
Reasoning Support for Mapping Revision

C. Meilicke and H. Stuckenschmidt
KR and KM Research Group

University of Mannheim
A5, 6 68159 Mannheim, Germany

{christian, heiner}@informatik.uni-mannheim.de

Andrei Tamilin
ITC-irst

Via Sommarive, 18
38050 Povo (Trento) Italy

tamilin@itc.it

Abstract

Finding correct semantic correspondences between ontolo-
gies is one of the most challenging problems in the area of
semantic web technologies. Experiences with benchmarking
matching systems revealed that even the manual revision of
automatically generated mappings is a very difficult problem
because it has to take the semantics of the ontologies as well
as interactions between correspondences into account. In this
paper, we propose methods for supporting human experts in
the task of revising automatically created mappings. In par-
ticular, we present non-standard reasoning methods for de-
tecting and propagating implications of expert decisions on
the correctness of a mapping. We show that the use of these
reasoning methods significantly reduces the effort of mapping
revision in terms of the number of correspondences that have
to be evaluated by the user.

Motivation
A common way of integrating different ontologies describ-
ing the same or largely overlapping domains is to use formal
representations of semantic correspondences between their
concepts and relations - also referred to as ’ontology map-
pings’. Recently, a number of automatic and semi-automatic
tools for generating hypotheses about semantic correspon-
dences have been developed (see (Euzenat & Shvaiko 2007)
for an overview). The results of these tools, however, often
contain a significant amount of errors caused by the use of
general heuristics that are bound to fail in certain situations.
Due to this fact, a manual revision of the mappings created
by a matching system is often inevitable.

Revising mappings is a very complex and difficult prob-
lem even for experts in the area. We can identify two sources
of complexity:

• The correctness of mappings depends on the semantics
of the ontologies. This means that in principle, mapping
revision requires to completely consider the ontologies
linked by the mapping. This makes some form of logi-
cal reasoning indispensable which is almost impossible to
do manually due to the size and complexity of the ontolo-
gies.

Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

• Individual decisions about the correctness of a suggested
semantic relation can have an influence on past and fu-
ture decisions making the revision of a mapping a non-
monotonic process. Consistently revising a mapping
therefore requires to keep track of the different dependen-
cies which is also infeasible without adequate support.

We will illustrate these two sources of complexity using a
small example. Imagine two ontologies describing scientific
publications and the following semantic relations between
concepts of the two ontologies:

1:Abstract equivalent to 2:Abstract (1)
1:Document equivalent to 2:Document (2)
1:Document broader than 2:Review (3)

At a first glance all of these relations look correct. Taking
the whole ontologies into account, however, it turns out that
the intended meaning of concept 2:Abstract is not the one of
a summary of a document as in the first ontology, but that of
an abstract entity (e.g., a topic of a document). Further we
might know that 1:Abstract is a subclass of 1:Document and
2:Review is a subclass of 2:Document. Taking into account
these definitions we can deduce that the first two equiva-
lences in our mapping cannot both be true at the same time.
This means that if we first decide that the first equivalence
is correct and then move on to the second equivalence and
also decide that this second equivalence relation is correct,
we have to revise our decision on the first one in order to
avoid the model becoming inconsistent. Further, if we de-
cide that the second equivalence is correct, then the third
relation also has to be correct, because it follows from the
fact that Review is defined as a subclass of Document in the
second ontology.

In this paper, we extend and modify previous work on
fully automatic debugging of ontology mappings (Meilicke,
Stuckenschmidt, & Tamilin 2007) to the case where the re-
vision of the mapping is done by a human expert. We mod-
ify our methods in such a way that they support the human
evaluator by computing the implications of decisions on the
correctness of other semantic relations in the mapping. We
show that the use of automatic reasoning can reduce the ef-
fort of manual evaluation by up to 70%. In the next section
we present a formal model of mapping revision as a frame-
work for applying logical reasoning. Afterwards we suggest

reasoning methods to support the process of mapping revi-
sion. Finally, we present results of applying these methods
to real data.

