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Abstract
Log-linear description logics are a family of prob-
abilistic logics integrating various concepts and
methods from the areas of knowledge representa-
tion and reasoning and statistical relational AI. We
define the syntax and semantics of log-linear de-
scription logics, describe a convenient represen-
tation as sets of first-order formulas, and discuss
computational and algorithmic aspects of proba-
bilistic queries in the language. The paper con-
cludes with an experimental evaluation of an im-
plementation of a log-linear DL reasoner.

1 Introduction
Numerous real-world problems require the ability to handle
both deterministic and uncertain knowledge. Due to differ-
ences in epistemological commitments made by their particu-
lar AI communities, researchers have mostly been concerned
with either one of these two types of knowledge. While the
representation of purely logical knowledge has been the focus
of knowledge representation and reasoning, reasoning about
knowledge in the presence of uncertainty has been the ma-
jor research theme of the machine learning and uncertainty
in AI communities. Nevertheless, there have been some at-
tempts to combine the diverse concepts and methods by sev-
eral researchers. The resulting approaches include proba-
bilistic description logics [Jaeger, 1994; Koller et al., 1997;
Lukasiewicz and Straccia, 2008] and statistical relational
languages [Getoor and Taskar, 2007] to name but a few.
While the former have mainly been studied on a theoretical
level, statistical relational languages have been proven use-
ful for a number of practical applications such as data inte-
gration [Niepert et al., 2010] and NLP [Riedel and Meza-
Ruiz, 2008]. A line of work that has regained importance
with the use of semantic web languages is the combination
of probabilistic models with description logics [Lukasiewicz
and Straccia, 2008]. Probabilistic description logic pro-
grams [Lukasiewicz, 2007], for instance, combine descrip-
tion logic programs under the answer set and well-founded
semantics with independent choice logic [Poole, 2008].

In this paper, we represent and reason about uncertain
knowledge by combining log-linear models [Koller and
Friedman, 2009] and description logics [Baader et al., 2003].

Log-linear models allow us to incorporate both probabilis-
tic and deterministic dependencies between description logic
axioms. The ability to integrate heterogeneous features make
log-linear models a commonly used parameterization in ar-
eas such as NLP and bioinformatics and a number of sophis-
ticated algorithms for inference and parameter learning have
been developed. In addition, log-linear models form the ba-
sis of some statistical relational languages such as Markov
logic [Richardson and Domingos, 2006].

The logical component of the presented theory is based on
description logics for which consequence-driven reasoning is
possible [Krötzsch, 2010; Baader et al., 2005]. We focus par-
ticularly on the description logic EL++ which captures the
expressivity of numerous ontologies in the medical and bi-
ological sciences and other domains. EL++ is also the de-
scription logic on which the web ontology language profile
OWL 2 EL is based [Baader et al., 2005]. Reasoning services
such as consistency and instance checking can be performed
in polynomial time. It is possible to express disjointness of
complex concept descriptions as well as range and domain
restrictions [Baader et al., 2008]. In addition, role inclusion
axioms (RIs) allow the expression of role hierarchies r v s
and transitive roles r ◦ r v r.

In real-world applications, uncertainty occurs often in form
of degrees of confidence or trust. The semantic web commu-
nity, for instance, has developed numerous data mining al-
gorithms to generate confidence values for description logic
axioms with ontology learning and matching being two prime
applications. Most of these confidence values have no clearly
defined semantics. Confidence values based on lexical sim-
ilarity measures, for instance, are in widespread use while
more sophisticated algorithms that generate actual probabil-
ities make often naı̈ve assumptions about the dependencies
of the underlying probability distribution. Hence, formalisms
and inference procedures are needed that incorporate degrees
of confidence in order to represent uncertain axioms and to
compute answers to probabilistic queries while utilizing the
logical concepts of coherency and consistency.

