
uDecide: A Protégé Plugin
for Multiattribute Decision Making

Erman Acar, Manuel Fink, Christian Meilicke and Heiner Stuckenschmidt
Data & Web Science Group

University of Mannheim
D-68159, Mannheim, Germany

{firstname}@informatik.uni-mannheim.de

ABSTRACT
This paper introduces the Protégé plugin uDecide. With the
help of uDecide it is possible to solve multi-attribute decision
making problems encoded in a straight forward extension of
standard Description Logics. The formalism allows to spec-
ify background knowledge in terms of an ontology, while each
attribute is represented as a weighted class expression. On
top of such an approach one can compute the best choice
(or the best k-choices) taking background knowledge into
account in the appropriate way. We show how to implement
the approach on top of existing semantic web technologies
and demonstrate its benefits with the help of an interest-
ing use case that illustrates how to convert an existing web
resource into an expert system with the help of uDecide.

Categories and Subject Descriptors
[Artificial Intelligence]: Knowledge Representation and
Reasoning – Description Logics; [Information Systems
Application]: Decision Support Systems – Expert systems;
[Web data description languages]: Semantic web de-
scription languages – Web Ontology Language (OWL)

General Terms
Theory, Economics

Keywords
Description Logics, Utility Theory, Decision Making

1. INTRODUCTION
The study of preferences and decision support systems is
an ongoing research subject in artificial intelligence, gain-
ing more popularity every day. Since the first attention of
multi-attribute utility theory in [7], numerous approaches
have been proposed, including probabilistic, possibilistic,
fuzzy and graphical models [6] amongst others. One recent
approach stepping forward is the use of logical languages,
e.g., [4, 9] to encode decision-theoretic problems.

We follow this line of research and introduce a Protégé plu-
gin, uDecide, to encode decision making problems in the
semantic web language OWL. uDecide uses standard reason-
ing techniques to perform the non-standard reasoning task of
ranking choices with respect to a set of weighted attributes
specified by a user. In this regard, it can be thought of
as a decision support system. The plugin uses an ontology
as background knowledge. A subset of the individuals that
appear in this ontology can be defined as possible choices.

uDecide is based on a multi-attribute utility theoretic as-
sessment to yield the ranking of choices. Each attribute is
represented by a class description weighted by a utility value
which is asserted by the user. This yields a compact repre-
sentation for a user’s preference over attributes. Then, the
preference relation is lifted to the set of choices via the ag-
gregation of attributes that the choices satisfy due to their
class membership.

The theoretical underpinnings of uDecide are weighted logics
(e.g., see [5]). In particular, uDecide is based on a weighted
Description Logics (DL) framework [1], referred to as DL
decision bases, that does not require any specific DL lan-
guage. This provides flexibility in the sense that one can
use tractable fragments e.g., the DLLite family [3] or EL
[2] if scalability is important, or expressive fragments when
this is required by the domain that needs to be modelled.
Also, our approach supports data types which is a desired
property, since the use of numeric domains is common in
the literature of decision theory (see [8]). In this work, we
briefly present parts of the theoretical framework proposed
in [1], and introduce our Protégé plugin uDecide which is
based on this formalism.

uDecide can be understood as a generic out-of-the-box ex-
pert system that turns an ontology for a specific domain into
a powerful decision support system for the domain described
by that ontology. Such an expert system can be applied to
support decision making in various domains. Within this
paper we present a use case to illustrate how to use uDe-
cide to generate reading proposals. This use case will also
demonstrate that it is very easy to apply uDecide to any
kind of domain for which an ontological representation is
available as a knowledge base.

We introduce the theoretical foundations of our framework
in Section 2. In Section 3, we first give a general description
of our plugin. Then we present a use case which is based
on an excerpt from DBpedia 1 that deals with books and
authors. Finally, we conclude in Section 4.

2. THEORETICAL FOUNDATIONS
In this section, we introduce the theoretical underpinning
of our plugin, which is a framework on weighted description
logics. Our aim is to use an a priori preference relation
over attributes (ontological classes) to derive an a posteri-
ori preference relation over choices (ontological individuals).

1http://wiki.dbpedia.org/



We introduce a utility function U defined over the set of at-
tributes X , while we define a depending utility function u
over choices which can be derived from U .

