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Abstract. Outlier detection used for identifying wrong values in data
is typically applied to single datasets to search them for values of un-
expected behavior. In this work, we instead propose an approach which
combines the outcomes of two independent outlier detection runs to get
a more reliable result and to also prevent problems arising from natu-
ral outliers which are exceptional values in the dataset but nevertheless
correct. Linked Data is especially suited for the application of such an
idea, since it provides large amounts of data enriched with hierarchi-
cal information and also contains explicit links between instances. In a
first step, we apply outlier detection methods to the property values ex-
tracted from a single repository, using a novel approach for splitting the
data into relevant subsets. For the second step, we exploit owl:sameAs

links for the instances to get additional property values and perform a
second outlier detection on these values. Doing so allows us to confirm
or reject the assessment of a wrong value. Experiments on the DBpedia
and NELL datasets demonstrate the feasibility of our approach.

Keywords: Linked Data, Data Debugging, Data Quality, Outlier De-
tection

1 Introduction

The Linked Data Cloud is constantly growing, providing more and more infor-
mation as structured data in the RDF format and interlinked between differ-
ent repositories. Instead of being created and maintained manually, most data
sources have their roots in unstructured or semi-structured information available
throughout the Web. For example, data sources like DBpedia contain some data
extracted from Wikipedia articles. However, though being a major reason for
the large amount of Linked Data available, extracting data from unstructured
or semi-structured information is error-prone. Even when extracting from semi-
structured sources, representational variety (e.g., different thousands delimiters),
can lead to problems in the parsing process and finally result in wrong Linked
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Data values. It is unrealistic to manually find errors due to the large amount of
data in the repositories, thus automatic means for detecting errors are desirable.

In this paper, we introduce a method for detecting wrong numerical values in
Linked Data. First, we determine outliers regarding a single data repository, e.g.,
on all values assigned by means of the population property. For this purpose, we
present a way of discovering data subpopulations induced by classes and prop-
erties and apply outlier detection to these subpopulations. For example, on the
full dataset, the populations of continents would be outliers for the population

property values since their population values are larger than the predominant
population values of cities or countries by several orders of magnitude.

Afterwards, as a second step, we exploit the owl:sameAs links of the in-
stances (also called entities) for collecting values for the same property from
other repositories. This is an especially important facet of our approach, since it
actually uses the links that are a core concept of Linked Data which are rarely
used in other works (see Sect. 3). If an outlier detected in the first step is only a
natural outlier, it does not show up as an outlier in the second step which allows
for mitigating the problem of falsely marking natural outliers as wrong values.

In the following, we describe this two-step approach in more detail. We first
introduce the foundations of outlier detection in Sect. 2. Afterwards, we give an
overview about other works on Linked Data error detection and Linked Data
quality in general (Sect. 3). Then, in Sect. 4, we introduce our method for de-
tecting erroneous numerical values in a Linked Data repository paying special
attention to the choice of subpopulations of values and cross-checking by means
of a second set of data. Afterwards, we evaluate the approach by an experiment
on DBpedia and provide the first explorations on the NELL dataset in Sect. 5.

2 Preliminaries

Our approach presented in this paper is relying on the concept of outlier detection
(sometimes also called anomaly detection). In this section, we give an overview
of the most important notions used in our work. A more complete overview is
given by Chandola et al. [5], where the outlier detection is defined as “finding
patterns in data that do not conform to the expected normal behavior”.

There can be different reasons for such deviations from the expected behavior.
On the one hand, outliers can be caused by erroneous data where the error in
the data leads to the actual deviation. On the other hand, there might also exist
correct instances which deviate from those patterns, as in the example given
above of the population of continents being outliers in the set of population
values for cities, countries and continents. Such outliers are sometimes called
natural outliers. Thus, when using outlier detection for finding errors in the
data, special attention has to be paid on how to tell apart such natural outliers
from outliers caused by actual data errors.

