
Inductive Learning of Disjointness Axioms

Daniel Fleischhacker and Johanna Völker?

KR & KM Research Group, University of Mannheim, Germany

{daniel,johanna}@informatik.uni-mannheim.de

Abstract. The tremendous amounts of linked data available on the web are a
valuable resource for a variety of semantic applications. However, these applica-
tions often need to face the challenges posed by flawed or underspecified repre-
sentations. The sheer size of these data sets, being one of their most appealing
features, is at the same time a hurdle on the way towards more accurate data be-
cause this size and the dynamics of the data often hinder manual maintenance
and quality assurance. Schemas or ontologies constraining, e.g., the possible in-
stantiations of classes and properties, could facilitate the automated detection of
undesired usage patterns or incorrect assertions, but only few knowledge reposi-
tories feature schema-level knowledge of sufficient expressivity. In this paper, we
present several approaches to enriching learned or manually engineered ontolo-
gies with disjointness axioms, an important prerequisite for the applicability of
logical approaches to knowledge base debugging. We describe the strengths and
weaknesses of these approaches and report on a detailed evaluation based on the
DBpedia dataset.

Keywords: Linked Data, Ontology Learning, OWL, Data Mining

1 Motivation

The success of the Open Linked Data initiative and the fast growing number of knowl-
edge repositories on the web have paved the way for the development of various se-
mantic mashups and applications. However, these applications often need to face the
challenges posed by flawed or underspecified knowledge representations. While the
redundancy of structured data on the web can help to compensate for many of those
problems, even applications based on lightweight knowledge representations benefit
from more accurate semantic data in repositories such as DBpedia, Freebase as well as
in other, domain-specific knowledge bases.

Ontologies, or generally speaking schemas, constraining the possible instantiations
of classes and properties are a valuable means to improve the quality of linked data
sets. They can enable the automated detection of undesired usage patterns or incorrect
assertions. However, only few knowledge repositories feature schema-level knowledge
of sufficient expressivity, and thus Auer and Lehmann [3] demanded that “algorithms
and tools have to be developed for improving the structure, semantic richness and qual-
ity of Linked Data”. In particular, disjointness axioms would be useful to enable more
? Johanna Völker is financed by a Margarete-von-Wrangell scholarship of the European Social

Fund (ESF) and the Ministry of Science, Research and the Arts Baden-Württemberg.

expressive query answering as well as the detection of logical inconsistencies indicating
potential modeling errors. Hitzler and van Harmelen [13] point out, for instance, that
annotating linked data with ontologies that include class disjointness can help to solve
the object reconciliation problem, i.e., the discovery of identical individuals across data
sets. The following example taken from the DBpedia data set illustrates further benefits
potentially provided by the addition of disjointness axioms:1

Dirk Bouts dbo:nationality Netherland
Netherland rdf:type dbo:Book

dbo:nationality rdfs:domain dbo:Person

Considering these RDF triples, we find the dbo:nationality relation linking
Dirk Bouts to the DBpedia resource Netherland, which is explicit asserted to be of
type dbo:Book in DBpedia. This error stems from a spelling mistake in the Wikipedia
infobox of the article about Dirk Bouts, as the value of the nationality property is
given as [[Netherland]] and thus points to the wrong Wikipedia article. Note that
detecting the error by logical means would not only require a properly specified range
restriction of the dbo:nationality relation,2 but it would also demand for the existence
of a disjointness axiom:

dbo:nationality rdfs:range dbo:Country
dbo:Country owl:disjointWith dbo:Book

These two statements would allow us to infer that Netherland must be a country, and
hence can not be a book since dbo:Book and dbo:Country are declared disjoint. This
would be a logical contradiction to the previous rdf:type assertion. Since such logical
contradictions can be spotted by automated means [18,21], such a manual or automatic
enrichment of ontologies with further axioms can provide the maintainers of a knowl-
edge base with valuable pointers to potential problems. In practice, of course, it will not
always be clear whether the newly added or any of the existing statements are incorrect
and thus should be removed – especially, if the former were generated automatically
they should therefore be associated with provenance information such as certainty val-
ues to increase the efficiency of manual or automated debugging (e.g., [19]).

In this paper, we present a set of novel inductive methods for automatically enrich-
ing ontologies with disjointness axioms which could be used to extend previous ap-
proaches to inducing schema-level knowledge from knowledge bases. These methods
exhibit three characteristics that we consider essential, especially for ontology genera-
tion from linked data: They are scalable enough to work on large RDF repositories such

1 For the sake of brevity, we assume http://dbpedia.org/resource/ to be the default
namespace and use the prefix dbo: for abbreviating the URI of the DBpedia ontology (http:
//dbpedia.org/ontology/).

2 There are several approaches to the automatic acquisition of domain or range restrictions from
text or linked data including, for example, early work by Mädche and Staab [16]. Note that
it is also possible to induce these types of axioms from linked data, e.g., by association rule
mining [25]. For a comprehensive overview of approaches to mining structured web data, see
Stumme et al. [23].

as DBpedia, and robust insofar as they can tolerate a certain number of incorrect as-
sertions. Moreover, these methods provide users and applications with a certainty value
for each of the generated disjointness axioms.

