incorrect, which
raised the f-measure from 20.8% to 31.6% (from 20.8% to 38.1% for the Cd dataset).
Notice that our algorithm expects no parameter which corresponds to a threshold or an
estimated size of the reference alignment. Instead of that the algorithm automatically
adapts to the quality of the input due to the fact that a highly incorrect alignment will
be higly incoherent. Overall, the results indicate that our approach does not only ensure
the quality of the input alignment but even more has significant positive effects.

Related work In [13] Qi et. al. propose a kernel revision operator for description logic-
based ontologies. A revision deals with the problem of incorporating newly received in-
formation into accepted information consistently. Within their experiments the authors
apply their approach amongst others to the revision of ontology alignments, where the
matched ontologies are accepted information and the alignment between them is new
and disputable information. Two of the algorithms proposed require to compute all
MIPSS (A,O1,O2) in order to construct a minimal hitting set, while their third and
most efficient algorithm cannot ensure the minimality of the constructed hitting set. We
conducted additional experiments with the alignments used in [13]. We did not include
these as part of the main experiments, because the datasets do not contain correspon-



dences between properties and are not as comprehensive as the datasets used within our
experiments. However, we observed runtimes between 50 and 250 milliseconds, while
in [13] runtimes between 6 and 51 seconds have been reported for the fastest algorithm.

An approach, which aims to explain logical consequences of an alignment, has been
proposed in [6]. Some of these consequences are unintended due to incorrect correspon-
dences in A and cannot be accepted. An example of an unintended consequence is a
concept becoming unsatisfiable due to A. Such an alignment is referred to as incoher-
ent within our framework. To generate plans for repairing a defect alignment, first, all
justifications for the unintended consequences are computed. While in [13] all MIPS are
used to compute a minimal hitting set, in [6] all justifications are used to compute min-
imal hitting sets referred to as a repair plans. The authors point out, that the bottleneck
of their approach is the computation of all justifications.

In summary, both approaches suffer from the incorrect assumption that a minimal
hitting set can only be constructed given complete knowledge about all MIPS respec-
tively all justifications. Contrary to this, we have shown that it is possible to compute a
specific hitting set, namely a local optimal diagnosis, that is not only minimal but also
takes into account confidence values in an appropriate manner.

6 Conclusion

We have presented a basic algorithm for computing a local optimal diagnosis as well
as an efficient variant, which makes use of an intertwined combination of incomplete
and complete reasoning techniques. These algorithms are based on precise logic-based
semantics of an alignment. Although, we only focused on specific type of semantics,
namely the natural semantics, there is some evidence that the principles of our approach
can be applied to each reductionistic alignment semantics.

It turned out that the efficient variant of our algorithm outperformed the basic algo-
rithm by a factor of ≈ 2 to 10. In particular, we observed that the runtime is first and
foremost determined by the fraction of conflicts detectable by the incomplete reasoning
procedures. In future work we will add additional reasoning patterns in order to detect
more conflicts by efficient reasoning strategies.

Our algorithm improves in most cases an alignments f-measure due to an increased
precision. However, we detected some outliers where a highly confident but incorrect
correspondence had negative impact on the repairing process. An approach that removes
a minimum number of correspondences would probably remove such a correspondence.
Generally, it is not clear whether the principle of minimal change is a good guideline
for repairing alignments. Experiments we conducted so far show inconclusive results
and require additional analysis.

We already pointed to some problems of other approaches. We believe that these
problems are based on not taking into account three specifics of the problem under dis-
cussion. First, correspondences are annotated with confidence values. Second, there are
significantly less correspondences in an alignment than axioms in the matched ontolo-
gies. Third, given the monotonicity of S, everything that holds in O1 and O2 holds
also in the merged ontology O1 ∪SA O2. The first observation was taken into account in
the definition of a local optimal diagnosis, the second observation points to the possi-



bility of iterating over all correspondences (the main loop in both algorithms), and the
third observation is exploited within the combination of pattern-based reasoning and
reasoning in the merged ontology.
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