A Formal Model of Mapping Revision
Suppose there are two ontologies, O1 and O2, describing
the same or largely overlapping domains of interest. Ac-
cording to Euzenat and Shvaiko (Euzenat & Shvaiko 2007),
correspondences between elements of these ontologies can
be defined as follows.

Definition 1 (Correspondence) Given ontologies O1 and
O2, let Q be a function that defines sets of matchable ele-
ments Q(O1) and Q(O2). Then a correspondence is a 4-
tuple 〈e, e′, r, n〉 such that e ∈ Q(O1) and e′ ∈ Q(O2), r
is a semantic relation, and n is a confidence value from a
suitable structure 〈D,6〉.

The generic form of definition 1 allows to capture a wide
class of correspondences by varying what is admissible as
matchable element, semantic relation, and confidence value.
In this work, we impose the following additional restrictions
on correspondences: We only consider correspondences be-
tween concepts. We also restrict r to be one of the se-
mantic relations from the set {≡,v,w}. In other words,
we only focus on equivalence and subsumption correspon-
dences between concepts. Given concepts A ∈ Q(O1) and
B ∈ Q(O2) subsumption correspondence 〈A, B,v, 1.0〉 is
correct if everything that we account to be an instance of A
also has to be accounted to be an instance of B. The equiv-
alence relation is defined as subsumption in both directions.
Finally, we assume that the confidence value is represented
numerically on D = [0.0, 1.0].

Notice that the confidence value n can be seen as a mea-
sure of trust in the fact that the correspondence holds. The
higher the confidence degree with regard to the ordering 6
the more likely relation r holds between matchable elements
e and e′. Given a set of semantic correspondences, we can
define the notion of a mapping as a container of these se-
mantic correspondences.

Definition 2 (Mapping) Given ontologies O1 and O2, let
Q be a function that defines sets of matchable elements
Q(O1) and Q(O2). M is a mapping between O1 and
O2 iff for all correspondences 〈e, e′, r, n〉 ∈ M we have
e ∈ Q(O1) and e′ ∈ Q(O2).

Given an automatically generated mapping M between
two ontologies O1 and O2. We have already argued thatM
will most likely contain some erroneous correspondences.
Thus, a domain expert will have to revise the mapping to
ensure the quality of the integration. For each correspon-
dence inM the expert evaluator has to choose between one
of the alternatives correct and incorrect . By default, each
correspondence is implicitly evaluated as unknown as long
as no positive or negative evaluation is available. For each
point in time the so far achieched result of a revision pro-
cess can be modeled as a function e that assigns to each
correspondence of a given mapping a value from the set
{correct , incorrect , unknown}.

Definition 3 (Evaluation) An evaluation function e :
M→ {correct , incorrect , unknown} is defined by

e (c) 7→

{ correct if c is accepted
incorrect if c is rejected
unknown otherwise

for all c ∈M

Furthermore, let e (M, v) ⊆ M be defined as
e (M, v) = {c ∈ M|e (c) = v} for all v ∈
{correct , incorrect , unknown}.

Mapping revision is a sequential process that starts with
e (M, unknown) =M where no correspondence has been
evaluated. Then the expert evaluator will iteratively evaluate
one by one correspondences in the mapping. When each of
the correspondences is evaluated and e (M, unknown) = ∅
the revision is completed. In order to model such a stepwise
revision process we further introduce the notion of a succes-
sor of an evaluation function e.

Definition 4 (Successor Evaluation) Given an evalu-
ation function e, an evaluation function e′ is a suc-
cessor of e iff e (M, correct) ⊆ e′ (M, correct),
e (M, incorrect) ⊆ e′ (M, incorrect) and
e (M, unknown) ⊃ e′ (M, unknown). A successor
e′ of e is a direct successor of iff |e (M, unknown)| − 1 =
|e′ (M, unknown)|

Without additional reasoning support the process of map-
ping revision consists of |M| steps from an evaluation func-
tion to its direct successor where each step is based on a
manual decision of an evaluator.