The remainder of this paper is structured as follows. After giving a brief overview
of related work (cf. Section 2), we describe the three approaches that we developed
in order to enrich ontologies with disjointness axioms (Section 3), including statistical
correlation analysis as well as two algorithms for mining association rules. In Section 4,
we report on a comparative evaluation of these approaches, before concluding with a
summary and an outlook to future work (cf. Section 5).

2 Related Work

The work presented in this paper relates to previous approaches in the field of ontology
learning and the automated generation of disjointness axioms. It also follows a vari-
ety of automated approaches supporting the evaluation and maintenance of knowledge
bases on the web.

Early work on learning class disjointness has been done by Haase and Völker [11],
who suggested an unsupervised method for mining disjointness axioms from natural
language text. Their method based on lexico-syntactic patterns was later incorporated
into the LeDA framework for acquiring disjointness by supervised machine learning
[26]. Unlike the approaches suggested by this paper, LeDA does not crucially hinge on
the existence of class membership assertions. However, the learning algorithm needs to
be trained on a manually created set of disjointness axioms and requires various kinds
of background knowledge, whose fit to the data set at hand can be assumed to have a
huge impact on the quality of the generated disjointness axioms.

Disjointness axioms are also generated by more general ontology learning ap-
proaches. Especially, inductive methods based on inductive logic programming [14]
or formal concept analysis [4] are applicable to the task at hand, but so far none of them
has been evaluated with regard to the quality of acquired disjointness axioms. This
also holds for methods based on association rule mining as proposed, e.g., by Völker
and Niepert [25]. Their approach referred to as statistical schema induction is comple-
mented by a simple heuristic for introducing disjointness axioms into schemas automat-
ically generated from RDF data, that assumes non-overlapping classes with more than
a hundred individuals to be disjoint – a rough rule of thumb that cannot be expected to
work in the general case.

A more well-known heuristic for introducing disjointness axioms into existing on-
tologies has been proposed by Schlobach [20]. His approach known as semantic clar-
ification aims to make logical debugging techniques applicable to lightweight ontolo-
gies. It relies on the “strong disjointness assumption” [9], which postulates disjointness
among sibling classes, as well as on the pinpointing technique for discovering and fix-
ing the causes of logical incoherence. A similar strategy was later adopted by Meilicke
et al. [17], who showed that automatically generated disjointness axioms can facili-
tate the detection of incorrect correspondences between classes in different lightweight
ontologies.

Particularly related to our approaches is recent work by Lehmann and Bühmann
[15], who developed ORE, a tool for repairing different types of modeling errors in on-
tologies. It uses the DL-Learner framework [14], which has been shown to scale up to
large knowledge bases [12], in order to enrich ontologies by class expressions automat-
ically induced from existing instance data. Inconsistencies or incoherences resulting
from this enrichment serve as indicators for modeling flaws in the knowledge base.
While their approach does not focus on disjointness axioms, they emphasize the useful-
ness of negation in debugging knowledge bases, it would be worthwhile investigating
ways to integrate our methods into ORE.

In Section 4, we will take a closer look at LeDA as well as the strong disjointness
assumption and how their performance compares to the methods presented in this paper.

3 Methods for Learning Disjointness

In this section, we present three approaches to enriching the schemas of large knowl-
edge repositories with disjointness axioms. First, after briefly introducing the syntax
and semantics of disjointness axioms in the Web Ontology Language OWL, we de-
scribe an approach that is based on statistical correlation analysis (cf. Section 3.1). We
then elaborate on the use of association rule mining techniques for learning disjoint-
ness, and outline the ideas underlying two alternative methods supporting the discovery
of negative association rules (see Section 3.2). For a detailed comparison of these meth-
ods with state-of-the-art approaches to generating disjointness axioms, see Section 4.

Both RDF Schema3 and the Web Ontology Language (OWL)4 are standards pro-
posed by the W3C for expressing schema-level knowledge on the web. RDFS allows
for modeling lightweight schemas consisting of classes (or concepts), individuals (or
instances), as well as properties (or relations) connecting these individuals. It also pro-
vides means to express class subsumption, domain and range restrictions of properties,
and equality of individuals, for example, but the RDFS standard does not contain a
negation operator or other means to model negative knowledge. Additional expressiv-
ity required, e.g., by reasoning-based applications, is offered by OWL, which extends
RDFS by additional constructs, such as class and property disjointness.5 Note that there
is an RDF-based serialization for every OWL ontology. For the sake of brevity, how-
ever, we will henceforth use the description logic notation for talking about disjointness
axioms.