To respond to this need, we introduce log-linear descrip-
tion logics as a novel formalism for combining deterministic
and uncertain knowledge. We describe a convenient represen-
tation of log-linear description logics that allows us to adapt
existing concepts and algorithms from statistical relational AI
to answer standard probabilistic queries. In particular, we for-



Name Syntax Semantics

top > ∆I

bottom ⊥ ∅
nominal {a} {aI}
conjunction C uD CI ∩DI

existential ∃r.C {x ∈ ∆I |∃y ∈ ∆I :
restriction (x, y) ∈ rI ∧ y ∈ CI}
GCI C v D CI ⊆ DI

RI r1 ◦ ... ◦ rk v r rI1 ◦ ... ◦ rIk ⊆ rI

Table 1: The DL EL++ without concrete domains.

mulate maximum a-posteriori queries and present an efficient
algorithm that computes most probable coherent models, a
reasoning service not supported by previous probabilistic de-
scription logics. We conclude the paper with an experimental
evaluation of ELOG, our implementation of a log-linear de-
scription logic reasoner.

2 Description Logics
Description logics (DLs) are a family of formal knowledge
representation languages. They provide the logical formalism
for ontologies and the Semantic Web. We focus on the partic-
ular DL EL++ without concrete domains, henceforth denoted
as EL++ [Baader et al., 2005]. We conjecture that the pre-
sented ideas are also applicable to other description logics for
which materialization calculi exist [Krötzsch, 2010].

Concept and role descriptions in EL++ are defined recur-
sively beginning with a set NC of concept names, a set NR of
role names, and a set NI of individual names, and are built
with the constructors depicted in the column “Syntax” of Ta-
ble 1. We write a and b to denote individual names; r and s to
denote role names; and C and D to denote concept descrip-
tions. The semantics are defined in terms of an interpretation
I = (∆I , ·I) where ∆I is the non-empty domain of the in-
terpretation and ·I is the interpretation function which assigns
to every A ∈ NC a set AI ⊆ ∆I , to every r ∈ NR a relation
rI ⊆ ∆I ×∆I , and to every a ∈ NI an element aI ∈ ∆I .

A constraint box (CBox) is a finite set of general concept
inclusion (GCIs) and role inclusion (RIs) axioms. Given a
CBox C, we use BCC to denote the set of basic concept de-
scriptions, that is, the smallest set of concept descriptions
consisting of the top concept >, all concept names used in
C, and all nominals {a} appearing in C. A CBox C is in nor-
mal form if all GCIs have one of the following forms, where
C1, C2 ∈ BCC and D ∈ BCC ∪ {⊥}:

C1 v D; C1 v ∃r.C2;
C1 u C2 v D; ∃r.C1 v D;

and if all role inclusions are of the form r v s or r1 ◦ r2 v s.
By applying a finite set of rules and introducing new concept
and role names, any CBox C can be turned into a normalized
CBox of size polynomial in C. For any EL++ CBox C we
write norm(C) to denote the set of normalized axioms that
result from the application of the normalization rules to C.

An interpretation I satisfies an axiom c if the condition
in the column “Semantics” in Table 1 holds for that axiom.

An interpretation I is a model of a CBox C if it satisfies ev-
ery axiom in C. A concept C is subsumed by a concept D
with respect to a CBox C, written C vC D, if CI ⊆ DI in
every model of C. A normalized CBox is classified when sub-
sumption relationships between all concept names are made
explicit. A CBox C is coherent if for all concept names C in
C we have that C 6vC⊥. For every axiom c and every set of
axioms C′, we write C |= c if every model of C is also a model
of {c} and we write C |= C′ if C |= c′ for every c′ ∈ C′. For a
finite set NU ⊆ NC ∪NR of concept and role names the set of
all normalized axioms constructible from NU is the union of
(a) all normalized GCIs constructible from concept and role
names in NU and the top and bottom concepts; and (b) all
normalized RIs constructible from role names in NU.

3 Log-Linear Models
Log-linear models are parameterizations of undirected graph-
ical models (Markov networks) which are central to the areas
of reasoning under uncertainty and statistical relational learn-
ing [Koller and Friedman, 2009; Getoor and Taskar, 2007].
A Markov network M is an undirected graph whose nodes
represent a set of random variables {X1, ..., Xn} and whose
edges model direct probabilistic interactions between adja-
cent nodes. A distribution P is a log-linear model over a
Markov networkM if it is associated with:
• a set of features {f1(D1), ..., fk(Dk)}, where each Di

is a clique inM and each fi is a function from Di to R,
• a set of real-valued weights w1, ..., wk, such that

P (X1, ..., Xn) =
1

Z
exp

(
k∑

i=1

wifi(Di)