In all cases, the first step is the discovery of outliers. For this purpose, there
are different categories of methods: supervised, semi-supervised, and unsuper-
vised. Supervised and semi-supervised approaches require training data in which



non-outlier values are labeled, and for the supervised approaches outlier values
are also labeled. In contrast, unsupervised approaches are independent from
such data. Since our approach should be able to work with many different data
distributions (e.g., values for population, height, elevation etc.), the creation of
training data would be rather expensive, so we only consider unsupervised out-
lier detection methods. In addition, the methods also differ in their output. Some
methods return a binary decision whether a given value is an outlier while other
methods provide an outlier score quantifying the degree of ,,outlierness”. We
only consider the latter group of approaches since they have the advantage that
arbitrary thresholds can be chosen to address the trade-off between removing as
many actual errors (true positives) vs. removing correct data points (false posi-
tives). There are also approaches which consider multiple dimensions of data at
once (multi-variate) instead of just a single dimension (univariate) to improve
the detection of outliers by considering values influencing each other. In this
work, we only consider univariate approaches because multi-variate methods are
more computationally expensive and require a way of determining which value
combinations to consider.

In the literature, many different approaches are proposed for unsupervised
outlier detection. Some methods assume there is an underlying distribution that
generates the data. Values which are improbable according to this distribution,
are qualified as outliers. One such approach is to assume an underlying Gaussian
distribution of the values, compute mean µ and standard deviation σ values and
then mark all values as outliers that are not contained in the interval [µ −
cσ, µ+cσ] for a given c. For example, this assumption is backed by the Gaussian
distribution’s property that 99.7% of all values are within this interval for c = 3.

An alternative method for unsupervised outlier detection is the so-called
Local Outlier Factor (LOF) proposed by Breunig et al. [2]. Compared to other
globally working outlier detection approaches, LOF is trying to detect local
outliers, i.e., values which deviate from their local neighbors. The idea is that
real-world datasets contain data which might not be recognized as a global outlier
but its deviation is only recognizable when considering its neighborhood. For this
purpose, the LOF algorithm takes a parameter k which defines the number of
neighbors to look at. It then determines this number of neighbors and computes
an outlier score based on the comparison of the distance of the neighbors to their
nearest neighbors with the distance of the currently processed value.

3 Related Work

A number of automatic and semi-automatic approaches for correcting linked
data have been proposed, which are either internal, i.e., they use only the data
contained in the datasets at hand, or external, using either additional information
sources (such as text corpora) or expert knowledge.

Recent internal approaches are mostly concerned with validating object-
valued statements (in contrast, our approach targets at numeric literals). The
approaches discussed in [9] and [16] first enrich the data source’s schema by



heuristically learned additional domain and range restrictions, as well as dis-
jointness axioms, and then use the enhanced ontology for error detection by rea-
soning. Heuristic approaches for finding wrong dataset interlinks exist, which,
for example, rely on finding inconsistent chains of owl:sameAs statements [13],
or use outlier detection methods [14].

External approaches involve crowdsourcing [1], using platforms like Amazon
Mechanical Turk which pay users for micro-tasks, such as the validation of a
statement. Another possibility is using games with a purpose to spot inconsis-
tencies as Waitelonis et al. [17] do. DeFacto [10] uses a pre-built pattern library
of lexical forms for properties in DBpedia. Using those lexical patterns, DeFacto
runs search engine requests for natural language representations of DBpedia
statements. While it is designed to work on object properties, the approach is
transferable to the problem of identifying errors in numerical data as well.

In this paper, we focus on outlier detection methods as a means to identify
wrong numerical values. This approach is similar to our preliminary approach
discussed in [18], but extends it in two respects. First, we identify meaningful
subpopulations in a preprocessing step, which makes the outlier detection work
more accurately. Second, most of the approaches discussed above do not use
dataset interlinks at all, despite claiming to be data cleansing approaches for
linked data. In contrast, we show in this paper that the explicit use of dataset
interlinks improves the results of outlier detection, especially with respect to
natural outliers.

4 Method

In the following, we describe our overall approach of detecting wrong values in a
Linked Data dataset. First, we shortly describe how we determine the properties
to check for wrong numerical values before we present the actual process of outlier
detection. As discussed above, applying outlier detection to the full dataset might
not result in good results since instances referring to different types of real world
objects might be contained in the dataset. Thus, we also introduce our way of
determining subsets of data to apply the outlier detection on. Finally, we describe
the actual detection of erroneous values from the outlier detection results.

4.1 Dataset Inspection

Since we assume no prior knowledge about the dataset, we first have to gather
some additional information about it. This step as well as the following steps
are most easy to perform when the data is provided by a SPARQL endpoint.