Using class disjointness, it is possible to state that two classes cannot have any
common individuals according to their intended interpretation, i.e., that the intersection
of these classes is necessarily empty in all possible worlds. For example, the OWL
axiom

Person v ¬Plant

3 http://www.w3.org/TR/rdf-schema/
4 http://www.w3.org/TR/owl2-overview/
5 Property disjointness has been added as part of OWL 2 which has become a W3C recommen-

dation on October 27, 2009.

or equivalently, Person u Plant v ⊥, expresses the fact that nothing can be both
a person and a plant, as the intersection of these classes is subsumed by ⊥ and hence
necessarily empty. This does not imply, however, that if two classes do not have any
common individuals in a particular knowledge base, they are meant to be disjoint. This
is because of the Open World Assumption holding in OWL as well as in RDFS, which
states that knowledge not explicitly (or implicitly) said to be true is not treated as
being false, but as being unknown. For this reason, the assertions Person(Tom) and
Plant(Tom) would not cause a logical contradiction, and thus would not necessarily be
recognized as a modeling error by a mere reasoning-based approach, unless we add an
axiom stating that Person and Plant are disjoint classes.

Ontologies using disjointness may exhibit two kinds of logical contradiction: in-
coherence and inconsistency. An ontology is incoherent if it contains a class C which
is not satisfiable, i.e., which is empty according to every possible interpretation. An
incoherent class could be introduced in an ontology by the following axioms.

Human v Animal

Human ≡ Person

Person v ¬Animal

Since all humans are defined to be animals and the classes Person and Human are
defined to be equivalent, the disjointness between Person and Animal renders the class
Person unsatisfiable. Incoherences are rarely introduced on purpose, since in most real-
world application scenarios there is little reason for creating a named class that is not
intended to contain individuals. When it comes to logical inference over an ontology,
incoherent classes mainly have a local effect as they are subsumed by and at the same
time disjoint to all other classes.

Inconsistency usually has a more significant impact on the practical usefulness of
an ontology for reasoning-based applications. An ontology being inconsistent means
that there is no model for this ontology which, e.g., could be caused by an individual
belonging to a non-satisfiable class. Since a fact can be inferred from an ontology iff
it is valid in all models of the ontology (and this trivially holds if no model exists),
inconsistencies prevent most standard reasoners from performing meaningful inference.
In an ontology containing the axioms from our incoherence example, the axiom

Person(Kim)

would lead to an inconsistent ontology because the unsatisfiable class Person is as-
signed the instance Kim .

Both inconsistencies and incoherences can be detected by automated means for in-
consistency diagnosis. Often, the results of a diagnosis, a set of axioms that together
cause a logical contradiction, indicate some kind of modeling error in the knowledge
base, that might have remained unnoticed if the ontology had not turned inconsistent.
For this reason, a certain level of logical expressivity introduced, e.g., by axioms con-
taining negation operators, is desirable as it facilitates the occurrence of logical con-
tradictions whenever classes, individuals or properties are not used in agreement with
their intended semantics. However, many of the available linked data repositories such

as DBpedia only use lightweight schemas – either in formats not supporting class dis-
jointness, like RDFS, or just not stating disjointness though possible format-wise. Thus,
it is not possible to apply logical debugging methods to these semantic resources. To en-
able more elaborate maintenance and quality assurance on linked data, we thus explored
different ways to automatically enrich lightweight schemas by disjointness axioms.

For all approaches which we present in the following, we assume the data to be
represented as depicted in Table 1. In this case, we have one row per instance contained
in the data set and one column per class mentioned in the dataset resp. the corresponding
ontology. For each instance, all existing rdf:type assertions are marked by a 1 in the
corresponding column while 0 means that the instance is not assigned to a certain class.
This table is a structured representation of a so-called transaction database which we
will introduce more formally later-on in Section 3.2.

Table 1. Excerpt from a transaction database for the DBpedia dataset

IRI Place City Person OfficeHolder

Berlin 1 1 0 0
Charles Darwin 0 0 1 0

Eiffel Tower 1 0 0 0
John F . Kennedy 0 0 1 1

Golden Gate Bridge 1 0 0 0

The approaches that we present in the remainder of this section are based on the
paradigm of statistical inductive learning, i.e., they are based on the assumption that
schema-level knowledge can be derived from an analysis of existing class membership
(or rdf:type) assertions – either by association rule mining or the computation of sta-
tistical correlation values. In this respect, our approaches bear some resemblance with
previous work on concept learning in description logics [14]. Even several features used
in the LeDA framework, including the taxonomic overlap in terms of existing or auto-
matically acquired individuals, can be considered inductive or extensional. In Section
4, we will take a closer look at LeDA as the only existing framework for learning dis-
jointness, and how it compares to the new, purely inductive methods.

3.1 Correlation

The first approach we applied for generating disjointness axioms is measuring the cor-
relation between class rdf:type assertions. Correlation coefficients are commonly used
to rate the strength of linear relationships between two value sequences. One widely
known correlation coefficient is Pearson’s correlation coefficient which is also used in
a similar fashion by Antonie and Zaı̈ane [2] who combine it with association rules and
use it for filtering.

For our experiments, the values we consider for computing the correlation coeffi-
cient are the values stating which instances belong to a given class. Given two classes
C1 andC2, we take the sequences formed by the appropriate columns of our transaction

database and compute the correlation between these two sequences. For each instance,
there exist four possibilities of class combinations which are shown in the following
table, e.g., n10 is the number of transactions containing class C1 but not class C2.

