
Computing Incoherence Explanations
for Learned Ontologies

Daniel Fleischhacker1, Christian Meilicke1, Johanna Völker1?, and Mathias Niepert2

1 Data & Web Science Research Group, University of Mannheim, Germany
{daniel,christian,johanna}@informatik.uni-mannheim.de

2 Computer Science & Engineering, University of Washington
mniepert@cs.washington.edu

Abstract. Recent developments in ontology learning research have made it pos-
sible to generate significantly more expressive ontologies. Novel approaches can
support human ontology engineers in rapidly creating logically complex and
richly axiomatized schemas. Although the higher complexity increases the like-
lihood of modeling flaws, there is currently little tool support for diagnosing
and repairing ontologies produced by automated approaches. Off-the-shelf de-
buggers based on logical reasoning struggle with the particular characteristics of
learned ontologies. They are mostly inefficient when it comes to detecting model-
ing flaws, or highlighting all of the logical reasons for the discovered problems. In
this paper, we propose a reasoning approach for discovering unsatisfiable classes
and properties that is optimized for handling automatically generated, expressive
ontologies. We describe our implementation of this approach, which we evaluated
by comparing it with state-of-the-art reasoners.

1 Motivation

Ontology learning [2], i.e., automatic generation or enrichment of ontologies, enables
ontology engineers to draft both huge and logically complex ontologies within hours or
even minutes, thus reducing the costs of ontology development projects to a minimum.
However, ontologies generated in a fully automatic way are often flawed containing
various (though mostly systematic) types of modeling errors. The greater the size and
complexity of a learned ontology, the more important are automatic means to support its
inspection and revision by a human ontology engineer. They should point the ontology
engineer to as many modeling errors as possible, and ideally suggest suitable fixes.

Though most ontology learning approaches only generate lightweight ontologies,
recently, more and more approaches are also able to generate expressive ontolo-
gies [11, 17]. While it is reasonable to assume that building an expressive, i.e., richly
axiomatized ontology is more error-prone than creating a lightweight taxonomy, a rich
axiomatization can also redound to our advantage. This is because the more expressive
an ontology is, the more likely it is that modeling errors become manifest as undesired
logical consequences which can be detected in an automatic way. Typical examples
? Johanna Völker is financed by a Margarete-von-Wrangell scholarship of the European Social

Fund (ESF) and the Ministry of Science, Research and the Arts Baden-Württemberg.

are unsatisfiable classes or properties. These logical consequences can be understood
as a symptom for an underlying modeling error that is caused by a set of axioms that
contains at least one incorrect axiom. Such combinations of axioms are called an ex-
planation for the consequence. Diagnosing modeling errors by computing these expla-
nations is a first step in the overall debugging process, that can be conducted in an
automatic [14] or interactive way [9]. Several approaches for computing one or all of
the possible explanations have been proposed [8, 10]. However, our experiments show
that debugging tools for computing explanations struggle with learned ontologies. This
is because learned ontologies commonly share some characteristics which distinguish
them from most manually built ontologies:

Redundancy Ontology learning methods often generate logically redundant axioms.
Thus, we will find lots of different explanations for the same defect in an ontol-
ogy. In many cases this is unavoidably entrained by the fact that, for efficiency
reasons, logical inference cannot be performed during the learning process. Most
often, however, redundancy is a desirable property of ontology learning results,
and redundant axioms are generated on purpose to facilitate globally optimal revi-
sion at a later stage. A learned ontology will thus contain a relatively high number
of axioms compared to a relatively low number of classes and properties. On the
contrary, a manually modeled ontology about a similar domain might contain a
significantly lower number of axioms.

Restricted Expressivity The result of an ontology learning process usually comprises
specific types of axioms, while other types are excluded. Axioms, especially in on-
tologies generated from textual sources, are more likely to relate named classes than
complex class descriptions. Knowing these specifics can be exploited in the reason-
ing process that is required for computing explanations. Opposed to this, OWL 2
Reasoners, for example Pellet [16] or Hermit [5], are designed to deal with com-
plex class description. Thus, they apply sophisticated methods to deal with a high
logical expressivity implementing diverse optimization techniques. However, for
computing all (or many) explanations it is required to switch off many optimization
techniques in order to trace all explanations for a consequence [16].

In order to address these problems, and to more efficiently spot unwanted logi-
cal consequences in learned ontologies, we developed a novel and robust approach for
computing explanations. Our approach is applicable to both manually engineered and
automatically generated ontologies, however, it has been optimized for the latter. In
particular, our approach can be applied to ontologies that contain subsumption and dis-
jointness axioms between named classes and properties, domain and range restrictions,
as well as inverse properties. More details on the supported expressivity can be found
in Section 4. Our approach is built on a set of rules that is applied to compute con-
sequences from the axioms stated in the ontology. We extend this reasoning approach
to compute explanations for unsatisfiable classes and properties. These are the main
contributions of the paper.

– We present an approach to computing explanations for unsatisfiable classes and
properties based on completion rules. We define a set of completion rules, and we
explain how these rules can be used to compute explanations.