)
,

where Z is a normalization constant.
Arguably one of the more successful statistical relational

languages is Markov logic [Richardson and Domingos, 2006]
which can be seen as a first-order template language for log-
linear models with binary variables. A Markov logic network
is a finite set of pairs (Fi, wi), 1 ≤ i ≤ k, where each Fi

is a first-order formula and each wi a real-valued weight as-
sociated with Fi. With a finite set of constants C it defines
a log-linear model over possible worlds. A possible world
x is a truth assignments to ground atoms (predicates without
variables) with respect to C. Each variable Xj , 1 ≤ j ≤ n,
corresponds to a ground atom and feature fi corresponds to
the number of true groundings of Fi in possible world x.

4 Log-Linear Description Logics
Log-linear description logics integrate description logics with
probabilistic log-linear models. While the syntax of log-
linear description logics is that of the underlying description
logic, it is possible (but not necessary) to assign real-valued
weights to axioms. The semantics is defined by a log-linear
probability distribution over coherent ontologies. In the re-
mainder of the paper, we focus on the log-linear description
logic EL++ without nominals and concrete domains1 which
we denote as EL++-LL.

1We conjecture that the theory is extendable to capture nominals
and concrete domains. However, we leave this to future work.



4.1 Syntax
The syntax of log-linear description logics is equivalent to
the syntax of the underlying description logic except that it is
possible to assign weights to GCIs and RIs. More formally,
a EL++-LL CBox C = (CD, CU) is a pair consisting of a
deterministic EL++ CBox CD and an uncertain CBox CU =
{(c, wc)} which is a set of pairs (c, wc) with each c being a
EL++ axiom and w a real-valued weight assigned to c. Given
a EL++-LL CBox C we use BCC to denote the set of basic
concept descriptions occurring in CD or CU.

While the deterministic CBox contains axioms that are
known to be true, the uncertain CBox contains axioms for
which we only have a degree of confidence. Intuitively, the
greater the weight of an axiom the more likely it is true. Ev-
ery axiom can either be part of the deterministic or the uncer-
tain CBox but not both. The deterministic CBox is assumed
to be coherent.

4.2 Semantics
The semantics of log-linear DLs is based on joint probability
distributions over coherent EL++ CBoxes. The weights of
the axioms determine the log-linear probability distribution.
For a EL++-LL CBox (CD, CU) and a CBox C′ over the same
set of basic concept descriptions and role names, we have that

P (C′)=

 1
Z exp

(∑
{(c,wc)∈CU:C′|=c} wc

) if C′ is coherent
and C′ |= CD;

0 otherwise

where Z is the normalization constant of the log-linear proba-
bility distribution P . The semantics of the log-linear descrip-
tion logic EL++-LL leads to exactly the probability distribu-
tions one would expect under the open world semantics of
description logics as demonstrated by the following example.

Example 1. Let BCC = {C,D}, let CD = ∅, and let
CU = {〈C v D, 0.5〉, 〈C u D v⊥, 0.5〉}. Then2, P ({C v
D,C u D v⊥}) = 0, P ({C v D}) = Z−1 exp(0.5),
P ({C v D,D v C}) = Z−1 exp(0.5), P ({C u D v⊥
}) = Z−1 exp(0.5), P ({D v C}) = Z−1 exp(0), and
P (∅) = Z−1 exp(0) with Z = 3 exp(0.5) + 2 exp(0).

4.3 Herbrand Representation
In order to formalize probabilistic queries for log-linear de-
scription logics we represent EL++-LL CBoxes as sets of
first-order sentences modeling the uncertain and deterministic
axioms. We begin by defining some basic concepts.

Definition 2. Let P be a set of predicate symbols and C be a
set of constant symbols. An atom is an expression of the form
p(t1, ..., tn) where p ∈ P and t1, ..., tn are variables or con-
stant symbols. A literal is an atom or its negation. Let S be
a set of first-order formulas built inductively from the literals,
with universally quantified variables only. A grounding of a
formula is obtained by replacing each variable with a con-
stant symbol in C. The Herbrand base of S with respect to C
is the set of ground atoms whose predicate symbols occur in

2We omit trivial axioms that are present in every classified CBox
such as C v > and C v C.