C1 ¬C1

C2 n11 n01 n∗1
¬C2 n10 n00 n∗0

n1∗ n0∗

For this specific variant, the Pearson correlation coefficient can be reduced to the
so-called φ-coefficient given by

φ =
n11n00 − n10n01√
n1∗n0∗n∗0n∗1

Given the resulting correlation coefficient, we can assess the strength of the corre-
lation between the occurrences of the classes. According to Cohen [8] the results of
the Pearson correlation coefficient can be coarsely divided into the categories of strong
correlation for absolute values larger than 0.5, medium correlation for absolute values
in the range from 0.3 to 0.5 and small correlation for absolute values from 0.1 to 0.3.
Absolute values of less than 0.1 are inexpressive.

Since disjointness of two classes means that both classes must not have any common
instantiations, classes being clearly disjoint would lead to φ = −1.0. In contrast, a φ-
value of 1.0 would show two perfectly equivalent classes based on the set of instances.
Thus, negative correlation values having a high absolute value give the most evidence
for both classes being disjoint and can be considered as a confidence value for the
validity of the corresponding disjointness axiom.

For the transaction database shown in Table 1 and the classes Place and
OfficeHolder, we would get φ = −3√

24
= −0.61. From this strong negative correla-

tion the correlation-based algorithm could propose a disjointness axiom between both
classes using the absolute correlation value as confidence.

3.2 Association Rule Mining

The other two approaches, we evaluated for inductively learning disjointness are based
on association rules. Association rules are implication patterns originally developed
for large and sparse datasets such as transaction databases of international supermarket
chains. A typical dataset in such a setting can have up to 1010 transactions (rows) and
106 attributes (columns). Hence, the mining algorithms developed for these applica-
tions are also applicable to the large data repositories in the open Linked Data cloud.
Formally, the transaction database D = (t1, t2, . . . , tn) contains transactions tj ⊆ I
where I = {i1, i2, . . . } is the set of all possible items. As already described, each indi-
vidual in the data set has a corresponding transaction which contains items representing
classes the individual belongs to.

To mine association rules from such a transaction database the first step is to gen-
erate frequent itemsets contained in this database. For this purpose, there are multiple
algorithms, the Apriori algorithm [1] being the most commonly used one. Frequent

itemsets are thereby identified by having a support value greater than a specified mini-
mum support threshold whereas support is defined as

supp(X) = |{ti ∈ D : X ⊆ ti}|

In some cases, the support value is also defined relatively to the number of transac-
tions contained in the database. Given these frequent itemsets, it is possible to generate
association rules of the form A ⇒ B where A ⊆ I and B ⊆ I are both itemsets. The
confidence for a certain association rule is given by

conf(A→ B) =
supp(A ∪B)

supp(A)

Thus, it shows the conditional probability of an itemsetB occurring in a transaction
given the occurrence of an itemset A.

In this work, we do not want to generate rules likeA→ B, which would to a degree
resemble subsumption and equivalence relations in ontologies, but negative association
rules where either A or B is negated like A→ ¬B. It is important to note that negative
association rules, despite being similar to logical implications, do not capture the same
logical meaning of implication or, in our special case, of disjointness. Association rules
are not definitive rules but there may be some transactions which violate their propo-
sition. This fact is partly represented by the confidence values which incorporate the
fraction of transactions transgressing the association rule.

Naı̈ve Negative Association Rule Mining Mining negative association rules poses dif-
ferent requirements to the association rule mining algorithms since typically there are
many more items not contained in an itemset than items contained in it. In the typical
problem domain of association rules, the number of possible items is too large to apply
regular algorithms on the data set. However, our problem has a much more limited prob-
lem space. In our domain, we usually have to deal with a few hundreds or thousands of
items (i.e., classes defined in the provided schema) whereas a typical association rule
application deals with itemset sizes of up to 106. Therefore, we are able to apply stan-
dard algorithms to our problem of mining negative association rules sometimes referred
to as the naı̈ve approach of mining negative association rules [2, 24]. To do this, for all
classes the corresponding complements are also added to the transaction database and
all instances not belonging to a class are marked as belonging to its respective comple-
ments. Applying this transformation to the transaction database depicted in Table 1, we
get a the transaction database shown in Table 2. Using this approach, the standard asso-
ciation rule mining methods generate not only positive items but also negative ones and
thus negative association rules. The example transaction database also illustrates one
major shortcoming of this approach. Because of the addition of complement classes,
we lose much of the original database’s sparsity which greatly increases the space re-
quired to store such a transformed database.

As an example, we consider the itemset {Place,¬OfficeHolder} which reaches
a support value of 3 because these items are contained in the transactions for
Berlin , Eiffel Tower and Golden Gate Bridge . For the negative association rule

Table 2. Transaction database containing materialized class complements

IRI Place City Person OfficeHolder ¬Place ¬City ¬Person ¬OfficeHolder

Berlin 1 1 0 0 0 0 1 1
Charles Darwin 0 0 1 0 1 1 0 1

Eiffel Tower 1 0 0 0 0 1 1 1
John F . Kennedy 0 0 1 1 1 1 0 0

Golden Gate Bridge 1 0 0 0 0 1 1 1

Place→ ¬OfficeHolder, we thus get a confidence value of

supp(Place,¬OfficeHolder)

supp(Place)
=

3

3
= 1

Negative Association Rule Mining Typically, the datasets association rule mining is
performed on are much larger than the ones used in our case. The number of items
contained in one transaction is much smaller than the number of items not contained
in a transaction and thus the number of frequent itemsets gets an enormous boost by
such a naı̈ve transformation of the transaction database. Since this greatly reduces the
usefulness of standard positive association rules mining algorithms for mining negative
association rules, there are several works regarding the development of special negative
association rule mining algorithms [2]. In this work, we apply the negative association
rule algorithm proposed by Zhang and Zhang [28]. Because of the complexity of this
algorithm, we only give a short overview on it.