– We implemented our approach in a prototype called TRex. TRex is an acronym
for ”Terminological Reasoning with Explanations”. The TRex code, as well as the
datasets used in our experiments, is publicly available as open source.3

– In our experiments, we applied Pellet and TRex to compute unsatisfiabilities and
their explanations. Our results show that TRex can compute explanations for the
ontologies used in our experiments, while Pellet fails to generate more than one
explanation for each unsatisfiability.

– We analyze the limits of our approach and describe ways for improving and ex-
tending our prototype.

The remaining parts of the paper are structured as follows. We first give an overview
of related work (cf. Section 2). In Section 3, we formally define the notions of unsatis-
fiability and incoherence and introduce the notion of an explanation. In Section 4, we
describe the approach implemented in TRex. In Section 5, we report on our experiments
and present the results. Finally, we conclude with an outlook to future work (cf. Section
6) and a summary (cf. Section 7).

2 Related Work

As already argued, incoherence can point to erroneous axioms, or at least to sets of ax-
ioms that explain a certain defect. To exploit this in an automated setting is especially
important in the case of ontology learning. An example can be found in the work of
Meilicke et al. [13] where debugging techniques have been applied to ensure the co-
herence of the learned ontology. In the proposed greedy-approach, learned axioms are
added step by step, each time checking the coherence of the learned ontology. This
approach avoids the computation of explanations and the optimality of the debugging
result cannot be guaranteed. Lehmann and Bühmann [12] have proposed a tool for re-
pairing and enriching knowledge bases called ORE. Aside from the learning parts, ORE
identifies root unsatisfiable classes and computes explanations for a chosen unsatisfiable
class. The system description indicates that ORE uses Pellet as underlying reasoner. The
results presented in [12] focus on relatively small ontologies and do not include runtime
statistics. Both aspects are in the focus of our experiments. Further work in this direction
has been made by Völker and Rudolph [18] and Haase and Völker [7].

Pellet [16] is a state-of-the-art OWL 2 reasoner that offers additional methods for
computing explanations. It can thus be used to compute explanations for unsatisfiabili-
ties. The explanation component of Pellet is based on a glass-box approach that is built
on the tableau-based decision procedures of Pellet. As shown by [10] a glass-box ap-
proach outperforms black-box techniques. Since Pellet is used by a large community,
implements (most of) the required functionality, and can be used without any additional
setup, we report on its performance within the experimental section. Note that the tech-
nique that we propose is not based on a tableau-based procedure, but uses completion
rules to materialize all entailments.

Qi et al. [14] have focussed on both the theoretical foundations and on the algo-
rithms of computing a diagnosis. The authors report on experiments using data from

3 http://dfleischhacker.github.com/trex-reasoner

the field of ontology learning and ontology mapping. These experiments include the
computation of the explanations as well as the strategy of resolving the incoherence by
removing some axioms from the explanations. However, the authors re-use the black-
box approach proposed by Kalyanpur et.al [10] for finding minimal incoherency pre-
serving subsets. As already mentioned, this algorithm has turned out to be less efficient
compared to the glass-box approach implemented in Pellet.

An interesting approach for computing explanations for inconsistencies has recently
been proposed by Wu et al. [19]. The authors propose a MapReduce-based approach
for distributing the computation of explanations for OWL pD∗. OWL pD∗ provides a
complete set of entailment rules that is used by the authors. The basic approach is thus
similar to the approach that we propose aside from the fact that we do not distribute
our approach in the context of a MapReduce framework. However, OWL pD∗ does
not support disjoint properties, thus, it cannot be applied to our scenario. Moreover, the
authors focus on explanations for inconsistencies that occur in comprehensive A-Boxes,
while we focus on unsatisfiable classes and properties.

Similar to the approach of Wu et. al, our approach is also based on the idea of a Truth
Maintenance System [3]. We use a set of rules to entail new axioms from a set of given
axioms keeping track of the dependency tree that emerges during the iterative process.
A set of completion rules is defined for the OWL RL profile4, which is expressive
enough to support those ontologies that are in the focus of this work. However, we
finally decided to design a weaker rule set, which is better tailored to our needs. In
particular, we are not interested in ABox reasoning, nor do we require many constructs
supported by OWL RL. On the other hand, the profile of OWL EL5 is too restrictive for
our needs, since it does not support property disjointness and inverse properties.

3 Preliminaries

In the following, we introduce some notions from the field of ontology debugging. First,
we start with the notion of unsatisfiability.

Definition 1 (Unsatisfiability and Incoherence). A class description C is unsatisfi-
able in an ontology O iff for each model I of O we have CI = ∅.

Due to a common understanding [6], the unsatisfiability of a named class C indi-
cates that some of the axioms in the ontology O are incorrect. The idea is that a class
should be used to specify the type of instances. However, if an unsatisfiable class C
is used in a class assertion C(a), this results in the inconsistency of O. We can check
whether C is unsatisfiable by asking a reasoner whether O |= C v ⊥ holds. While
the classic notion of incoherence is limited to class unsatisfiability, the same line of
argumentation holds for properties. The usage of an unsatisfiable property P in a prop-
erty assertion P (a, b) results in the inconsistency of O. Again, we can use a reasoner
to check whether a certain property P is unsatisfiable. This time, we have to check
whether the entailment O |= ∃P.> v ⊥ holds. The following definition completes our
definition provided before.