First, we determine the number of instances contained in the repository as
well as the names of all properties used in the data. Since we cannot assume
to have an OWL vocabulary and its division between object and data type
properties available in the dataset, we then determine how often each property
is used with a numerical value1 at the object position. Furthermore, we also

1 Numerical values are xsd:int and xsd:float as well as their subtypes.



determine how many distinct numerical values are used with each property by
means of the SPARQL query:

SELECT ?p, COUNT(DISTINCT ?o) AS ?cnt

WHERE {?s ?p ?o. FILTER (isNumeric(?o))} GROUP BY ?p

We then filter the properties to apply outlier detection and remove properties
which were only used with a single distinct numerical value. All in all, this process
results in a set of properties qualifying for the application of outlier detection.

4.2 Generation of Possible Constraints

Each property is now processed separately in several steps. It is important to
note that the wrong value detection is always done for an instance-value pair
and not only for an instance since an instance might have several values assigned
by means of the same property, e.g., a city having different ZIP codes.

The first step here is to determine the set of constraints that are used to
generate subpopulations from the full instance-value set on which a more fine-
grained outlier detection is possible which in turn improves the detection of
errors. The main motivation behind these constraints is that when always con-
sidering the full set of instances, some erroneous values could be masked by
other values in the dataset while correct values could be erroneously highlighted
as being wrong. Masking could for example occur when an instance of the type
Country has an erroneous population count of 400. When considering the whole
dataset, this population count would not arouse any suspicion since there are
many instances of Village with similar population counts. However, when only
considering instances of type Country, a population count of 400 would be sus-
picious because hardly any country has such a low population count. Erroneous
highlighting of values could occur in the already provided case where instances
of the class Continent having an actually correct population count are outliers
in the dataset of all instances due to the low number of continents and their
population counts being much higher than those of countries.

Thus, an important task is to define a way of generating subsets of the full
instance set. In this work, we do this generation by applying constraints to the set
of instances so that only those instances are retained which fulfill the constraints.
We propose three different types of constraints:

– Class constraints: A class constraint on class C applied to an instance set
limits it to instances which belong to this class.

– Property constraints: A property constraint p limits the instances to those
connected to an arbitrary object (instance or data value) by means of p.

– Property value constraints: A property value constraint is defined by a prop-
erty p and a value v which can be either an instance or a data value. It limits
the instances to those which are connected to a value v by means of p.

Class constraints as also applied by [18] are the most obvious way of utilizing
the class structure already contained in the dataset. They allow capturing the
masking for the population property described before.



In cases where the class structure is not detailed enough, the two addi-
tional constraint types can help to compensate these shortcomings. In real
world datasets, property constraints can help to deduce statements about an
instance’s missing type [15]. For example, given a class Vehicle and a property
maximumAltitude, this property can compensate for a missing class assertion to
Aircraft and thus allow to detect, e.g., too high weight values for the instances
that could otherwise be masked by other Vehicle instances such as ships. The
choice of which properties to use as constraints is based on the number of us-
ages in the current instance set. When even the property constraints are not
able to provide a sufficiently fine-grained division into subpopulations, property-
value constraints can be used. An example for such a constraint is the property
locatedIn with the value UnitedArabEmirates (UAE). Since the average tem-
perature in the UAE is higher than the temperature in most other countries, a
too low averageTemperature assigned to a city in the UAE could be masked
by cities from other countries. When only considering cities from the UAE, the
low average temperature is suspicious and thus detectable as being erroneous.

Both property-based constraints share the problem that they might intro-
duce a high number of constraints since the number of properties might be much
higher than the number of classes used in the dataset. This can lead to higher
computational effort for choosing the constraints. This effort is even higher for
property-value constraints that do not only require to examine the used proper-
ties but also the values connected to instances by means of these properties.

4.3 Finding Subpopulations

Applying outlier detection to all of the potentially many subpopulations which
can be defined on a dataset is impractical especially because the runtime of
outlier detection algorithms heavily depends on the number of values they are
applied on. Hence, we introduce an intermediate step for determining the most
promising subpopulations to apply outlier detection on.