The negative association rule mining approach does not rely on materializing the
item complements but instead searches for infrequent positive itemsets. Because of the
sparsity of the original transaction database there is an almost exponential number of
such infrequent positive itemsets. To reach a well enough performance for such an ap-
proach, pruning the search space is an important concern. After generating infrequent
itemsets, Zhang and Zhang prune those itemsets which are not considered interesting
given the minimum interest level. In this context, an itemsets is called interesting if its
support exceeds the expected level of support. Based on the remaining negative item-
sets, they define an approach to create all possible negative association rules using the
probability ratio of each association rule as the corresponding confidence.

4 Experiments

The three approaches described in Section 3 are expected to perform differently on
the task of generating disjointness axioms. Thus, in order to assess the quality of the
produced disjointness axioms, we did an extensive comparison. As a state of the art ap-
proach for creating this type of axioms, we also included the LeDA framework [26] into
our comparison which implements a supervised machine learning approach to acquir-
ing disjointness axioms. Additionally, we compared the results to the heuristic proposed
by Schlobach [20] (cf. Section 2). All of these methods have been tested against a gold
standard of manually created disjointness axioms.

4.1 Setting

For our experiments,6 we used the data set provided by the DBpedia project [5]. We
applied the aforementioned approaches to a set of transaction tables containing the
DBpedia data as of December 2010. In addition, we used the DBpedia ontology7 ver-
sion 3.5.1.

Implementation. The values for the correlation-based approach were computed by our
own implementation that determines the Pearson correlation coefficient as described
in Section 3.1 for each pair of two classes that are stated to be of the types of some
resources in DBpedia. The resulting correlation coefficients were used as confidence
values for the corresponding disjointness axioms.

For mining the association rules, we used the Apriori miner system version 5.39 by
Borgelt and Kruse [6], while the transaction tables for the naı̈ve way of mining were
generated by our own implementation. It is worthwhile mentioning that the material-
ization of the transaction database with representations for the respective complements
of all contained classes, increased the size of the transaction data file from 13 MB to
about 1.7 GB. On this materialized data file, we did multiple runs of Apriori miner with
different settings for minimum support, minimum confidence and minimum interest. In
addition, to actually make the amount of data manageable for the mining system, we
had to limit the computation of frequent itemsets to sets consisting of two elements –
no real limitation as we anyway only consider disjointness axioms relating two atomic
classes.

Since we were unable to find a publicly available implementation of negative as-
sociation rule mining suitable for our experiments, we implemented the algorithm de-
scribed by Zhang and Zhang [28] ourselves and used it in the experiments described
in the following.8 This mining approach is also influenced by the parameters minimum
support, minimum confidence and minimum interest.

Configuration of LeDA. In order to evaluate our methods against LeDA [26], a state-
of-the-art framework for learning disjointness axioms from heterogeneous sources of
evidence, we updated the latest LeDA release as follows. We replaced the original
KAON2-based implementation of the ontology backend by a version that uses Pellet
and the Manchester OWL API. For our experiments, we used the set of features that
performed well in recent experiments by Meilicke et al. [17]. These features are listed
in Table 3. The naive bayes classifier of LeDA was trained on the upper module of the
PROTON ontology9 using the partial disjointness gold standard created by Völker et al.
After this training phase, we applied the resulting classifier to the DBpedia ontology.

The background ontologies for the respective features have been automatically gen-
erated by using the Text2Onto tool [7]. We extracted these ontologies from a corpus
of Wikipedia articles which we automatically assembled by downloading the articles

6 All data used in our experiments is available from http://code.google.com/p/
gold-miner/.

7 http://dbpedia.org/Ontology
8 The negative association rule mining system is integrated into the gold-miner system available

from http://code.google.com/p/gold-miner/.
9 http://proton.semanticweb.org/

corresponding to the class names contained in the ontologies. During this process only
an automatic transformation from the camel-case naming style used in the ontologies
to a sequence of single words has been done but no further disambiguation steps were
applied. Ontologies automatically generated by Text2Onto contain instances and thus
provide LeDA with a limited amount of instance data, e.g., for determining the in-
stance overlap of two classes. Since the PROTON ontology used during training does
not contain instance data, the instance-based features of LeDA could only be applied to
the background ontologies but not to the original ontologies, which also resembles the
setup employed by Meilicke et al.

Table 3. Features of the classification model used by LeDA [26].