F1 ∀c : sub(c, c)
F2 ∀c : sub(c,>)
F3 ∀c, c′, d : sub(c, c′) ∧ sub(c′, d)⇒ sub(c, d)

F4
∀c, c1, c2, d : sub(c, c1) ∧ sub(c, c2)∧

int(c1, c2, d)⇒ sub(c, d)
F5 ∀c, c′, r, d : sub(c, c′) ∧ rsup(c′, r, d)⇒ rsup(c, r, d)

F6
∀c, r, d, d′, e : rsup(c, r, d) ∧ sub(d, d′)∧

rsub(d′, r, e)⇒ sub(c, e)
F7 ∀c, r, d, s : rsup(c, r, d) ∧ psub(r, s)⇒ rsup(c, s, d)

F8
∀c, r1, r2, r3, d, e : rsup(c, r1, d) ∧ rsup(d, r2, e)∧

pcom(r1, r2, r3)⇒ rsup(c, r3, e)
F9 ∀c : ¬sub(c,⊥)

Table 2: The set of first-order formulas F . Groundings of the
formulas have to be compatible with the types of the predi-
cates specified in Definition 3. ⊥ and> are constant symbols
representing the bottom and top concept.

S. Each subset of the Herbrand base is a Herbrand interpre-
tation specifying which ground atoms are true. A Herbrand
interpretation H is a Herbrand model of S , written as |=H S,
if and only if it satisfies all groundings of formulas in S.

The set of formulas F listed in Table 2 is partially derived
from the EL++ completion rules [Baader et al., 2005]. We
are now in the position to define a bijective function ϕ that,
given a finite set of concept and role names NU, maps each
normalized EL++-LL CBox over NU to a subset of the Her-
brand base of F with respect to NU.

Definition 3 (CBox Mapping). Let NC and NR be sets of con-
cept and role names and let NU ⊆ NC∪NR be a finite set. Let
T be the set of normalized EL++ axioms constructible from
NU. Moreover, let H be the Herbrand base of F with respect
to NU. The function ϕ : ℘(T ) → ℘(H) maps normalized
CBoxes to subsets ofH as follows: (ϕ(C) =

⋃
c∈C ϕ(c))

C1 v D 7→ sub(C1, D)
C1 u C2 v D 7→ int(C1, C2, D)
C1 v ∃r.C2 7→ rsup(C1, r, C2)
∃r.C1 v D 7→ rsub(C1, r,D)
r v s 7→ psub(r, s)
r1 ◦ r2 v r3 7→ pcom(r1, r2, r3).

All predicates are typed meaning that r, s, ri, (1 ≤ i ≤ 3),
are role names, C1, C2 basic concept descriptions, and D
basic concept descriptions or the bottom concept.

We now prove that, relative to a finite set of concept and
role names, the function ϕ induces a one-to-one correspon-
dence between Herbrand models of the first-order theory F
and coherent and classified EL++ CBoxes.

Lemma 4. Let NC and NR be sets of concept and role names
and let NU ⊆ NC ∪ NR be a finite set. Let T be the set of
normalized EL++ axioms constructible from NU and let H
be the Herbrand base of F with respect to NU. Then,

(a) for any C ⊆ T we have that if C is classified and coher-
ent then ϕ(C) is a Herbrand model of F; and

(b) for any H ⊆ H we have that if H is a Herbrand model
of F then ϕ−1(H) is a classified and coherent CBox.



From Lemma 4 we know that, relative to a finite set NU of
concept and role names, each normalized CBox over NU that
is classified and coherent, corresponds to exactly one Her-
brand model of F . We extend the normalization of EL++

CBoxes to EL++-LL CBoxes as follows.

Definition 5. Let C = (CD, CU) be a EL++-LL CBox. Then,
normLL(C) = norm(CD) ∪

⋃
(c,wc)∈CU norm({c}).