4 http://www.w3.org/TR/owl2-profiles/#OWL_2_RL
5 http://www.w3.org/TR/owl2-profiles/#OWL_2_EL

Definition 1 (continued). A property description P is unsatisfiable in an ontology O
iff for each model I if O we have P I = ∅. An ontology that contains an unsatisfiable
named class or property is called an incoherent ontology.

The unsatisfiability of classes or properties, and thus the incoherence of an ontol-
ogy, can be traced back to their root causes. These causes are the minimal sets of ax-
ioms, which are called explanation or justification, being strong enough to entail the
unsatisfiability or more general a specific axiom holding in the ontology. According to
Kalyanpur et al. [10], an explanation is formally defined as follows.

Definition 2 (Explanation). Given an ontology O and an axiom α, a subset O′ ⊆ O
is an explanation for α iff O′ |= α and there exists no O′′ ⊂ O′ such that O′ |= α.

Note that a certain axiom can have many different explanations, because different
minimal subsets of the axioms in the learned ontology allow to entail this axiom. In
the following example, the object property secondDriverCountry is unsatisfiable with
its unsatisfiability caused by two overlappings explanations. Note that this example is
taken from the ontologies used in our experiments in Section 5.

Ontology:
Country v ¬Settlement
secondDriverCountry v location
secondDriverCountry v ¬location
> v ∀secondDriverCountry.Country
> v ∀location.Settlement

Unsatisfiable Property:
secondDriverCountry

Explanation 1:
Country v ¬Settlement
secondDriverCountry v location
> v ∀secondDriverCountry.Country
> v ∀location.Settlement

Explanation 2:
secondDriverCountry v location
secondDriverCountry v ¬location

4 Approach

In this section, we present our approach to computing explanations for unsatisfiable
classes and properties. Our approach is applicable to the OWL 2 fragment that is defined
by the axiom types listed in the leftmost column of Table 1. Note that all classes and
properties that appear in Table 1 are named classes and properties.

We use the notation shown in the second column of Table 1, i.e., we assign a first-
order predicate symbol to each type of axiom, to distinguish between entailments de-
rived by applying our completion rules and axioms that hold in the ontology due to the
standard model-theoretic semantics. Our approach is based on rules (1) to (24). Given
an ontology O, we start with an initial set of formulae that are equivalent to the axioms
stated in O. Then, we iteratively apply the set of rules to all stated and derived formu-
lae until no further formula can be derived. We refer to the resulting set of all derived
formulae as EO. If cdis(A,A) ∈ EO or pdis(P, P) ∈ EO, we conclude that class A
or property P , respectively, is unsatisfiable. If there exists no such A or P , we conclude
that O contains no unsatisfiable class, which means that O is coherent.

Table 1. Types of supported axioms.

Type of axiom First-order predicate symbol Description
A v B csub(A,B) Class Subsumption
P v Q psub(P,Q) Property Subsumption
A v ¬B cdis(A,B) Class Disjointness
P v ¬Q pdis(P,Q) Property Disjointness
∃P.> v A dom(P,A) Domain Restriction
> v ∀P.A range(P,A) Range Restriction
P−1 v Q psubinv(P,Q) Inverse Property Subsumption
P−1 v ¬Q pdisinv(P,Q) Inverse Property Disjointness

⇒ csub(A,A) (1)

cdis(A,B)⇒ cdis(B,A) (2)

csub(A,B), csub(B,C)⇒ csub(A,C) (3)

csub(A,B), cdis(B,C)⇒ cdis(A,C) (4)

⇒ psub(P, P) (5)

pdis(P,Q)⇒ pdis(Q,P) (6)

psub(P,Q), psub(Q,R)⇒ psub(P,R) (7)

psub(P,Q), pdis(Q,R)⇒ pdis(P,R) (8)

dom(P,A), csub(A,B)⇒ dom(P,B) (9)

ran(P,A), csub(A,B)⇒ ran(P,B) (10)

psub(P,Q), dom(Q,A)⇒ dom(P,A) (11)

psub(P,Q), ran(Q,A)⇒ ran(P,A) (12)

cdis(A,B), dom(P,A), dom(P,B)⇒ pdis(P, P) (13)

cdis(A,B), ran(P,A), ran(P,B)⇒ pdis(P, P) (14)

psubinv(P,Q), dom(Q,A)⇒ ran(P,A) (15)

psubinv(P,Q), ran(Q,A)⇒ dom(P,A) (16)

psubinv(P,Q), psubinv(Q,R)⇒ psub(P,R) (17)

psubinv(P,Q), psub(Q,R)⇒ psubinv(P,R) (18)

psub(P,Q), psubinv(Q,R)⇒ psubinv(P,R) (19)

pdisinv(P,Q), psub(R,Q)⇒ pdisinv(P,R) (20)

psubinv(P,Q), pdis(Q,R)⇒ pdisinv(P,R) (21)

psubinv(P,Q), pdisinv(Q,R)⇒ pdisinv(P,R) (22)

pdisinv(P,Q)⇒ pdisinv(Q,P) (23)

pdisinv(P, P)⇒ pdis(P, P) (24)

Given the set of rules, there are two important questions. The first question is related
to the correctness of these rules and the second question is related to the completeness.