We already argued that it is possible to make use of previ-
ous decisions to automatically derive that certain correspon-
dences in e (M, unknown) have to be evaluated as correct
or incorrect . Obviously, such a reasoning strategy would
decrease the effort of manual evaluation. By the means of
logical reasoning it will thus be possible to extend an eval-
uation function to a successor based on the information en-
coded in e and the ontologies O1 and O2 without the need
of manual intervention. Therefore, we introduce the notion
of an extension function as follows.

Definition 5 (Extension) Given an evaluation function e, a
function ext(M,O1,O2, e) = e′ is an extension function iff

• e′ is a successor of or equal to e,
• e′ (c) = correct iff the mapping e (M, correct) entails c

with respect to O1 and O2,
• e′ (c) = incorrect iff {c}∪e (M, correct) is an inconsis-

tent mapping with respect to O1 and O2.

In definition 5 we are using the notion of entailment and
consistency. Even though we have an intuitive understand-
ing of both notions with respect to description logics, so far
we neglected to give a precise definition of entailment and
consistency for correspondences and mappings. We will
therefore introduce DDL as an appropriate framework for
modeling mappings in a distributed scenario. Based on this
formalization we will define the notion of entailment and
consistency as well as describe an algorithm to compute the
extension of an evaluation function.

Reasoning Support
Distributed description logics, as described by Serafini
and Tamilin in (Serafini & Tamilin 2005), can be under-
stood as a framework for formalization of multiple ontolo-
gies pairwise linked by directed semantic mappings. In
distributed description logics a collection of T-boxes and
bridge rules between them forms a distributed T-box T =
〈{Ti}i∈I , {Bij}i 6=j∈I〉.

With respect to the problem of revising a mapping be-
tween two ontologies O1 and O2 the set of indices I is de-
fined as {1, 2} where Ti denotes the T-Box of ontology Oi.
It contains definitions of concepts and properties as well as
axioms relating concepts and properties to each other. To
refer without ambiguity to a concept C from Ti, the index i
is used in front of the concept, for example i:C.

The bridge rules in the set Bij establish semantic rela-
tions from Ti to Tj . Every bridge rule in Bij has a certain
type and connects a concept from Ti to a concept from Tj .
The following three types of bridge rules are known in dis-
tributed description logics.

• i:C v−→ j:D (into)
• i:C w−→ j:D (onto)
• i:C ≡−→ j:D (equivalent)

Bridge rules from Ti to Tj allow a partial translation of Ti’s
language into the language of Tj . For example, the into

bridge rule i:C v−→ j:D states that concept i:C is, from
Tj’s point of view, less general than or as general as concept
j:D. The analogous onto bridge rule states that j:C is more
general than or as general as j:D. An equivalence bridge
rule is the conjunction of into and onto bridge rule.

Obviously, the role of bridge rules in distributed descrip-
tion logics captures our intuitive understanding of corre-
spondences. Thus we map the correspondences of a map-
ping M between O1 and O2 on the bridge rules B12 of a
distributed ontology in the following way:

• 〈e, e′,v, n〉 7→ 1:e v−→ 2:e′

• 〈e, e′,w, n〉 7→ 1:e w−→ 2:e′

• 〈e, e′,≡, n〉 7→ 1:e ≡−→ 2:e′

The first element of the semantics of distributed descrip-
tion logics is a local interpretation Ii for each T-Box Ti.
Each interpretation Ii consists of a local domain ∆Ii and
a valuation function ·Ii . The valuation function maps con-
cepts on subsets of ∆Ii and properties on subsets of ∆Ii ×
∆Ii . The second element is a domain relation rij that con-
nects for each pair of T-Boxes 〈Ti, Tj〉i 6=j elements of the
interpretation domains ∆Ii and ∆Ij . rij(x) is used to de-
note {y ∈ ∆Ij |(x, y) ∈ rij} and r(D) is used to denote⋃