The exploration is organized in a lattice as shown in Fig. 1 similar to the
one used by Melo et al. [12]. Each node of the lattice is assigned a set of con-
straints which determines the instances considered at this node. The root node
has the empty constraint set assigned and thus represents all instances and cor-
responding values of the currently considered property. For this set of instances,
we compute a histogram which represents the distribution of values in the sub-
population. Starting with the root node, our approach manages a queue of all
not yet extended nodes and thus extends the lattice in a breadth-first-manner.

When processing a node from this queue, we create its child nodes, each
having an additional constraint compared to the parent node. The additional
constraints are those from the set of possible constraints which are not yet used
in the parent node. If a node for the resulting set of constraints already exists in
the lattice, we do not consider the new node further. Otherwise, we determine
the instances which adhere to this new set of constraints and compute the his-
togram of the value distribution. Based on this value distribution, we enforce a
set of pruning criteria to keep the search space clean which helps us to determine
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Fig. 1: Example for subpopulation lattice for property population. Numbers to
the upper right of a node give the number of instances fulfilling the constraint
set. Dashed nodes would be pruned, the left one for too low KL divergence, the
right one for not reducing the instance set further.

interesting subpopulations independently from any further knowledge about the
constraints and their relation to each other. In particular, we prune subpopula-
tions which only contain a low number of instances or maybe no instances at all
since those are considered to be too specific.2 As another criterion, we consider
the instance reduction ratio, i.e., the change ratio in the number of instances of
the new node compared to its parent node. If the additional constraint leads to a
reduction of less than 1%, our approach prunes the node. For instance, this case
could occur when adding a class constraint on PopulatedPlace to a constraint
set which was previously also constrained on Continent.

Finally, we compute the Kullback-Leibler (KL) divergence [8] between the
discrete value distributions represented by the histograms of the new node and
the parent node. If the divergence is lower than a given threshold, we assume the
additional constraint to be independent from the previously applied constraints,
i.e., the actual distribution of values was not changed but only the number of
instances. In these cases, an outlier detection run on the newly created set of
instances would not yield additional insights and thus we prune those nodes.
For example, this pruning could happen when adding a class constraint on the
class NamesStartingWithT to a constraint set for a property representing the
population count. Since each additional constraint leads to a smaller number of
instances compared to the parent node, the sampling error might also influence
the resulting KL divergence value. To address this effect in our considerations,
we normalize the values using the number of instances of the resulting node
leading to the formula

divergence(parent, child) =

∣∣∣∣∣ |child||parent| ·
B∑

i=1

ln

(
hparent(i)

hchild(i)

)
hparent(i)

∣∣∣∣∣ (1)

where parent and child are the nodes of the lattice, |n| the number of instances
for a node n and hparent as well as hchild the histograms representing the re-
spective value distribution which each have B bins. Furthermore, we also apply
Laplace smoothing to the histograms. We assume a higher divergence to show a
more important change in the distribution of values and thus being more inter-

2 In our experiments, a value of 5 was used.



esting for the further processing. Based on this assumption, we prioritize nodes
having a higher KL divergence to their parents in later expansion steps, as well
as in cases where too many nodes would have to be expanded, we limit the
expansion to the highest ranked nodes.

4.4 Outlier Detection and Outlier Scores

After the lattice has been determined, we perform outlier detection on all un-
pruned nodes of the lattice and store the resulting outlier scores together with
the set of constraints which led to the corresponding instance set.

As soon as the outlier detection run is completed on the property, we have
a list of instance-value combinations with a set of pairs, consisting of a con-
straint set and an outlier score. One advantage of having multiple outlier scores
compared only a single outlier score for each instance-value combination is the
possibility to apply different weighting schemas to the scores to combine them
into a single assessment for each instance-value pair. At this point, it is also pos-
sible to further consider an ontology schema possibly contained in the dataset.
For example, outlier scores for class constraints of more specific classes can be
assumed to have more significance than those for constraints to more abstract
classes and can thus be weighted higher. In particular, we explore a measure
which assigns an instance-value combination with the outlier score of the con-
straint set containing the most specific constraint according to the hierarchy
which performed best in our pre-studies in combination with the LOF outlier
detection approach. It is noteworthy, that too specific constraint sets are already
filtered during the creation of the subpopulation lattice which prevents us from
choosing the outlier scores generated for such subpopulations. For determining
the specificity of an entity in the hierarchy, we use property paths as introduced
in SPARQL 1.1 like in the following query for a class specified by its IRI CLS

SELECT COUNT(DISTINCT ?i) AS ?cnt WHERE {<CLS> rdfs:subClassOf+ ?i}

This query provides us with the number of direct and indirect super classes
of the given class which serves as an estimate for its specificness.