Feature Description

fdoc Lexical context similarity (Wikipedia)
fjaro−winkler Label similarity (JaroWinkler)
flevenshtein Label similarity (Levenshtein)
foverlapc Taxonomic overlap wrt. subclasses
fb
overlapc Taxonomic overlap wrt. subclasses (learned ontology)
fb
overlapi

Taxonomic overlap wrt. instances (learned ontology)
fpath Semantic distance
fb
path Semantic distance (learned ontology)
fprop Object properties
fqgrams Label similarity (QGrams)
fsub Subsumption
fb
sub Subsumption (learned ontology)
fwn1 WordNet similarity (Patwardhan-Pedersen v1)
fwn2 WordNet similarity (Patwardhan-Pedersen v2)

Thresholds. For the association rule mining approaches, we chose an absolute support
value of 10 transactions and a confidence value of 0.8 for both approaches. We did not
set an interest threshold, i.e., our minimum interest value was 0. For LeDA we just used
the default thresholds given by the type of classifier and thus considered those classes
as being disjoint for which the disjointness has been determined with a confidence of
at least 0.5. On the correlation approach, we applied the threshold values 0.05 and
0.005. Even if these values are both beneath the limits for meaningful correlations we
nevertheless chose these after some first experiments since the results seemed to be
promising.

Baselines. In addition to these automatic approaches, we considered two more baselines
and a gold standard of disjointness axioms manually added to the DBpedia ontology.
For our gold standard, we asked several experienced ontology engineers to collabora-
tively enrich the DBpedia ontology with a full set of disjointness axioms. The first base-
line approach is based on the strong disjointness assumption [9] used by Schlobach, thus
it considers all siblings as being disjoint. This baseline approach reaches an accuracy
of 92% with respect to our gold standard. The second baseline approach is a simple
majority approach. Since the vast majority of all possible class pairs is considered as

disjoint in the gold standard, the majority vote would be setting all pairs to disjoint.
Regarding our gold standard, this method would reach an accuracy of 91%.

4.2 Handling Logical Inconsistency & Incoherence

After generating the list of disjointness axioms, we ordered the axioms by descending
confidences and enriched the DBpedia ontology incrementally always adding the axiom
with the highest confidence to the ontology. After each addition, the ontology is checked
for coherence and, by also considering the instances contained in the DBpedia dataset,
for consistency. If an incoherence or inconsistency is detected the lastly added axiom is
removed from the ontology and pruned from the axiom list.

Note that checking for consistency and coherence is a non-trivial task. Due to the
high number of instances contained in the DBpedia dataset it was not possible to use
standard OWL reasoners like Pellet [22] which are not suited for such large reposito-
ries. Therefore, we applied a two-step approach regarding the detection of incoherence
and inconsistence in the enriched ontology. Incoherence of a class means that this class
is not satisfiable, i.e., it has to be empty to conform to the schema. Incoherence is not
directly related to the actual existence of instances asserted to this or any other class.
Thus, it is sufficient to only consider the raw schema and ignore the instance data which
allows to query Pellet for satisfiability of each single class with good performance. To
also preserve consistency, instances have to be considered either way. To do this, we
combined results returned by the Pellet reasoner and from SPARQL queries sent to a
Virtuoso RDF database containing the instances for the DBpedia ontology. We iden-
tified three different cases which he had to deal with to catch possible inconsistencies
while enriching the ontology. We present these three cases in the following, all of them
are checked after adding a new disjointness axiom to the ontology.

The most obvious case of inconsistency is caused by individuals assigned to the
classes defined to be disjoint. This type of inconsistency is detectable by a non-empty
result set for the SPARQL query10

SELECT ?x WHERE { ?x a <ClassURI1> . ?x a <ClassURI2> . }

Furthermore, the ontology is inconsistent if the SPARQL query

SELECT ?x WHERE { ?x a <ClassURI1> . ?x <PropURI> ?y . }

returns a non-empty result while the ontology entails
< ClassURI2 > rdf : domain < PropURI >. Eventually, the third type of incon-
sistencies is detected if there are individuals fulfilling the query

SELECT ?x WHERE { ?x a <ClassURI1> . ?y <PropURI> ?x . }

while the ontology entails< ClassURI2 > rdf : range < PropURI >. It is worth noting
that these patterns should be able to detect most inconsistencies which can occur in the
DBpedia ontology by adding disjointness axioms. This is caused by the fact that the
ontology only employs a limited set of the features provided by OWL, e.g., it does not
contain cardinality restrictions.
10 < ClassURI1 > resp. < ClassURI2 > are used as placeholders for the actual URIs of the

classes the disjointness is stated for.

4.3 Creation of a Gold Standard

We created a gold standard of disjointness axioms on the DBpedia ontology for our ex-
periments. During its manual creation the human ontology engineers came across some
points which led to discussions. In the following, we describe some of these problems.

One point which turned out to be problematic is the distinction between different
functions of buildings, e.g., shopping mall and airport. Since there are several airport
buildings which also include shopping malls, it would be reasonable not to set both
classes as disjoint. On the other side, the actual functions of buildings are intensionally
disjoint because the airport functionality has no relation to the shopping mall function.
In this specific case, the way of modeling used in the DBpedia ontology favors the first
interpretation because the building may at the same time serve both functions, airport
and shopping mall, without the possibility to divide both parts. Thus, the subclasses of
building have been modeled to be pairwise disjoint.