We represent each attribute in the original decision making
problem as a class. This can be a named class or a complex
class description defined with the vocabulary of the ontoloy.
We assume that a total and transitive preference relation
(i.e., �X ) over X is given as well as a function U : X → R
that represents � (i.e., U(X1) ≥ U(X2) iff X1 �X X2 for
X1, X2 ∈ X ). The function U is a weight function, which
assigns a weight to each class X ∈ X . We denote the utility
of a class X ∈ X by U(X). U reflects an agent’s prefer-
ence relation over the set of attributes X . The greater the
utility of an attribute the more preferable the attribute is.
Furthermore, we partition the attribute set X into two sub-
sets; desirable that is the set of attributes with non-negative
weights, denoted X+, and undesirable X−, that is the set of
attributes with negative weights.

We call NI as the set of named individuals. Let now C ⊆ NI
denote the finite set of choices. In order to derive a prefer-
ence relation (a posteriori) over C (i.e., �C) which respects
�X , we will introduce a utility function u(c), which mea-
sures the utility of a choice c relative to the attribute set
X and the utility function U over attributes as an aggrega-
tor. For simplicity, we will abuse the notation and use the
symbol � for both choices and sets of attributes whenever
it is obvious from the context. In the following, we define a
particular u, which we call σ-utility.

Definition 2.1 (σ-utility of a choice). Given a con-
sistent knowledge base K, and a set of choices C, the utility
of a choice c ∈ C is uσ(c) =

∑
X∈X∧K|=X(c) U(X).

It is easy to see that uσ induces a preference relation over
C i.e., uσ(c1) ≥ uσ(c2) iff c1 � c2. Also, notice that each
choice corresponds to a set of attributes whose membership
is logically entailed i.e., K |= X(c). We can now introduce
the notion of a generic UBox, denoted U , as follows.

Definition 2.2 (UBox). A UBox is a pair U = (u, U),
where U is a utility function defined over X and u is a utility
function defined over C.

Informally, a UBox U encodes user preferences U and defines
their aggregation via u which defines the utility of choices.
Next, putting things together we introduce the notion of a
decision base, which can be interpreted as a model for an
artificial agent in a decision situation. A decision base is a
triple which consists of a DL knowledge base K, a finite set
of available choices C, and encoded user preferences along
with the utility function of choices, UBox U .

Definition 2.3 (Decision Base). A decision base is
a quadruple D = (K, C,U) where K = (T,A) is a consis-
tent knowledge base (with T is an acyclic TBox and A is an
ABox), C ⊆ NI is the set of choices, U = (u, U) is a UBox.

Informally, the role of K is to provide assertional information
about the choices at hand, along with the general termino-

logical knowledge information that the agent may require to
reason further over choices. In this work, we will assume
the commonly used rationality criterion that is the rational
agent will always pick up the choice(s) with the maximum
utility [7, 8].

3. SYSTEM DESCRIPTION
We implemented our approach as Protégé plugin available
at https://code.google.com/p/udecide/. We first briefly
describe the functionality and architecture of our plugin in
Section 3.1. Then we present a use case that shows how a
user interacts with the plugin in Section 3.2. This use case
also illustrates how the plugin can be used as an out-of-the-
box expert system for any knowledge domain available as
ontology.

3.1 Implementation
Our Protégé plugin is compatible with both Protégé Desktop
version 4.3 and 5.0. As reasoning component we used the
Konclude reasoner [10] which turned out to be the best OWL
reasoner for our purpose with regards to performance issues.
Our choice was motivated by the evaluation results reported
at http://dl.kr.org/ore2014/results.html.2 uDecide re-
quires Konclude to be running in the background to connect
to it via OWLlink.

Our implementation is straight forward. First, an ontology
needs to be loaded via the standard Protégé file menu. This
ontology acts as a knowledge base K. After switching to the
uDecide tab, the user can specify the set of possible choices
by specifying a class C defined in K. All instances of C are
treated as choices, which corresponds to the set of choices
C in the theoretical framework. The attributes and their
utility can then be specified on top of vocabulary defined in
K. Once the type of choices and the attributes with their
corresponding utility have been specified, a connection to
Konclude is established via HTTP. We will illustrate these
steps in the subsequent section in more details. For each at-
tribute, we request from the reasoner all named individuals
satisfying the intersection of the attribute’s class expression
and the class that defines the type of choices. The result
shown consists of a ranked list of all individuals returned
by at least one query and their utility which is derived from
the satisfied attributes. Since Konclude does not support in-
stance satisfaction queries for anonymous class expressions,
we create a temporary ontology that is transferred to Kon-
clude on calculation time and merged with the knowledge
base ontology. We add to this ontology an equivalent classes
axiom between each utility assertion’s class expression and
a named dummy class. We then separately query the indi-
viduals for each named dummy class.