x∈D rij(x) for any x ∈ ∆Ii and any D ⊆ ∆Ii . The pair
of both elements I = 〈{Ii}i∈I , {rij}i 6=j∈I〉 is called the
distributed interpretation. A distributed interpretation I sat-
isfies a distributed T-Box T = 〈{Ti}i∈I , {Bij}i 6=j∈I〉 iff for
all i 6= j ∈ I the following clauses are true.

• Ii satisfies Ti

• rij(CIi) ⊆ DIj for all i:C v−→ j:D in Bij

• rij(CIi) ⊇ DIj for all i:C w−→ j:D in Bij

• rij(CIi) = DIj for all i:C ≡−→ j:D in Bij

Due to the introduction of bridge rules it is possible to trans-
fer knowledge between different ontologies that changes
subsumption relations in the target ontology. In particular,
the following inference rule can be used to infer new sub-
sumption relations across ontologies:

i:A
w−→j:G,i:Bk

v−→j:Hk(1≤k≤n),i:Av
nF

k=1
B

j:Gv
nF

k=1
Hk

(4)

It has been shown that this general propagation rule com-
pletely describes reasoning in DDLs that goes beyond well
known methods for reasoning in Description Logics. To be
more specific, adding the inference rule in equation 4 to
existing tableaux reasoning methods leads to a correct and
complete method for reasoning in DDLs. A corresponding
result using a fixpoint operator is given in (Serafini, Borgida,
& Tamilin 2005).

Based on the semantics of Distributed Description Log-
ics, we can now introduce consistency and entailment with
respect to bridge rules respectively correspondences.1 The
bridge rules of a distributed T-Box T can be defined as in-
consistent with respect to a local satisfiable concept if the
additional constraints induced have the (unintended) effect
of making the concept distributed unsatisfiable. If such an
effect does not occur the set of bridge rules is consistent with
respect to this concept.

Definition 6 (Consistency) Given a distributed T-Box T =
〈{Ti}i∈I , {Bij}i 6=j∈I〉, Bij is consistent with respect to
j:C iff Tj 6|= C v ⊥ → T 6|= j:C v ⊥. Otherwise Bij

is inconsistent with respect to j:C. Bij is consistent with
respect to Tj iff for all j:C Bij is consistent with respect to
j:C. Otherwise Bij is inconsistent with respect to Tj .

Obviously, inconsistency is a clear symptom for defective
parts in a mapping. We can conclude that at least one bridge
rule in Bij has to be incorrect, given that Bij is inconsistent.

Further, a bridge rule b can be entailed from Bij if and
only if b does not provide any additional pieces of informa-
tion that are not explicit or implicit available in Bij . The
following definition formally introduces the corresponding
notion of entailment in general.

Definition 7 (Entailment) Given a distributed T-Box T, a
bridge rule b is entailed by T iff every model I of T satisfies
b.

1For the sake of simplicity we apply the definition of the evalu-
ation function (definition 3) as well as all related definitions in the
following to bridge rules. Since there exists a one-to-one assign-
ment between correspondences and bridge rules, a statement about
a bridge rule can be understood as the accordant statement about a
correspondence.

In (Stuckenschmidt, Wache, & Serafini 2006) we have de-
scribed sound and complete algorithms for deciding con-
sistency and entailment of bridge rules. We have imple-
mented these algorithms as an extension DRAGO system
(Serafini & Tamilin 2005) which we used in the experiments
described later.