The correctness of each single rule follows directly from the standard DL semantics.
Suppose that we derive a formula cdis(A,A) ∈ EO. This also means that O |= A v
¬A and thus AI = {} for each interpretation I. The same holds for properties. We
conclude that our approach is sound with respect to computing entailments, and thus
also sound with respect to detecting unsatisfiable classes and properties.

With respect to the second question, we first need to show that the following propo-
sition holds. The proof for this proposition is available in a technical report.6

Proposition 1. If O is incoherent, there exists a class A with cdis(A,A) ∈ EO or a
property P with pdis(P, P) ∈ EO.

Note that we will finally argue that our reasoner is able to compute all explanations
for all unsatisfiable classes and properties. To show this, we need to describe our ap-
proach to computing explanations in further detail. As mentioned above, we apply the
completion rules iteratively to derive new entailments. This can be conducted in an or-
dered way to reduce the checking of possible candidates for deriving new formulae. In
particular, we proceed as follows with EO, E′O, and E′′O initialized as empty sets.
Class Subsumption We add all formulae csub(A,B) corresponding to stated axioms
to E′O. Then, we add those formulae that are entailed by rule (1) to E′O. We apply rule
(3) on E′O until we cannot derive new formulae. Since no csub(A,B) appears in the
head of any other rule, we know that E′O is csub saturated.
Property Subsumption We add all formulae psub(A,B) and psubinv(A,B) corre-
sponding to stated axioms to E′′O. Then, we add those formulae that are entailed by rule
(5) to E′′O. We apply rules (7), (17), (18), and (19) on E′′O until we cannot derive new
formulae. Since there appears no psub(P,Q) or psubinv(P,Q) in the head of any other
rule, we know that E′′O is psub and psubinv saturated.
Domain and Range We set EO = E′O ∪ E′′O. We add all formulae dom(P,A) and
ran(P,B) corresponding to stated axioms to EO. We apply rules (9), (10), (11), (12),
(15), and (16) on EO until we cannot derive new formulae. Since no dom(P,A) or
ran(P,B) appears in the head of any other rule, we know that EO is dom and ran
saturated.
Class Disjointness We add all formulae cdis(A,B) corresponding to stated axioms to
EO. We apply rule (2) and (4) on EO until we cannot derive new formulae. Since there
appears no cdis(A,B) in the head of any other rule, we know that EO is cdis saturated.
Property Disjointness We add all formulae pdis(P,A) and pdisinv(P,B) corre-
sponding to stated axioms to EO. We apply all remaining rules until we cannot derive
new formulae. EO is now saturated with respect to all types of formulae.

If we stop the entailment process as soon as it is not possible to derive any new
entailment, it will not be possible to compute all explanations. Thus, we have to use
a different criterion for moving from one step to the next and finally for terminating
the whole process. The idea is to continue with the next step (or to terminate) only if
there exists no α ∈ EO such that the explanation of α has been modified during the last
iteration. Let now expl(α) denote the set of all explanations for a given formula α that
is added to EO during executing the process described above. For the sake of simplicity,

6 http://dfleischhacker.github.com/trex-reasoner

we only mention EO in the following, which might refer to EO, E′O or E′′O depending
on the current phase of the process. We have to distinguish between two cases.

– α corresponds to a stated axiom in O. We set expl(α) = {{α}}.
– α is derived by one of the other rules. We set expl(α) = expl(α) ∪
{{expl(β1), . . . , expl(βn)}} where β1, . . . , βn refers to those formulae that trig-
gered the rule.

Due to the recursive character of an explanation, expl(α) can be understood as a
disjunction of conjunctions, that might again be built from a disjunction of conjunc-
tions, and so forth. Thus, the approach, as it has been described so far, constructs an
or-and-tree of explanations. However, we want to avoid the construction of a complex
tree by ensuring that expl(α) is always stored as a DNF, i.e., expl(α) is always a dis-
junction of conjunctive clauses. To guarantee the explanations to be in DNF, we apply
the distributivity law every time we combine explanations. Afterwards, we minimize
the resulting DNF by removing conjunctions that are supersets or duplicates of other
conjunctions. Checking for duplicates is important with respect to our termination cri-
teria, because a DNF to which we try to add a duplicate or a superset should not be
counted as an explanation that has been modified.

Now, we show that our approach computes all minimal incoherence preserving sub-
sets of an incoherent ontology O. Schlobach and Cornet [15] have defined a MIPS M
(minimal incoherence preserving TBox) as a subset M ⊆ O such that M is incoherent
and each M ′ ⊂ M is coherent. An explanation of an unsatisfiable class (or property)
is called a MUPS (minimal unsatisfiability preserving TBox) in the terminology of
Schlobach and Cormet. Given that, each MUPS is a MIPS or a superset of a MIPS.
Let now MIPS (O) refer to the set of all MIPS in an incoherent ontology O. Further-
more, let now explu(O) refer to the union of explanations for unsatisfiable classes or
properties that are computed by our approach.