Many problems during the creation of the gold standard were similar to these ones.
Another example is the differentiation between continents and countries since there
is, e.g., Australia which could be considered to be both a continent and a country. In
this case, we opted for a way of modeling that takes into consideration the difference
between the continent being a landmass and a country being an organizational unit
possibly located at a landmass.

For some classes, their intension was not clear by just using the information
available from the ontology itself. In these cases, the contents of the corresponding
Wikipedia articles were used to clarify the respective notions and for some cases the
extension of the specific class, i.e., the DBpedia instances assigned to these classes,
were considered for clarification purposes.

4.4 Results & Discussion

Analysis of Inconsistencies After creating the gold standard, we materialized all dis-
jointness axioms inferable from the gold standard. Based on this set of axioms, we
performed an analysis of all axioms contained in the different automatically generated
axiom lists. This way, we were able to compute a precision11 regarding the actually
inferable set of axioms in the gold standard. The results are shown in Table 4. For our
computations, we assumed our gold standard to be complete, i.e., classes not being im-
plicitly or explicitly stated as disjoint are considered not to be disjoint. Furthermore,
since it is not meaningful to compute recall and accuracy on this level without any
semantics of ontologies included, we left out these measures.

While enriching the DBpedia ontology with disjointness axioms our greedy ap-
proach raised various inconsistency errors caused by instances explicitly or implicitly
asserted to both classes of a disjoint class pair. Usually, there are two sources of such
errors. The first one is simply that the disjointness axiom determined by the automatic
learning process is incorrect, the other one are incorrect, explicit or implicit rdf:type
assertions. As described in Section 4.2, we only apply a heuristic approach for incon-
sistency detection which checks for three different kinds of inconsistencies. Table 5
shows the number of the different contradiction types.
11 For definitions of precision, recall and accuracy, see [27].

Table 4. Statistics for automatically generated axioms without materialization (compared to ma-
terialized gold standard)

Total Axioms over Threshold Correct Axioms Precision

LeDA 62,115 57,422 0.92
Correlation (0.005) 10,218 9,562 0.94
Correlation (0.05) 424 418 0.99
Naive ARM 14,994 13,623 0.91
Negative ARM 58 58 1.00

Table 5. Incoherences and inconsistencies detected while adding axioms

Axioms Incoherences Inconsistencies: Total Range Conflict Domain Conflict

Gold Standard 59,914 0 1,339 1,302 37
LeDA 62,115 0 1,837 1,759 78
Correlation (0.005) 10,218 0 2,068 2,028 40
Correlation (0.05) 424 0 262 257 5
Naive ARM 14,994 230 1,025 980 45
Negative ARM 176 0 70 69 1

As we are able to see from the numbers, most errors are caused by range restrictions.
This means that the range assertion of a specific property allows to infer a class asser-
tion for an instance which conflicts with the generated disjointness axiom. According to
our exploration of the inconsistencies, the most common error type is a disambiguation
error. An example for this kind of error is revealed by the obviously correct disjointness
axiom between the classes Person and Plant raised by the naive association rule mining
approach. While adding this disjointness axiom to the DBpedia ontology, a range con-
flict for the property starring has been detected by our enriching process. A more elab-
orate examination of the DBpedia data showed that the range of starring is set to be the
class Person but there exists a property starring between the instances Flat! (which is an
Indian movie) and Hazel (the tree). This is caused by an incorrect cast reference in the
infobox of the corresponding Wikipedia page of Flat!.12 The correct reference would
point to the actress Hazel Crowney.13 Thus, the learned disjointness axiom helped to
detect an error in Wikipedia which led to a wrong DBpedia information.

Semantically Founded Evaluation For the automatically generated axiom lists, we
not only computed the precision for the raw lists (see Table 4) but also the measures of
precision, recall and accuracy on their materializations. For this purpose, we enriched
the DBpedia ontology by the automatically generated disjointness axioms using our
greedy approach and afterwards computed a list of all disjointness axioms inferable
from the ontology. The most important results are shown in Table 6.

The best performance regarding the automatically generated disjointness axioms
is achieved by LeDA using the schema-based approach. Even if it did not reach the
highest precision value, the recall and accuracy values are the highest of all automatic
approaches. The precision with respect to the non-materialized list is at 0.92 which is

12 http://en.wikipedia.org/w/index.php?title=Flat!&oldid=
409238040

13 http://en.wikipedia.org/wiki/Hazel_Crowney

Fig. 1. Disambiguation error in Wikipedia infobox for movie Flat!