The extension of the evaluation function can be imple-
mented in a straight forward way by applying the algo-
rithms for checking consistency and entailment. Remem-
ber that, given an evaluation function e for a set of bridge
rules Bij between Ti and Tj , Bij is divided in three com-
plementary subsets e(Bij , correct), e(Bij , incorrect) and
e(Bij , unknown). Since all bridge rules in e(Bij , correct)
are accepted, we can use this information to derive that
certain bridge rules in e(Bij , unknown) have also implic-
itly been evaluated, even though the evaluator might not be
aware of this. On the one hand, we know that a bridge
rule b has to be evaluated as correct , if b can be entailed
by e(Bij , correct). On the other hand, we can conclude
that each bridge rule b has to be evaluated as incorrect if
e(Bij , correct) ∪ {b} is inconsistent.

Algorithm 1
EXTENDEVALUATION(T, e, k, l)

1: e′ ← e

2: {B¬kl} ← {Bij}i6=j∈I \ {Bkl}
3: for all b ∈ e(Bkl, unknown) do
4: if ISENTAILED(〈{Ti}i∈I , {B¬kl} ∪ {e(Bkl, correct)}〉 , b) then
5: e′(b)← correct

6: end if
7: if ISCONSISTENT(〈{Ti}i∈I , {B¬kl} ∪ {e(Bkl, correct) ∪ {b}}〉 , l)

then
8: e′(b)← incorrect

9: end if
10: end for
11: return e′

Algorithm 1 is a direct implementation of this strategy.
This algorithm takes as input a distributed T-Box T =
〈{Ti}i∈I , {Bij}i 6=j∈I〉, an evaluation function e defined for
mapping Bkl, and the indices k, l ∈ I referring to termi-
nologies Tk and Tl respectively. The algorithm therefore
deals with the general case where we might have more than
just two ontologies and a complex structure of mappings be-
tween those ontologies. In such a situation we might be in-
terested, example given, to revise a mapping Bkl for an ad-
ditional T-Box Tl that has just been linked to T via Bkl.
Therefore, it is important to take into account the whole
structure as well as changes in subsumption hierarchies in-
duced by other mappings that might already have been re-
vised.

We solved the general problem of extending an evaluation
in a complex scenario in the following way. First we create
a copy e′ of e and construct the collection of bridge rules
{B¬kl} that consists of all bridge rules except the bridge
rules in Bkl. Then we iterate over the set of bridge rules
that have not yet been evaluated as correct or incorrect and
apply the strategy described above to extend the evaluation
function e. For the case of entailment we have to reason
in a distributed terminology where the set of mappings is

restricted to be {B¬kl} ∪ {e(Bkl, correct)}, while for the
case of consistency we also have to add the current bridge
rule. Though this approach requires reasoning in a modified
distributed terminology, all modifications are related to the
mapping attached to Tl. This means that the algorithm can
be executed locally on the DRAGO reasoning peer hosting
Tl. Notice, that this is an important aspect, because in a re-
alistic scenario mappings will be managed locally and mod-
ifications of mappings and terminologies hosted by different
reasoning peers will not be granted, in general.

Let us revisit the small example introduced in an informal
way in the introduction to better understand the capabilities
of extending an evaluation function. This example will il-
lustrate two essential issues about extending an evaluation.

Example 1 Given the bridge rule mapping B12 from T1 to
T2 consisting, amongst others, of the following bridge rules
generated by a fully automatized matching system.

(b1) 1:Document ≡−→ 2:Document, 0.98

(b2) 1:Abstract ≡−→ 2:Abstract, 0.93

(b3) 1:Document
w−→ 2:Review, 0.57

Suppose now that a domain expert for knowledge manage-
ment evaluates B12 starting with bridge rule b1. He accepts
this correspondence and thus we have e(B12, correct) =
{b1} and e(B12, unknown) = {b2, b3}. Given the follow-
ing axioms for T1 and T2

T1 |= Document w Abstract
T2 |= Document v ¬Abstract
T2 |= Document w Review

applying the extension algorithm will result in the extended
evaluation function e′p with

e′p(B12, correct) = {b1, b2}
e′p(B12, incorrect) = {b3}
e′p(B12, unknown) = ∅

Thus, for our example, we ended up with a fully evaluated
mapping by applying the extension algorithm.