As described on our homepage, we recommend to configure
Konclude to load the knowledge base already on start-up to
speed up the calculation. Because of increasing computation
time and memory limitations it is required to do this when
working with large knowledge bases. If the knowledge base
was already loaded into Konclude on start-up, only the (very
small) temporary ontology needs to be transferred to Kon-
clude. Otherwise, the union of both the temporary ontology

2We would like to thank Andreas Steigmiller for his support
related to using Konclude.



and the (potentially very big) knowledge base is transferred.

3.2 Use Case
As an illustrating use case, we applied our approach to the
domain of books and authors. In particular, we used our
framework to support a user in finding interesting authors
by specifying her interests as attributes. Instead of work-
ing with an artificial example, we used an existing subset of
DBpedia that deals with the chosen topic. The core domain
contains relevant information about books and their authors.
With respect to our use case, DBpedia suffers from its re-
stricted set of terminological axioms and its incompleteness
regarding the sparse usage of some properties. To overcome
these problems, we decided to extend the core domain with
information about cities. In particular, we added for each
city that was listed as birth or death place of an author
the country in which it is located. Furthermore, we added
some axioms specifying nationality classes e.g., Spanish is
defined as the class of those persons that were born in or
died in a city located in Spain or whose nationality is Spain.
Thus, by using the nationality classes, the nationality of
authors for whom no nationality object property assertion
exist, can still be inferred by their birth and death places.
Note that the nationality has been specified directly only
for 21.3% authors, while 46,9% have a ”derived nationality”
via our axiomatization. Obviously there exist some people
that were born in Spain whose nationality is not Spanish.
However, since the final choice is made by the user, the gain
incoverage might be more useful than the loss in precision.

This extension illustrates that, in the context of a reason-
ing based approach, it is possible to leverage background
knowledge that seemed not to be relevant at first sight. The
information that Barcelona is located in Spain and that some
author was born in Barcelona can thus affect the ranking of
choices if we specified that we prefer Spanish authors as an
attribute. It also shows that a reasoning based approach can
help to overcome some problems related to incomplete data
in the knowledge base. The dataset and some instructions on
how to use it can be found at https://code.google.com/p/
udecide/wiki/BookUseCaseExample.

Suppose that a user wants to find a new author who writes
books that are similar to the ones that she likes. First of
all, feasible choices have to be defined as the instances of
the class dbp:Author. Figure 1 depicts a screenshot of the
uDecide tab. The class to which the choices belong has been
specified in the respective text field in the upper right corner.
An arbitrary concept description can be specified as long as
it is in the signature of the previously loaded ontology.

Now suppose that our user likes the author Stephen King.
Thus, she likes to read authors that are influenced by Stephen
King which is expressed by the the positive weight attached
to the attribute ∃influencedBy.{Stephen King}. The at-
tributes specified by a user can be seen in the uDecide tab on
the left side of Figure 1. Note that the concept descriptions
are specified in the Manchester syntax3 supported by the
Protégé Editor. All attributes are specified within a dialog
box that uses the auto-complete functionality of Protégé as

3http://www.w3.org/TR/owl2-manchester-
syntax/#The_Grammar

well as its syntax checking capability. Only if a class expres-
sion is syntactically correct, a button will be enabled to add
it to the UBox.

Overall, nine attributes have been specified. The first three
attributes express that the user prefers authors that are in-
fluenced by her favorite authors. By adding a negative value
to the fourth attribute, the user ensures that the three au-
thors that she already knows will be ranked low in the rank-
ing of choices. The fifth attribute is added to increase the
utility of those authors that received some award by 50.
Moreover, the user specifies that she likes authors writing
books that belong to the genre of horror fiction or science fic-
tion. These attributes have a relatively low utility value. Fi-
nally, it is specified that the user likes American and British
authors, slightly preferring British.

The results that are finally calculated will only include indi-
viduals that satisfy the choice class expression and at least
one of the attributes. This calculation is started by clicking
on the ”Calculate Utilities” button. The ranked choices are
presented on the right side of Figure 1 in descending order
based on their utility. The best choice is the author Wolf-
gang Hohlbein (240), followed by Joyce Carol Oates (230)
and many more lower ranked choices. Thus, the most rea-
sonable choice for the user is to look at the author Wolfgang
Hohlbein in more details, given that her attribute specifica-
tion and the underlying knowledge base are complete and
correct. However, it might often be the case that a user
wants to explore the results in more detail, for example to
get an explanation about their ranking position. This can
be done by clicking on one of the proposed choices. Figure 1
illustrates this for Joyce Carol Oates. The utility score of
230 is based on the fact that Joyce Carol Oates was influ-
enced by Edgar Allen Poe and by H.P. Lovecraft, that she
won at least one award and that she was born in New York,
therefore being classified as American. Each of the satisfied
attributes is highlighted in the left panel. Furthermore, all
assertions about the selected choice are shown in a panel
in the lower right corner. Again, we have used the Protégé
default of presenting this information. Vice versa, it is also
possible to select one (or multiple) of the attributes. This
results in those choices being highlighted that satisfy the
selected (all selected) attribute(s) (not shown in Figure 1).