Lemma 4 provides the justification for constructing the
logical representation of a EL++-LL CBox as follows: G is
a set of weighted ground formulas carrying the uncertain in-
formation and it is derived from the axioms in the uncertain
CBox CU as follows. For every pair (c, wc) ∈ CU we add the
conjunction of ground atoms∧

g∈ϕ(norm({c}))

g

to G with weight wc. The set K is constructed analogously
from the deterministic CBox CD except that we do not asso-
ciate weights with the ground formulas.3

Example 6. Let CD = {C v D} and CU = {〈B u C uD v
E, 0.5〉}. Then, normLL(C) = norm({C v D})∪norm({Bu
C u D v E}) = {C v D,C u D v A,B u A v E}
with A a new concept name. We have that ϕ(norm({C v
D})) = {sub(C,D)} and ϕ(norm({B u C uD v E})) =
{int(C,D,A), int(B,A,E)}. Hence, we add sub(C,D) to
K and int(C,D,A) ∧ int(B,A,E) with weight 0.5 to G.

4.4 Maximum A-Posteriori Inference
Under the given syntax and semantics the first central infer-
ence task is the maximum a-posteriori (MAP) query: “Given
a EL++-LL CBox, what is a most probable coherent EL++

CBox over the same concept and role names?” In the context
of probabilistic description logics, the MAP query is crucial
as it infers a most probable classical ontology from a prob-
abilistic one. The MAP query also captures two important
problems that frequently occur in the context of the Semantic
Web: Ontology learning and ontology matching.

The following theorem combines the previous results and
formulates the EL++-LL MAP query as a maximization
problem subject to a set of logical constraints.

Theorem 7. Let C = (CD, CU) be a EL++-LL CBox, let NU

be the set of concept and role names used in normLL(C), and
let H be the Herbrand base of F with respect to NU. More-
over, let K be the set of ground formulas constructed from CD
and let G be the set of weighted ground formulas constructed
from CU. Then, with

Ĥ := arg max
{H⊆H: |=H(K∪F)}

∑
{(G,wG)∈G: |=HG}

wG (1)

we have that ϕ−1(Ĥ) is a most probable coherent CBox over
NU that entails CD.

By showing that every partial weighted MAX-SAT prob-
lem can be reduced to an instance of the EL++ MAP query

3Note that the number of formulas in G and K is equal to the
number of axioms in CU and CD, respectively.

problem of Theorem 7 in polynomial time and by invoking
the complexity results for the former problem [Creignou et
al., 2001] we can prove the following theorem.
Theorem 8. The maximum a-posteriori problem for EL++-
LL CBoxes is NP-hard and APX-complete.

Conversely, we can solve a MAP query by reducing it
to a (partial) weighted MAX-SAT instance with a set of
clauses polynomial in the number of axioms and basic con-
cept descriptions. There exist several sophisticated algo-
rithms for weighted MAX-SAT. We developed ELOG4, an
efficient EL++-LL reasoner based on integer linear program-
ming (ILP). Let FNU be the set of all groundings of formulas
in F with respect to the set of constant symbols NU. For each
ground atom gi occurring in a formula in G,K, or FNU we
associate a unique variable xi ∈ {0, 1}. Let CG

j be the set of
indices of ground atoms in sentence Gj ∈ G, let CK

j be the
set of indices of ground atoms in sentence Kj ∈ K, and let
CF

j (C̄F
j ) be the set of indices of unnegated (negated) ground

atoms of sentence Fj ∈ FNU in clausal form. With each for-
mula Gj ∈ G with weight wj (without loss of generality we
assume non-negative weights) we associate a unique variable
zj ∈ {0, 1}. Then, the ILP is stated as follows

max

|G|∑
j=1

wjzj subject to

∑
i∈CG

j

xi ≥ |CG
j |zj , ∀j (2) and

∑
i∈CK

j

xi ≥ |CK
j |, ∀j (3)

and
∑
i∈CF

j

xi +
∑
i∈C̄F

j

(1− xi) ≥ 1, ∀j (4).

Every state of the variables xi of a solution for the ILP cor-
responds (via the function ϕ) to a most probable classified
and coherent CBox over NU that entails CD. Adding all con-
straints of type (4) at once, however, would lead to a large
and potentially intractable optimization problem. Therefore,
we employ a variant of the cutting plane inference algorithm
first proposed in the context of Markov logic [Riedel, 2008].
We first solve the optimization problem without constraints
of type (4). Given a solution to the partial problem we deter-
mine in polynomial time those constraints of type (4) that are
violated by this solution, add those to the formulation, and
solve the updated problem. This is repeated until no violated
constraints remain. Please note that the MAP query derives a
most probable CBox and classifies it at the same time.