This example sheds light on two important aspects. On
the one hand it might happen that the extension of an eval-
uation function results in a relatively high number of evalu-
ation decisions that can be skipped. In this example for one
evaluation decision we gained two further decisions without
(direct) manual intervention. The effort of manual interven-
tion can thus be significantly decreased. On the other hand
applying the extension algorithm might sometimes result in
non trivial extensions, in particular where manual evalua-
tion might result in erroneous decisions. The incorrectness
of bridge rule b2 can be counted as an example. By merely
looking at the concept names, not taking their conceptual
context into account, an inattentive evaluator might make a
mistake that can be avoided by the logical reasoning imple-
mented in algorithm 1.

Experiments
In our experiments, we focused on the reduction of manual
effort of a mapping revision conducted by a domain expert.
In the following we measure the manual effort of a revision
process in number of evaluation decisions necesarry to end
up with a completely evaluated set of bridge rules. An eval-
uation decision is defined to be the specification of a direct
successor e′ of the previous evaluation function e. As we al-
ready argued, the effort for evaluating a set of bridge rules B
without support will thus be |B|. Given an evaluation func-
tion e for B, from definition 5 as well as from the imple-
mentation of an extension function (algorithm 1) it follows
that computing the extension of e will sometimes result in
a successor evaluation. Whenever this happens at least one
evaluation decision has been computed by logical reasoning
and the effort of the expert has been decreased.

We selected four ontologies from the OntoFarm Dataset
(Svab et al. 2005) and automatically generated mappings
between all pairs of ontologies by applying the matching
system CtxMatch (Bouquet, Serafini, & Zanobini 2004). In
contrast to the majority of existing systems limited to the
discovery of “≡” correspondences, CtxMatch is additionally
capable of finding “v”, “w” relations. This is more adequate
for many applications but makes the manual revision even
more time-consuming, because normally the system finds
more correspondences than other systems.

For all pairs of ontologies 〈Oi,Oj〉 with Ti 6= Tj ∈
{CMT, CRS, PCS, CONFTOOL} we built the distributed
terminology T = 〈{Ti, Tj}, {Bij}〉 where we interpreted
the mapping generated by the CtxMatch matching system as
Bij and the T-Boxes of the ontologies as Ti and Tj . Then
we proceeded as follows:

1. Init a counter m← 0 of manual evaluation decisions.

2. Evaluate the first unevaluated bridge rule b ∈ Bij and set
m← m + 1.

3. Recompute e←EXTENDEVALUATION(T, e, i, j).

4. If e(Bij , unknown) 6= ∅ continue with step 2.

This procedure ends when every bridge rule has been man-
ually or automatically evaluated. While m counts the num-
ber of manual evaluation decision, m

|Bij | measures the frac-
tion of bridge rules evaluated manually. In addition, we also
counted the number of bridge rules that have been evaluated
as correct by entailment as well as the number of bridge
rules that have been evaluated as incorrect by checking con-
sistency.

In a first series of experiment we ordered the bridge rules
in a random way.2 The results for these experiments are
presented in the second row of each cell in table 1. The
fraction of bridge rules that had to be evaluated manually
ranges from 41.1% to 73.3%. Aggregating over all pairs
of ontologies, we measured that only 60.8% of all bridge
rules had to be evaluated instead of evaluating 100% in a
scenario without revision support. Notice that most parts of

2More precisely, to make the results reproducible we ordered
the bridge rules lexicographical with respect to the concepts
matched by the bridge rule.