4.5 Cross-checking for Natural Outliers

As described in Section 2, values may not only be detected as outliers when
they are wrong but also if they are natural outliers in the considered dataset. To
prevent this false detection, we apply an additional cross-checking step to the
results of the first outlier detection.

One of the unique selling points of Linked Data is the interlinking of datasets.
Using URIs to point to resources in remote repositories, it is possible to specify
for an instance which equivalent instances can be found in other repositories.
Given that in the Linked Data and Semantic Web community the reuse and
interlinking of schema vocabularies is encouraged, these equivalence assertions
allow us to retrieve additional property values for the same instance. Even if the
vocabulary is not reused, ontology matching techniques [7] can enable the re-
trieval of additional property values by determining equivalent properties to the



Base Dataset 2nd Dataset 3rd Dataset 4th Dataset

… …

Tskuen Island 485 - - -

Izena Island 1,764 1,591 1,783 -

Honshu 103,000,000 100,000,000 104,000,000 103,000,000

Kyushu 13,231,995 13,189,193 - 13,231,276

… …

Fig. 2: Using two independent outlier approaches for the DBpedia property
populationTotal and the instance “Honshu” to improve the detection result.
Only considering the base dataset (vertical), the actually correct value is detected
as an outlier. The detection run on the values from different sources (horizontal)
confirms the value and thus prevents to mark the value as a wrong value.

currently relevant property. For the special case of DBpedia and its versions in
several languages, inspections [3] revealed that the number of instances described
in multiple datasets is relatively low. But even if the additional data is sparse,
we assume that natural outliers are often more interesting for humans and hence
more often described in several datasets (e.g., the highest mountain is probably
described in more datasets than some arbitrary “non-special” mountain).

Using this feature of Linked Data, we have a way of compensating problems
introduced by natural outliers. By gathering additional property values for an
instance it is possible to test the value found in the current dataset for its
“outlierness” in this second set of data. Since these values are expected to be the
same if all values are fully correct, it is sufficient to assume a normal distribution
for the values and check whether a value lies within a given number of standard
deviations around the mean value (cf. Sect. 2). If the assessed value lies within
the interval around the mean, the probability is high that the value is only a
natural outlier and thus is not an erroneous value. We only consider values as
wrong if they are outliers in both detections. This principle is depicted in the
real-world example in Fig. 2 where an outlier detection based on the vertical axis
would lead to a detection as a wrong value while the second outlier detection
run on the horizontal axis confirms the population value in the base dataset.

5 Experiments

For testing the approach described in the previous section, we performed an
evaluation on DBpedia3 and its language versions which we present in detail in
the following. Furthermore, we report on an evaluation on the NELL dataset in
combination with cross-checking on several Linked Data sources.

5.1 DBpedia Experiment

The first experiment was performed on the DBpedia 3.9 dataset. DBpedia [11]
is a large scale structured multi-lingual cross-domain knowledge base automat-

3 http://dbpedia.org



ically extracted from Wikipedia. The current version of DBpedia contains 2.46
billion facts describing 12.6 million unique things, and is a widely used high-
impact knowledge resource with around 5,000 downloads a year. The data is
extracted from Wikipedia infoboxes (tables usually found in upper right part
of a Wikipedia page), page categories, interlanguage links and many more,
which are automatically parsed to extract facts like “population of Mannheim
is 314,931”.Data is extracted from 119 Wikipedia language editions, and is rep-
resented as a distinct language edition of the knowledge base.