4.5 Conditional Probability Inference
The second type of inference task is the conditional probabil-
ity query: “Given a EL++-LL CBox, what is the probability
of a conjunction of axioms?” More formally, given a EL++-
LL CBox C and a set CQ of normalized EL++-LL axioms over
the same concept and role names, the conditional probability
query is given by P (CQ | C) =

∑
{C′:CQ⊆C′} P (C′) where

each C′ is a classified and normalized CBox over the same set
of basic concept descriptions and role names.

4http://code.google.com/p/elog-reasoner/



Algorithm 1 MC-ILP for EL++-LL
Input: weights wj and variables zj of the MAP ILP

1: cj ← wj for all j
2: x(0) ← solution of ILP with all wj set to 0
3: for k ← 1 to n do
4: set all zj and all wj to 0
5: for all zj satisfied by x(k−1) do
6: with probability 1− e−cj fix zj to 1 in ILP(k)

7: end for
8: for all zj not fixed to 1 do
9: with probability 0.5 set wj to 1 in ILP(k)

10: end for
11: x(k) ← solution of ILP(k)

12: end for

Determining the exact conditional probability is infeasible
in the majority of use-cases. Hence, for the reasoner ELOG4,
we developed a Markov chain Monte Carlo (MCMC) variant
similar to MC-SAT, a slice sampling MCMC algorithm [Poon
and Domingos, 2006]. Simpler sampling strategies such as
Gibbs sampling are inadequate due to the presence of deter-
ministic dependencies. Poon and Domingos showed that the
Markov chain generated by MC-SAT satisfies ergodicity and
detailed balance. In practice, however, it is often too time-
consuming to obtain uniform samples as required by MC-
SAT and, thus, we loosen the uniformity requirement in favor
of higher efficiency.

Algorithm 1 lists the pseudo-code of MC-ILP which is
based on the previous MAP ILP except that we also add, for
each query axiom not in CU, a constraint of type (2) associated
with a new variable zj and weight 0. In each iteration, after
fixing certain variables to 1 (line 6), we build an ILP where
the coefficients of the objective function are set to 1 with
probability 0.5 and remain 0 otherwise (line 9). The solution
is then as close as possible to the uniform sample. MC-ILP
samples coherent and classified CBoxes from the joint distri-
bution and determines the probability of a conjunction of ax-
ioms as the fraction of samples in which they occur together.

5 Experiments
To complement the presented theory we also assessed the
practicality of the reasoning algorithms. After all, the devel-
opment of the theory was motivated primarily by the need for
algorithms that, given a set of axioms with confidence values,
compute a most probable coherent ontology. Two examples
of this problem are ontology learning and ontology matching.
Due to space considerations, we only discuss and evaluate the
results on an instance of the former problem.

The ontology learning community has developed and ap-
plied numerous machine learning and data mining algorithms
to generate confidence values for DL axioms. Most of these
confidence values have no clearly defined semantics. Con-
fidence values based on lexical similarity measures, for in-
stance, are in widespread use while more sophisticated al-
gorithms that generate actual probabilities make often naı̈ve
assumptions about the dependencies of the underlying prob-
ability distribution. Hence, formalisms are needed that in-

Axiom type Algorithm Precision Recall F1 score

Subsumption Greedy 0.620 0.541 0.578
EL++-LL MAP 0.784 0.514 0.620

Disjointness Greedy 0.942 0.980 0.961
EL++-LL MAP 0.935 0.990 0.961

Figure 1: Results for weighted axioms derived from the AMT
questionnaires without additional known axioms.

Axiom type Algorithm Precision Recall F1 score

Subsumption Greedy 0.481 0.669 0.559
EL++-LL MAP 0.840 0.568 0.677

Disjointness Greedy 0.948 0.960 0.954
EL++-LL MAP 0.937 0.992 0.964

Figure 2: Results for weighted axioms derived from the AMT
questionnaires with additional known axioms.

corporate these various types of confidence values in order to
compute most probable ontologies while utilizing the logical
concepts of coherency and consistency.