In the following, we prove that MIPS (O) ⊆ explu(O). For that proof, we have
to take into account that our approach is monotonic in the sense that explu(O) ⊇
explu(O′) if O ⊇ O′. This follows from the fact that we apply the completion rules
unless no additional explanation can be added. Thus, if O is a superset of O′ we will
never compute fewer explanations for O than for O′. Let us now apply our method to
each M ∈ MIPS (O). Each M is by definition an incoherent ontology. According to
Proposition 1, we will thus at least detect one unsatisfiable class or property for M .
Since the computation of the unsatisfiable class (or property) is, within our approach,
directly coupled to the computation of an explanation, we will always compute an ex-
planation with respect to M , i.e., explu(M) 6= {}. Since M is a MIPS, there exists no
incoherent subset M ′ of M . Thus, we end up with explu(M) = M . Further, we know
that M ⊆ O and thus we conclude, based on the monotonicity of our approach, that
explu(M) ⊆ explu(O). We conclude that MIPS (O) =

⋃
M∈MIPS(O) explu(M) ⊆

explu(O).
We have thus shown that our approach detects all explanations for unsatisfiable

classes and properties, as long as those explanations are not subsets of other expla-
nations. With respect to exploiting explanations in a debugging context, it is thus not
important to keep track of those explanations for which we have not yet proven that we

are able to detect them. If we apply an algorithm for resolving all unsatisfiabilities on
explu(O), this algorithm will always (implicitly) resolve all unsatisfiabilities.

Implementation We implemented this approach in a prototype that is mainly based
on a matrix representation for each type of formula. We define, for example, a boolean
matrix for all formulae csub(X,Y), where X is associated to a row and Y is associated
to a column in the matrix. We first initialize the matrix with all stated axioms. Then
we apply rule (1) adding entries to the diagonal of this matrix. The set of entailments
EO corresponds to the entries in our matrix representation. The cell (X,Y) also points
to the set of explanations expl(csub(X,Y)). We have chosen a similar representation
for all other types of formulae. After initializing all matrices, we apply the rules as
described above to entail new entries in the matrices and to update the corresponding
explanations. The diagonal of the matrices for predicates cdis and pdis finally refers to
the set of unsatisfiable classes and properties and their corresponding explanations.

Note again, that we have developed the approach for debugging ontologies that
have been learned automatically. Learned ontologies will typically contain subsumption
axioms between most pairs of classes that subsume each other, even though most of
these axioms can be derived from other axioms that have also been learned. The same
holds for disjointness axioms. Thus, we expect that most matrices for learned ontologies
are dense or not as sparse as matrix representations of carefully modeled ontologies. In
such a setting using a matrix representation is less critical with respect to memory and
runtime issues as it will be the case in other scenarios.

Finally, we have not yet implemented support for inverse properties in the current
prototype, i.e., rules (15) to (24) are still missing from the implementation. This is
because the dataset that we used for our experiments, contains only a small number of
axioms that involved inverse properties. An implementation based on matrices is thus
not well-suited in terms of efficiency, and further improvements beyond the scope of this
paper would be required to make this type of approach feasible in practice. Therefore,
we decided to remove all inverse properties axioms from the datasets that we used in
the experiments presented in the following section.

5 Experiments

5.1 Setting

The ontologies used in our experiments are based on the ontology that has been created
by the learning approach described in [4] and [17], respectively. This ontology is based
on the original DBpedia ontology [1] and has been enriched by means of statistical
schema induction on the DBpedia instance data. For analyzing the impact of different
ontology sizes on the reasoning performance, we created subsets from this full ontology
starting with a base ontology containing randomly selected 20% of the total number of
axioms. We gradually added randomly selected and not yet contained axioms from the
full ontology. While growing the base ontology, we regularly took snapshots resulting
in a set of 11 ontologies O0 to O10 where each ontology Oi is a subset of Oi+1. The
last snapshot is equivalent to the full ontology. Statistics about these ontologies, which
fall all into the ALCH expressivity class, can be found in Table 2.

Table 2. Statistics about ontologies used in experiments.