We let the approach run on the whole dataset, generating ranked lists of pos-
sibly wrong values for each property. As an outlier detection algorithm, we used
the Local Outlier Factor in the implementation provided by the Rapidminer4

Extension for Anomaly Detection.5 The k parameter of LOF was set to 10 resp.
to the number of values if there were less than ten. Experiments using different
number of bins for the histogram generation turned out that the single KL diver-
gences between children and parent nodes had more variance for higher number
of bins. This increased variance led to a more exact detection of similar distri-
butions and thus more pruning in the lattice. However, increasing the number
of bins further also increased the runtime of the lattice generation without lead-
ing to an adequate reduction of the outlier detection runtime and without clear
improvements in the error detection. Thus, we used 100 bins as a compromise
between exactness of pruning and runtime. The generation of subpopulations
was done on the YAGO6 classes assigned to the instances. The YAGO classes
are very fine-grained (e.g., there is a class CitiesAndTownsInAbruzzo) which
allows us to only work with class constraints in this experiment.

For the cross-checking of outliers by means of additional instance data, we
used the multi-lingual data contained in the DBpedia dataset. This data is the
result of different Wikipedia language versions describing the same things which
leads to multiple DBpedia instances representing these things throughout the
DBpedia language versions. Notably, the entity overlap across languages is not
high: out of 2.7 million instances of the 17 most populated DBpedia ontology
classes,7 60% are described (i.e., have at least one property) only in one language
(predominantly English), and only around 23% of all entities are described in
three or more languages. Note that we consider only those language editions
for which infobox types and attributes are mapped to classes and properties of
the DBpedia ontology. In DBpedia 3.9, mappings which were manually created
by the DBpedia community for 24 languages were used for data extraction. In
the datasets based on these mappings the same property URIs are used across
languages: e.g., the DBpedia ontology property populationTotal is used for
the population property of a populated place in, e.g., German or French editions
even if the original Wikipedia infoboxes use language-specific attribute names.

4 http://rapidminer.com
5 https://code.google.com/p/rapidminer-anomalydetection/
6 http://www.mpi-inf.mpg.de/yago
7 http://wiki.dbpedia.org/Datasets39/CrossLanguageOverlapStatistics



Table 1: Inter annotator agreement observed for property samples and number
of correct instance-value combinations according to majority of annotators

elevation height populationTotal

Observed agreement 0.987 0.960 0.960
Fleiss’ κ 0.968 0.916 0.917

# correct 69 60 57

To assess the performance of our approach for detecting wrong values,
we chose the three DBpedia ontology properties: height, elevation and
populationTotal. From each of the three ranked lists, we randomly sampled
100 instance-value combinations where we introduced a bias towards possibly
wrong combinations by scaling the selection probability proportionally to the
score determined by the outlier detection. The resulting values have been in-
dependently reviewed by three human annotators regarding the correctness of
the values. For determining the correctness of a value, a typical process of the
annotators was to first have a look at the current Wikipedia page describing
the instance. Additionally, the Wikipedia page in its version as of the time of
the extraction run was inspected. Using these two sources, it was possible in
most cases to recognize errors in the values which stemmed from parsing errors
or vandalism. If these inspections did not yet lead to the detection of an er-
ror, the most promising non-English Wikipedia articles about the instance were
consulted, e.g., the article in the language most related to the instance. Finally,
cited external sources were consulted or the annotators tried to find reliable in-
formation on the Web using search engines. If no proof for an error in the data
was found, the instance-value combination was marked as correct, otherwise as
wrong.

We computed the inter annotator agreement (IAA) between the three anno-
tators on the evaluated lists by means of Fleiss’ kappa.8 The results of the IAA
analysis are shown in Table 1. These values show a very high agreement for all
three properties. From a short analysis of the few disagreements, we discovered
that most of these were caused by an annotator not finding the relevant exter-
nal information to assess the correctness of the value. Also the table shows the
number of correct values in the datasets used for evaluation. It is important to
note that, due to the way we sampled the example instances, these values are
not able to provide an unbiased insight into the correctness of DBpedia but are
overstating its incorrectness.