We decided to generate confidence values using a “crowd-
sourcing” service. Probably the best known crowdsourc-
ing platform is the Amazon Mechanical Turk (AMT)5. With
AMT, Amazon offers numerous options for designing cus-
tomized questionnaires. Due to its relatively high publicity
(about 100,000 tasks were available at the time of this writ-
ing), it attracts a lot of users and consequently seems most
suitable for our scenario.

For the evaluation of the different methods, we used the
EKAW ontology as the gold standard. It consists of 75
classes, 33 object properties, 148 subsumption, and 2,299 dis-
jointness axioms when materialized, and models the domain
of scientific conferences. We generated HITs (human intelli-
gence tasks) by creating questionnaires each with 10 yes/no
questions. Half of these were used to generate confidence
values for subsumption (disjointness) axioms. For the pair
of class labels Conference Paper and Poster Session, for in-
stance, the two types of yes/no questions were:
(a) Is every Conference Paper also a Poster Session?
(b) Can there be anything that is both a Conference Paper

and a Poster Session?
For each pair of classes and for each type of question we ob-
tained 9 responses from different AMT workers. The confi-
dence value for a subsumption (disjointness) axiom was com-
puted by dividing the number of “yes” (“no”) answers by 9.
We applied a threshold of 0.5, that is, only when the major-
ity of the 9 workers answered with “yes” (“no”) did we as-
sign a confidence value to the axiom. Moreover, we halved
the weights of the disjointness axioms for reasons of sym-
metry. This resulted in 2,507 axioms (84 subsumption and
2,423 disjointness) with confidence values. Based on these
axioms we constructed two different sets. One consisting of
the weighted axioms only and the other with 79 additional
axioms implied by the gold standard ontology which are of

5http://www.mturk.com



the form r v s (7 axioms), C v ∃r.D (40 axioms), and
∃r.C v D (32 axioms).

We compared the EL++-LL reasoner ELOG with a greedy
approach that is often employed in ontology learning sce-
narios. The greedy algorithm sorts the axioms in descend-
ing order according to their confidence values and adds
one axiom at a time to an initially empty ontology. How-
ever, it adds an axiom only if it does not render the re-
sulting ontology incoherent. To compute precision and re-
call scores we materialized all subsumption and disjoint-
ness axioms of the resulting ontology. We used the rea-
soner Pellet for the materialization of axioms and the coher-
ence checks. All experiments were conducted on a desk-
top PC with Intel Core2 Processor P8600 with 2.4GHz and
2GB RAM. The reasoner ELOG, all ontologies, supplemen-
tal information, and the experimental results are available at
http://code.google.com/p/elog-reasoner/.

ELOG’s MAP inference algorithm needs on average 3.7
seconds and the greedy algorithm 33.6 seconds for generat-
ing the two coherent ontologies. Note that the 3.7 seconds
include the time to classify the ontology. ELOG’s cutting
plane inference method needed 6 and 7 iterations, respec-
tively. These results indicate that the MAP inference algo-
rithm under the EL++-LL semantics is more efficient than
the greedy approach for small to medium sized ontologies.
Figures 1 and 2 depict the recall, precision, and F1 scores for
both algorithms. The F1 score for the ontologies computed
using EL++-LL MAP inference is, respectively, 5% and 12%
higher than for the one created using the greedy algorithm.
Furthermore, while the addition of known axioms leads to an
F1 score increase of about 5% under the EL++-LL semantics
it decreases for the greedy algorithm.

The MC-ILP algorithm needs between 0.4 and 0.6 seconds
to compute one MCMC sample for either EL++-LL CBox.
We find this to be an encouraging result providing further
evidence that MCMC inference can be applied efficiently to
compute conditional probabilities for conjunctions of axioms
over real-world EL++-LL ontologies.

6 Conclusion and Future Work
With this paper we introduced log-linear description logics as
a family of probabilistic logics integrating several concepts
from the areas of knowledge representation and reasoning and
statistical relational AI. The combination of description log-
ics and log-linear models allows one to compute probabilistic
queries efficiently with algorithms originally developed for
typical linear optimization problems. We focused on the de-
scription logic EL++ without nominals and concrete domains
but we believe that the theory is extendable to other DLs for
which materialization calculi exist.

Future work will be concerned with the inclusion of nom-
inals and concrete domains, negated axioms in the determin-
istic CBox, and the design of algorithms for creating more
compact representations of classified CBoxes.
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