Ontology Axioms Classes Properties Unsat. Classes Unsat. Properties
O0 23,706 300 654 3 5
O1 32,814 304 673 6 7
O2 41,941 309 689 9 14
O3 51,056 316 702 15 29
O4 60,166 319 714 26 50
O5 69,271 321 724 32 82
O6 78,375 323 730 49 112
O7 87,468 324 736 63 162
O8 96,555 324 737 83 209
O9 105,642 324 742 132 336
O10 114,726 324 742 152 396

We consider two use cases which are relevant for debugging automatically gener-
ated ontologies. The first use case is the detection of unsatisfiable classes and properties.
The second use case is based on the detection step and deals with finding explanations
for discovered unsatisfiabilities. We compared TRex with two state-of-the-art reason-
ers, Pellet and Hermit. While TRex fully supports both use cases, Hermit and Pellet
are only able to handle sub sets. Regarding the first use case, Hermit7 provides direct
programmatic access to the set of unsatisfiable classes. The retrieval of unsatisfiable
properties is not directly possible. Instead, we resort to retrieving all sub properties
of owl:bottomObjectProperty. Hermit does not provide support for generating
explanations, so it is not suited for our second use case. The Pellet reasoner8 also sup-
ports direct retrieval of unsatisfiable classes. In contrast to Hermit, it does not support
retrieving subproperties of owl:bottomObjectProperty. Thus, we are not able
to directly retrieve unsatisfiable properties with Pellet without further modifications.

A feature which distinguishes Pellet from Hermit is the support for computing ex-
planations. To have the possibility to compare our explanation results with other ex-
planations, we implemented a way of reducing the detection of unsatisfiable properties
to the detection of unsatisfiable classes. We extended the ontologies with the axiom
CP v ∃P.> for each object property P in the ontology where CP is a fresh class in-
troduced for the respective property. Based on this, we know that CP is unsatisfiable iff
P is unsatisfiable. In our experiments, this variant of Pellet is referred to as PelletMod.

5.2 Results

The result of the first use case are depicted in Table 3.9 All reasoners discovered the
same number of unsatisfiabilities except for Pellet because of its inability to detect un-

7 http://www.hermit-reasoner.com, Version 1.3.6
8 http://clarkparsia.com/pellet, Version 2.3.0
9 All experiments have been conducted on a Quad-core Intel Core i7 with 3.07GHz and 24GB

RAM. The results are averaged over 5 runs.

satisfiable properties. Overall, Hermit is the fastest reasoner for retrieving the set of all
unsatisfiable classes and properties. In particular, Hermit provides the best scalability in
our experiments since the runtime behaviour is second to none of the other reasoners.
The runtimes of Pellet and PelletMod increase much more with respect to the ontology
size. The runtimes of TRex are the highest for all ontology sizes. TRex is designed
to always determine explanations for all inferable axioms. Pellet only computes ex-
planations if those are explicitly requested for specific axioms. Furthermore, TRex has
higher initialization costs. However, these initialization costs are hardly affected by the
growing number of axioms.

Table 3. Runtimes in milliseconds for the detection of unsatisfiabilities.

Ontology Pellet PelletMod Hermit TRex
O0 392 411 450 6,630
O1 621 654 629 7,169
O2 910 997 720 7,839
O3 1,232 1,297 849 8,425
O4 1,485 1,854 1,916 9,889
O5 1,970 2,088 1,158 9,411
O6 2,419 2,617 1,295 9,572
O7 2,897 3,063 1,468 12,559
O8 3,460 3,585 1,549 10,124
O9 3,823 3,899 1,721 11,148
O10 4,327 4,439 1,864 12,006

The results of the second use case are provided in Table 4. These results are the
runtimes for retrieving the explanations for each of the unsatisfiable classes and prop-
erties found by the respective reasoner. Thus, the runtimes of Pellet only include the
explanation retrieval for unsatisfiable classes. An important fact is that Pellet and Pel-
letMod runtimes are only those that we measured for retrieving a single explanation
per unsatisfiability while the TRex runtimes include the retrieval of all explanations
for all discovered unsatisfiabilities. The number of all explanations as found by TRex
is provided in the right-most column. In contrast, Pellet generates one explanation for
each unsatisfiable class while PelletMod generates one for each unsatisfiable class or
property. We also conducted experiments with Pellet and PelletMod retrieving multiple
explanations for each unsatisfiability but the retrieval of multiple explanations in Pellet
turned out to be highly unstable for the ontologies used in our experiments. We observed
in all cases runtime exceptions of Pellet and PelletMod making it impossible to com-
pute more than one explanation. When we tried to catch these exceptions, the runtimes
measured were also significantly higher than the runtimes measured for TRex. How-
ever, it remained unclear whether those runtimes were caused by the exceptions or by
the correct execution of the algorithm until the exception occurred. For that reason we
omitted to present these results, which would in any case be based on incomplete sets
of explanations, and resorted to single-explanation retrieval for Pellet and PelletMod.

As we see from the given table, the runtime of TRex for retrieving all explanations
for all unsatisfiabilities is increasing exponentially with the number of axioms contained

Table 4. Runtimes in milliseconds for generating explanations for unsatisfiable classes and prop-
erties. ”All Explanations” means all MIPS.