Our use case and the presented example illustrates both the
benefits as well as some drawbacks of our approach. First of
all, we could apply our Protégé plugin directly to the domain
of books and authors without the need for any further mod-
ifications or extensions. This resulted in an expert system
which makes proposals about interesting authors or books.
The only required ingredient was an ontology that covers the
domain in an appropriate way. We decided to use DBpedia,
which features a comprehensive ABox but a flat and inex-
pressive TBox. Thus, the potential reasoning capabilities
of our approach have only a limited impact with respect to
our use case. For the majority of attributes, whether or not
it holds, can be decided by a direct look-up. We gave one
example (nationality classes) to illustrate how to overcome
these limitations by adding additional axioms and relevant
data from other domains covered in DBpedia.

The chosen use case is an extreme case where we have a very



Figure 1: Screenshot of uDecide showing a ranked list of authors according to the attribute specification.

large ABox and a comprehensive set of choices that are not
all known in advance to the agent, while we have a relatively
inexpressive TBox. On the other hand, there might be cases
where we have only a limited number of choices together
with a rich logical axiomatization of relevant background
knowledge. Our tool is designed to support both cases as
well as any kind of hybrid scenario.

4. CONCLUSION AND FURTHER WORK
In this paper, we presented the Protégé plugin uDecide.
uDecide computes the utility for a set of choices by aggre-
gating the utility value for each satisfied attribute. Since
each attribute corresponds to a class description, standard
reasoning techniques can be used to check whether an at-
tribute is satisfied. We used the Konclude [10] reasoning
system to conduct the required reasoning tasks. The results
of this computation are presented to the user as a ranked
list of choices. To our knowledge, we have introduced the
first system that allows to encode and solve multiattribute
decision problems in terms of weighted description logics.
Since we implemented our approach as a Protégé plugin,
our approach can easily be used by the DL community.

We have demonstrated within our use case how to use uDe-
cide as an expert system that recommends new authors to a
user. Moreover, we have also shown that our current imple-
mentation, by using the reasoning system Konclude, is capa-
ble to deal with large real-world datasets. We are currently
investigating datasets from the biomedical domain and from
the domain of life sciences. As a direction for future research,
we are aiming to extend our framework and the plugin to
deal with uncertainty (e.g., it is uncertain to a particular de-
gree that an author born in Barcelona is a Spanish person),
and lifting utilities of choices to expected utilities.

5. REFERENCES
[1] E. Acar and C. Meilicke. Multi-attribute decision

making using weighted description logics. In
T. Lukasiewicz, R. Peñaloza, and A.-Y. Turhan,
editors, PRUV, volume 1205 of CEUR Workshop
Proceedings, pages 1–14. CEUR-WS.org, 2014.

[2] F. Baader, S. Brandt, and C. Lutz. Pushing the EL
envelope. In IJCAI, pages 364–369. Professional Book
Center, 2005.

[3] D. Calvanese, G. D. Giacomo, D. Lembo,
M. Lenzerini, and R. Rosati. Tractable reasoning and
efficient query answering in description logics: The
DL-lite family. J. Autom. Reasoning, 39(3):385–429,
2007.

[4] Y. Chevaleyre, U. Endriss, and J. Lang. Expressive
power of weighted propositional formulas for cardinal
preference modelling, Dec. 08 2006.

[5] S. Kaci. Working with Preferences: Less is More.
Springer Verlag, Berlin, 2011.

[6] C. Kahraman. Multi-Criteria Decision Making:
Theory and Applications with Recent Developments.
Springer, 2008.

[7] R. Keeney and H. Raiffa. Decisions with multiple
objectives: Preferences and value tradeoffs. J. Wiley,
New York, 1976.

[8] G. Parmigiani and L. Y. T. Inoue. Decision Theory
Principles and Approaches. John Wiley & Sons, Ltd,
2009.

[9] A. Ragone, T. D. Noia, F. M. Donini, E. D. Sciascio,
and M. P. Wellman. Weighted description logics
preference formulas for multiattribute negotiation. In
Proceedings of Scalable Uncertainty Management,
Third International Conference, SUM 2009.

[10] A. Steigmiller, T. Liebig, and B. Glimm. Konclude:
system description. Web Semantics: Science, Services
and Agents on the World Wide Web, 27:78–85, 2014.