Furthermore, we plotted the distribution of the wrong instance-value combi-
nations discovered during the manual evaluation and the actual value distribu-
tion not only over the sampled values but over all values in the dataset. These
diagrams provide us with important knowledge about the erroneous values. For
example, in Fig. 3b we see that there are two spikes of erroneous values. The first
is located at the lower bound of the value range and mostly contains errors for

8 We used the tool at https://mlnl.net/jg/software/ira/ for computing IAA.
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Fig. 3: Distribution of all values in dataset (in log-scale) and erroneous values
discovered in the manual evaluation for the different properties. Property value
and all instance count scale restricted to the given ranges.

entities of the class Person caused by using the wrong unit (1.98 cm instead of
1.98 m) and also values which are wrong but not directly recognizable as errors
because they fit the usual height of people. The second spike is located around
a value of 200 and again results from using the wrong unit in this case 198 m
instead of 1.98 cm. This finding especially confirms the need for using subpop-
ulations of the data instead of the full dataset since we see from the overall
data that values close to 200 not directly point to data errors (e.g., for buildings
this value is totally possible). The two other properties both show the erroneous
values to be distributed relatively homogeneously as illustrated by Fig. 3a and
not only found to be corner cases in the given ranges. These errors would not be
recognizable without considering subpopulations of the data.

Based on these manually annotated value lists, we determined the perfor-
mance of our approach with and without cross-checking as described in Sec-
tion 4.5. For each evaluated property, we also provide two baseline values. The
first baseline, which we identify by “Baseline”, is computed by determining the
median of all values and then computing the absolute difference between this
median and the current instance’s value. We use the resulting value as a score
for the value being wrong. The second baseline (referred to as “Multi-lingual
baseline”) uses the multi-lingual data also employed by the cross-checking. For
getting a score for an instance-value combination, we retrieve all values available
for languages other than English. For two or more values, we compute the score
for a value v as |v − µ|/σ where µ is the mean of the non-English values and
σ their standard deviation. Assuming a normal distribution of the values, this
means that approx. 95% of the values should have a score less or equal to 2. If
we only retrieve zero or one value, we assign a score of 2. This fall-back value
has been chosen since values for which not enough information is available in the
multi-lingual dataset are more probable to be erroneous than values for which
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Fig. 4: ROC curves for evaluated error detection methods

we find values which validate their correctness. In the cross-checking step, we
consider all values with a score of at least 2 as outliers.

We plotted the receiver operating characteristic (ROC) curves for each prop-
erty using the computed scores to rank the instance-value combinations. The
results for the properties height and populationTotal are shown in Fig. 4a
and 4b, each containing the results for the raw detection approach, the filtered
one and the two baselines. We also computed the area under the curve (AUC)
for each property and each approach. The results are provided in Table 2.

Table 2: Area under the curve determined for the given samples and approaches
Approach elevation height populationTotal

Outlier Detection 0.872 0.888 0.876
Cross-Checked Outlier Detection 0.861 0.891 0.941
Baseline 0.745 0.847 0.847
Multi-lingual Baseline 0.669 0.509 0.860

First of all, we see that the AUC values of the cross-checked outlier de-
tection approach are better than the baselines for all three properties. This
approach is also superior to our non-cross-checked approach for height and
populationTotal. Only for elevation it is slightly worse. Closer evaluation
of this decrease showed that it was caused by a wrong value for elevation con-
tained not only in the English dataset but also in the multi-lingual data. This
duplication of wrong values could be caused by people copying values from one
Wikipedia page to another one without checking the values. However, during the
evaluation, this was not a frequent problem, and if it occurs more often for other
datasets, a possible solution would be to employ copy-detection approaches [6].

For the property height, the difference between baseline methods and our
methods is considerably smaller. This fact seems to be caused by a large number
of persons in the example dataset. The median value used by the baseline is
the height of one (correct) person instance. Since the height property for per-
sons follows a normal distribution as also reported in [18], the median deviation



Table 3: Numbers of values found for different NELL instances
Number of values 1 (only NELL) 2 3 4 5 Total

Number of instances 6,187 5,043 3,144 6,471 13,100 33,946

works especially good and returns low scores for person instances. Although this
behavior leads to high scores for the non-person instances, it gives a strong base-
line for our dataset. Another interesting detail is that the multi-lingual baseline
does not perform too well which is due to 86 instances not having enough multi-
lingual data to assess their correctness. The greatest part of these instances is
made up by the person class, especially by athletes of sports mostly famous in
English-speaking countries like rugby and baseball and seemingly not exhaus-
tively described in other languages. Due to this fact, the cross-checking step
hardly improves the already good results of the base approach.