Single Explanation All Explanations
Pellet PelletMod TRex

Ontology Runtime # Expl. Runtime # Expl. Runtime # Expl.
O0 848 3 863 8 6,758 8
O1 1,317 6 1,365 13 7,594 13
O2 1,899 9 1,956 23 9,011 26
O3 2,463 15 2,693 44 9,892 54
O4 3,341 26 3,530 76 11,666 100
O5 4,070 32 4,322 114 11,732 158
O6 5,068 49 5,235 161 12,980 250
O7 5,979 63 6,309 225 17,495 386
O8 7,082 83 7,396 292 21,726 686
O9 7,805 132 8,228 468 44,966 2,031
O10 8,947 152 9,480 548 66,781 2,722

in the ontology while the other reasoners only suffer from a linear increase. However,
this increase can be explained by means of the aforementioned difference in the number
of explanations. While Pellet and PelletMod only retrieve one explanation per unsatis-
fiability, which means that the total number of explanations is linear to the number of
unsatisfiable classes and properties, the total number of explanations retrieved by TRex
is not linearly bound but instead growing exponentially in the number of axioms. This
is also depicted in Figure 1. In this Figure we plotted both the runtimes of TRex and the
number of computed explanations on the y-axis. Again, we observe a relatively high
initialization cost. However, at some point in time the runtimes of TRex seem to grow
linear in the number of computed explanations.

● ● ● ● ●
●

●

●

●

●

●

Number of Axioms

N
um

be
r

of
 E

xp
la

na
tio

ns

● ● ● ● ● ● ●
●

●

●
●

40000 60000 80000 100000

0
50

0
10

00
20

00

● ●
● ●

● ●
●

●

●

●

●

0
20

00
0

40
00

0
60

00
0

M
ill

is
ec

on
ds

Explanations (All)
Explanations (Single)
TRex runtime in milliseconds

Fig. 1. TRex explanation runtimes and the total number of retrieved explanations.

Explanation Completeness In order to obtain additional evidence for the complete-
ness of the explanation component and the correctness of our implementation, we set up
another experiment. We implemented the simple ontology schema debugging approach
described in Algorithm 1. Given an incoherent ontology O, this algorithm constructs
a randomly chosen minimal hitting H set over all explanations explu(O) computed
by TRex. Removing H from O should always result in a coherent ontology. We ran
this algorithm 200 times onO10. The computed hitting sets contained between 201 and
223 axioms. After each run, we tested the resulting ontology for coherence using TRex
and Hermit. For each run, both reasoners did not find further unsatisfiable classes or
properties.

Algorithm 1 Randomized greedy ontology debugging

function RANDOMIZEDGREEDYDEBUG(O, explu(O))
H ← {} . set for storing already removed axioms
for all e ∈ explu(O) do . e is an explanation, i.e., a set of axioms

if e ∩H = ∅ then
a← randomly chosen axiom from e
O← O \ {a}
H ←H ∪ {a}

6 Future Work

The runtime performance of TRex is strongly affected by the way of detecting new or
changed inferred axioms and their explanations. Currently, we revisit all axioms in each
iteration. Especially in later phases, when only a few axioms continue to change, this
causes a large overhead. Thus, we will implement a better change tracking combined
with appropriate index structures to find resolvable axioms. Such techniques are typi-
cally implemented in theorem provers and other engines using inference rules. We also
consider implementing large parts of the reasoning process in a database infrastructure.
Furthermore, we might investigate the usage of more efficient data structures for man-
aging explanations, like ordered binary decision diagrams. However, for our current use
cases, the storage of explanations does not impose limits to our systems.

Currently, TRex does not implement the completion rules for inverse properties.
The straight-forward implementation in the current structures of TRex would drastically
reduce its performance. Once we applied the modifications described in the previous
paragraph, we will also implement the support for inverse properties. These modifica-
tions are intended to reduce the impact that a small number of axioms involving inverse
properties has on the runtime performance.

Subsumption cycles are explanations for O |= A ≡ B where A ≡ B /∈ O. Such an
equivalence is not necessarily an undesired consequence, however, it might be worth-
while to analyze the involved axioms. Now suppose that we want to compute subsump-
tion cycles for a highly incoherent ontology where most classes, including two classes
A and B, are incoherent. Due to that fact that A and B are subsumed by bottom, we

have O |= A ≡ B. The explanations for the unsatisfiability of A and B are thus also
responsible for the equivalence of A and B. This is not the case in our approach, be-
cause ⊥ is not included in our formalization. Subsumption cycles are thus not affected
by unsatisfiabilities. We will exploit this advantage of our approach in extending our
system to support the detection of subsumption cycles.

Furthermore, we plan to use TRex in the future for the purpose it has been designed
for, namely, for debugging highly incoherent learned ontologies. In doing so, we will
apply different techniques for constructing minimal hitting sets over the set of explana-
tions generated by TRex to improve the overall quality of the learned ontologies.

7 Summary

In this paper, we have presented an approach to computing explanations for unsatisfi-
able classes and properties in an incoherent ontology. We have shown that our method is
complete and sound with respect to computing all minimal incoherence preserving sub-
sets, provided that the input ontology belongs to a certain OWL 2 fragment. While the
expressivity supported by our approach is thus limited to a comparatively small sub-
set of OWL 2, we have argued that ontologies generated by state-of-the-art ontology
learning approaches are unlikely to exceed the supported level of modeling complexity.

We implemented our approach by developing a prototype called TRex10. Besides
our theoretical considerations, we have experimentally verified the completeness of our
implementation by showing that a debugging approach, which makes use of the com-
puted explanations, always constructs a coherent ontology if applied to the ontology
with the highest degree of incoherency from our test set.