CMT CRS PCS CONFTOOL

CMT

53 ; 44 48 ; 32

- 56.6% (23/0) n.a. 60.4% (19/0)

35.8% (33/1) 39.6% (28/1)

CRS

53 ; 41 38 ; 29 80 ; 38

54.7% (23/1) - 60.5% (15/0) 65% (18/10)

41.5% (29/2) 52.6% (18/0) 22.5% (36/26)

PCS

73 ; 63 38 ; 30 45 ; 23

41.1% (43/0) 60.5% (15/0) - 73.3% (12/0)

27.4% (53/0) 52.6% (18/0) 55.6% (19/1)

CONFTOOL

48 ; 32 80 ; 36 45 ; 23

60.4% (19/0) 68.8% (18/7) 73.3% (12/0) -

43.8% (27/0) 40% (36/12) 57.8% (19/0)

Table 1: Experimental results for supporting manual eval-
uation. The first row in each cell represents |B| ;

|e(B, correct)| for the finally obtained evaluation function
e. The second and third row distinguish between iterating
over different orderings of the input mapping. They present
the fraction of bridge rules that had to be evaluated. In paren-
theses you find the number of bridge rules automatically se-
lected due to entailment and the number of bridge rules un-
selected due to inconsistency.

the extension are based on entailment, while reasoning with
inconsistencies has only limited effects.

Even though these results show the benefit of our ap-
proach, there is still room for improvement by presenting
the bridge rules in a proper order to the domain expert. The
following example describes the effects of different order-
ings.

Example 2 The example from the introduction also nicely
shows the importance of a good ordering. Given the set of
bridge rules B12 = {b1, b2, b3} from example 1. Taking into
account the semantics of the ontologies that are aligned via
B12, the following applies.

• b1 and b3 are correct and b2 is incorrect,
• {b1} entails b3,
• and {b1, b2} is inconsistent.

If we first present b1 to the domain expert and extend the re-
sulting evaluation function we end up with a complete evalu-
ation function e with e(B, unknown) = ∅. This has already
been shown in example 1. Compare this to the results that
we achieve if we present the bridge rules in the sequence
〈b3, b2, b1〉. In this case the evaluation cannot be extended at
all. This applies for each step of the revision process based
on this ordering.

Example 2 shows that we have to find an appropriate or-
der for a given input mapping to exploit our approach to its
full extent. To determine such an order we define the notion
of the potential impact of a bridge rule, formally introduced
in definition 8. Given a bridge rule b from T1 to T2 the po-
tential impact counts the number of bridge rules b′ that can
be entailed from {b} as well as the number of bridge rules
such that {b, b′} is inconsistent, where b′ ∈ Bfull and Bfull

is defined to be the set of all combinatorial possibilities for
matching concepts from T1 to T2. Notice that this charac-
teristic is only a rough approximation of a bridge rules’ real
impact, because it abstracts from complex interactions be-
tween more than two bride rules.

Definition 8 (Potential impact of a bridge rule) The po-
tential impact of a bridge rule from T1 to T2 denoted as
imp(T1, T2, 1:C R−→ 2:D) is defined as

sub(T1, C) · (super(T2, D) + dis(T2, D)) if R = v
super(T1, C) · (sub(T2, D) + dis(T2, D)) if R = w

imp(T1, T2, 1:C
v−→ 2:D) + imp(T1, T2, 1:C

w−→ 2:D)) if R = ≡

where sub(T , C) returns the number of all subclasses of
concept C in T , super(T , C) returns the number of all su-
perclasses of concept C in T , and dis(T , C) returns the
number of all classes that are disjoint with C.

For a second series of experiments we ordered the bridge
rules descending due to their potential impact. The results
are also presented in table 1 in the rows headed with impact
order. The effects confirm with our theoretical expectations.
The number of entailment propagations as well as the num-
ber of inconsistency propagations could be increased by a
significant degree. We reduced the effort of manual eval-
uation to the range from 22.5% to 57.8%. In average we
now have to evaluate only 40.4% of the input mapping. This
means that a domain expert has to evaluate less than every
second bridge rule of a mapping in average.