Finally, for the populationTotal property, the baseline performs well in the
first parts of the examples, where it even outperforms the basic outlier detection
approach. However, since the baseline does not perform constantly well on the
data, the final AUC value for the outlier detection approach is higher. As we
can also derive from the multi-lingual baseline’s comparably high AUC, there is
more data available in the different language versions than for the other prop-
erties. Nevertheless, for 60 values there is not enough information for assessing
the correctness. The higher availability of multi-lingual data also leads to a clear
increase for the cross-checking method and makes it the clearly best perform-
ing approach on this dataset. Furthermore, it demonstrates the advantages of
combining two orthogonal detections to reach a final correctness decision.

All in all, we see that the cross-checked method performs consistently well
for all three properties. It always produces better results than the baseline ap-
proaches. Most of the time it is also better than the non-cross-checked approach
showing that it indeed prevents natural outliers from being detected as errors.

5.2 NELL Experiment

For the second experiment, we let our approach run on the NELL dataset [4] in
its RDF version [19]. The NELL dataset is produced by crawling the Web and
extracting structured data out of the discovered unstructured information. Given
this extraction method, we can assume that parsing errors and other difficulties
result in some quality deficiencies in the data. We let our approach examine the
latitude and longitude values contained in the RDF version of NELL and try
to find wrong values in it. For getting data to cross-check the values, we used
the Wikipedia links contained in the NELL data to the corresponding DBpedia
instance. Besides the DBpedia values for longitude and latitude, we used the
owl:sameAs links assigned to the DBpedia instances to find further instances in
the Linked Data cloud which provided the desired values. We included the values
we could retrieve from Freebase, GeoNames, YAGO and DBpedia. Statistics on
the number of values we were able to find are shown in Table 3. These numbers



demonstrate that it is possible to gather additional values from the Linked Data
cloud to enable the cross-checking of detected outliers and to clean up the data.

However, during the actual run of the outlier detection only few values with
a sufficiently high outlier score showed up. An inspection of the data from the
other repositories, and for some instance values also an inspection using a web-
based map service, showed that there is close to no deviation throughout the
datasets. Almost all of the inspected values were correct possibly because of
the highly standardized value format for latitude and longitude which leads to
only few parsing errors. The small deviations of the values seem to be caused by
subjective decisions, e.g., where to exactly position the longitude-latitude marker
for the area of a county. Nevertheless, the latitude value with the highest outlier
score which was not filtered by the cross-checking showed to be a data error.
Being assigned to the NELL instance http://nell-ld.telecom-st-etienne.fr/

county_grey_county, the latitude value was detected to be wrong also based
on its outlierness for the population of the class County. An inspection of the
Wikipedia page assigned by NELL showed that it should actually represent
Grey County, Ontario, Canada9 whereas the coordinates provided by NELL are
in the area of Greymouth, New Zealand which belongs to the Grey District.10

This hints to disambiguation problems. This result is in line with the findings
of Paulheim [14] who also discovered that NELL has problems with homonyms
when linking data. In this special case, the confusion could have been amplified
by the near synonymy of district and county. All in all, though not finding greater
amounts of data errors, we think this use case demonstrates the availability of
data from different repositories and thus the applicability of cross-checking for
improving wrong value detection.

6 Conclusion

In this work, we presented our approach for detecting wrong numerical values in
Linked Data. The main contribution of our work is that we are especially taking
advantage of the core concepts of Linked Data: links and vast amounts of data.
By following owl:sameAs links for instances, we gather additional data for the
same facts which we then use to cross-check the assessment of correctness gained
during a first outlier detection run on a single repository. This procedure allows
us to better handle natural outliers and thus reduce the false positive rate.
In addition, we also presented a lattice-based method of detecting interesting
subsets of values to apply outlier detection to. The performance of our approach
was assessed on DBpedia and we also showed the applicability of cross-checking
on more general repositories, here represented by the NELL dataset.

In future work, we will consider additional value types for checking correct-
ness like dates. Furthermore, we will investigate the possibility of efficiently find-
ing pairs of values on which multi-variate outlier detection can be applied. We
also plan to gather human feedback on the validity of detected errors and use this

9 http://en.wikipedia.org/wiki/Grey_County
10 http://en.wikipedia.org/wiki/Grey_District



feedback to investigate the possibilities of learning more promising combinations
of different weighting schemes.
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