Furthermore, the results of our experiments show that TRex successfully handles
input ontologies which are challenging for Pellet at least as far as the non-standard rea-
soning task of computing explanations is concerned. Unlike TRex, Pellet fails to gen-
erate more than one explanation for each unsatisfiable class or property. Pellet turned
out to be less robust and stable than our implementation if applied to the learned on-
tologies used in our experiments. Our comparison of Hermit, Pellet, and TRex on the
standard reasoning task of computing unsatisfiable classes or properties, indicates that
TRex requires significantly more time. However, these differences in terms of runtime
can (partially) be explained by the fact that TRex always generates all of the possible
explanations. Finally, we identified some potential for improving our prototype, which
could increase the performance of future releases.

Overall, we conclude that TRex might turn out to be a valuable and robust tool for
debugging learned ontologies. The challenges that we meet in the future will help us to
further improve TRex in terms of supported functionality and efficiency.

References

1. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.:
DBpedia - a crystallization point for the web of data. Web Semantics 7(3), 154–165 (2009)

10 The source code of this prototype, as well as the ontologies used in our experiments, are
available from http://dfleischhacker.github.com/trex-reasoner.

2. Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora using for-
mal concept analysis. Journal of Artificial Intelligence Research 24, 305–339 (AUG 2005)

3. Doyle, J.: A truth maintenance system. Artificial intelligence 12(3), 231–272 (1979)
4. Fleischhacker, D., Völker, J., Stuckenschmidt, H.: Mining RDF data for property axioms.

In: On the Move to Meaningful Internet Systems: OTM 2012, Lecture Notes in Computer
Science, vol. 7566, pp. 718–735. Springer Berlin Heidelberg (2012)

5. Glimm, B., Horrocks, I., Motik, B., Stoilos, G.: Optimising ontology classification. In: Proc.
of the 9th Intl. Semantic Web Conference (ISWC). pp. 225–240 (2010)

6. Haase, P., Qi, G.: An analysis of approaches to resolving inconsistencies in DL-based on-
tologies. In: Flouris, G., d’Aquin, M. (eds.) Proc. of the International Workshop on Ontology
Dynamics. pp. 97–109 (2007)

7. Haase, P., Völker, J.: Ontology learning and reasoning – dealing with uncertainty and incon-
sistency. In: Uncertainty Reasoning for the Semantic Web I, LNCS, vol. 5327, pp. 366–384.
Springer Berlin / Heidelberg (2008)

8. Ji, Q., Qi, G., Haase, P.: A relevance-directed algorithm for finding justifications of DL en-
tailments pp. 306–320 (2009)

9. Jiménez-Ruiz, E., Grau, B.C., Horrocks, I., Llavori, R.B.: Ontology integration using map-
pings: Towards getting the right logical consequences. In: The Semantic Web: Research and
Applications, 6th European Semantic Web Conference. pp. 173–187 (2009)

10. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of owl dl entail-
ments. In: Proc. of the 6th International Semantic Web Conference (ISWC-2007) and the
2nd Asian Semantic Web Conference (ASWC-2007). pp. 267–280. Springer (2007)

11. Lehmann, J.: DL-Learner: learning concepts in description logics. Journal of Machine Learn-
ing Research (JMLR) 10, 2639–2642 (2009)

12. Lehmann, J., Bühmann, L.: ORE – a tool for repairing and enriching knowledge bases. In:
Proc. of the International Semantic Web Conference (ISWC), LNCS, vol. 6497, pp. 177–193.
Springer Berlin / Heidelberg (2010)

13. Meilicke, C., Völker, J., Stuckenschmidt, H.: Learning disjointness for debugging mappings
between lightweight ontologies. In: Knowledge Engineering: Practice and Patterns, LNCS,
vol. 5268, pp. 93–108. Springer Berlin / Heidelberg (2008)

14. Qi, G., Haase, P., Huang, Z., Ji, Q., Pan, J.Z., Völker, J.: A kernel revision operator for
terminologies - algorithms and evaluation. In: The Semantic Web – ISWC 2008. pp. 419–
434. Springer Berlin / Heidelberg (2008)

15. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description
logic terminologies. In: International Joint Conference on Artificial Intelligence. vol. 18, pp.
355–362 (2003)

16. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL rea-
soner. Web Semantics 5, 51–53 (2007)

17. Völker, J., Niepert, M.: Statistical schema induction. In: The Semantic Web: Research and
Applications. LNCS, vol. 6643, pp. 124–138. Springer Berlin / Heidelberg (2011)

18. Völker, J., Rudolph, S.: Fostering web intelligence by semi-automatic OWL ontology refine-
ment. In: Proc. of the 7th International Conference on Web Intelligence (WI). IEEE (Decem-
ber 2008)

19. Wu, G., Qi, G., Du, J.: Finding all justifications of owl entailments using tms and mapre-
duce. In: Proc. of the 20th ACM international conference on Information and knowledge
management. pp. 1425–1434. ACM (2011)