Discussion
In a recent study (Falconer & Storey 2007) Falconer and
Storey review existing systems for manual mapping creation
that have been developed recently from the user point of
view. Amongst others they identify conflict resolution and
inconsistency detection as an important requirement for such
tools. The corresponding functionality of existing systems,
however, is restricted to structural consistency criteria. In
this paper, we argued for the need of providing reasoning
support for manual mapping revision. We pointed out that
the inherent complexity and size of the problem makes the
revision process an error-prone and time-consuming task.
Therefore, we proposed a reasoning method to extend a par-
tial evaluation of a mapping based on logical reasoning. We
argued that this kind of reasoning can be used to both de-
tect incorrect correspondences, that are hard to find for a
human expert, and decrease human effort in terms of corre-
spondences that have to be evaluated. In our experiments,
we showed that the manual effort can be reduced to a signif-
icant degree by applying our approach.

Nevertheless, there are a number of open problems that
need to be addressed in future work. One is the problem
of underspecified ontologies. In particular, the detection of
inconsistencies in a mapping relies on the presence of dis-
jointness axioms in the mapped ontologies. In practice these
axioms are often missing. Notice that the low number of
incorrect correspondences detected by consistency checking
reported in the experimental section is based on this fact.

There are several ways to deal with this problem. One is
to work with the assumption that sibling-concepts are al-
ways disjoint and adding the corresponding axioms to the
ontologies. This has already successfully been done in the
context of revising ontologies (Schlobach 2005). In current
work we also explore the option of automatically creating
the required disjointness statements using machine learning
techniques.

Another potential problem is the complexity of the rea-
soning problem involved. Recently, we have explored effi-
cient approximations of these reasoning services that only
require to classify the ontologies once and then use correct
but incomplete heuristics for checking consistency (Meil-
icke & Stuckenschmidt 2007). So far, we have found only
a very few examples where this approximate method fails
to detect all inconsistencies. Notice that a similar approach
could be used to check entailment of correspondences.

References
Bouquet, P.; Serafini, L.; and Zanobini, S. 2004. Peer-
to-peer semantic coordination. Journal of Web Semantics
2(1):81 97.
Euzenat, J., and Shvaiko, P. 2007. Ontology Matching.
Springer.
Falconer, S. M., and Storey, M.-A. 2007. A cognitive
support framework for ontology mapping. In Hertzberg,
J.; Beetz, M.; and Englert, R., eds., Proceedings of the
30th German Conference on Artificial Intelligence, number
4667 in Lecture Notes in Artificial Intelligence, 99–113.
Springer.
Meilicke, C., and Stuckenschmidt, H. 2007. Applying log-
ical constraints to ontology matching. In Hertzberg, J.;
Beetz, M.; and Englert, R., eds., Proceedings of the 30th
German Conference on Artificial Intelligence. Springer.
Meilicke, C.; Stuckenschmidt, H.; and Tamilin, A.
2007. Repairing ontology mappings. In Proceedings of
the Twenty-Second Conference on Artificial Intelligence
(AAAI-07).
Schlobach, S. 2005. Debugging and semantic clarification
by pinpointing. In Proceedings of ESWC 2005.
Serafini, L., and Tamilin, A. 2005. DRAGO: Distributed
reasoning architecture for the semantic web. In Proceed-
ings of the Second European Semantic Web Conference
(ESWC’05).
Serafini, L.; Borgida, A.; and Tamilin, A. 2005. Aspects of
distributed and modular ontology reasoning. In Proceed-
ings of the International Joint Conference on Artificial In-
telligence - IJCAI-05.
Stuckenschmidt, H.; Wache, H.; and Serafini, L. 2006.
Reasoning about ontology mappings. In Proceedings of
the ECAI-06 Workshop on Contextual Representation and
Reasoning.
Svab, O.; Vojtech, S.; Berka, P.; Rak, D.; and Tomasek,
P. 2005. Ontofarm: Towards an experimental collection of
parallel ontologies. In Poster Proceedings of the Interna-
tional Semantic Web Conference 2005.