Table 6. Evaluation of generated axioms14

Inferable Axioms Correct Decisions Correct Axioms Precision Recall Accuracy

Gold Standard 59,914 - - - - -
Schlobach 65,006 60,597 60,597 0.93 0.92 0.92
Majority 66,049 59,914 59,914 0.91 1.00 0.91
LeDA 60,314 57,557 55,868 0.93 0.85 0.87
Correlation (0.005) 41,786 43,049 39,350 0.94 0.60 0.65
Correlation (0.05) 3,246 9,381 3,246 1.00 0.05 0.14
Naive ARM 47,358 49,173 45,198 0.95 0.68 0.74
Negative ARM 10,790 16,925 10,790 1.00 0.16 0.26

quite high, though not as high as the correlation-based approaches. The main advantage
of the correlation-based approaches is their high precision for certain thresholds but
they suffer from a relatively low recall. To have a more detailed insight into the good
performance of LeDA in this task, we also had a look at the feature usage by means
of gain ratio evaluation of Weka. According to this analysis, the classifier mostly uses
the features foverlapc (gain ratio of 0.59), fqgrams (0.11) and f boverlapc

(0.11). The
other activated features only gave a maximum gain ratio of 0.02 or less. The negative
association rule mining approach suffers from the same problem as the correlation-
based one with respect to recall but in exchange reaches 1.0 for precision which makes
it very suitable if high precision is more important than high recall.

Taking into consideration the feature usage of LeDA, we can conclude that it is very
dependent on the available training data and its similarity to the actual data which has
to be classified. This is the main advantage of the induction-based approaches and re-
garding the statistics both association rule mining approaches perform well putting their
specific emphasis either on precision or recall. Thus, if there is no appropriate training
data available, these association rule mining-based approaches should be considered
and chosen depending on the desired balance between precision and recall.

Regarding the baselines it is important to mention that while delivering some of the
best results regarding precision, recall and accuracy, they are not suited for being used
in general. For the majority approach, one has to determine first what is more common,
disjointness or non-disjointness, which means creating a disjointness gold standard for
the ontology. The strong disjointness assumption proposed by Schlobach is only this
successful because for the DBpedia ontology the majority of siblings is in fact disjoint
but in general there might be ontologies following other characteristics, e.g., for the
Person subtree of the DBpedia ontology the assumption does not hold.

5 Conclusion & Outlook

In this paper, we presented a set of inductive methods for generating disjointness axioms
from large knowledge repositories. We performed a comparative evaluation with the
most commonly used methods and heuristics for generating disjointness axioms, and
discussed the respective advantages of inductive, i.e. instance-based, and schema-based
methods for learning disjointness. Our experiments indicate that it is possible to induce

14 correct decisions = true positives + true negatives; correct axioms = true positives

disjointness axioms from an existing knowledge base with an accuracy that is well
enough to help detecting inconsistencies in datasets. This is particularly true if there is
no appropriate training data available to use tools like LeDA. As we have also shown,
we were able to identify various problems in DBpedia by adding the automatically
generated axioms to the DBpedia ontology.

While further experiments with other data sets will be indispensable, we are con-
fident that our methods will facilitate the development of more efficient means to sup-
porting users of large RDF repositories in detecting and fixing potential problems in the
data sets. Future work includes the integration of our methods with existing approaches
to acquiring schema-level knowledge from linked data, e.g., based on inductive log-
ical programming [12] or association rule mining [25]. The incremental induction of
schemas including disjointness axioms could facilitate, for example, an automated syn-
chronization of the DBpedia ontology with DBpedia Live15 and immediate diagnoses
whenever changes to the underlying Wikipedia articles are submitted. Logical inconsis-
tencies provoked by the enrichment of learned or manually engineered schemas would
need to be resolved by methods for consistent ontology evolution [10]. Finally, we will
investigate the applicability of our approaches to the problem of learning property dis-
jointness.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of
the 20th International Conference on Very Large Data Bases (VLDB). pp. 487–499. Morgan
Kaufmann (1994)

2. Antonie, M.L., Zaı̈ane, O.R.: Mining positive and negative association rules: An approach for
confined rules. In: Proceedings of the 8th European Conference on Principles and Practice
of Knowledge Discovery in Databases (PKDD). pp. 27–38 (2004)

3. Auer, S., Lehmann, J.: Creating knowledge out of interlinked data. Semantic Web 1(1-2),
97–104 (2010)

4. Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge
bases using formal concept analysis. In: Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence (IJCAI). pp. 230–235. AAAI Press (2007)

5. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.:
DBpedia - a crystallization point for the web of data. Web Semantics 7(3), 154–165 (2009)

6. Borgelt, C., Kruse, R.: Induction of association rules: Apriori implementation. In: Proceed-
ings of the 15th Conference on Computational Statistics (COMPSTAT). pp. 395–400. Phys-
ica Verlag (2002)

7. Cimiano, P., Völker, J.: Text2Onto. In: Natural Language Processing and Information Sys-
tems, Lecture Notes in Computer Science, vol. 3513, pp. 257–271. Springer Berlin / Heidel-
berg (2005)

8. Cohen, J.: Statistical power analysis for the behavioral sciences. Larwence Erlbaum, New
Jersey, 2nd edn. (1988)

9. Cornet, R., Abu-Hanna, A.: Usability of expressive description logics – a case study in
UMLS. In: Proceedings of the AMIA Annual Symposium. pp. 180–184 (2002)

10. Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for han-
dling inconsistency in changing ontologies. In: The Semantic Web – ISWC 2005. Lecture
Notes in Computer Science, vol. 3729, pp. 353–367. Springer Berlin / Heidelberg (2005)

15 http://live.dbpedia.org

11. Haase, P., Völker, J.: Ontology learning and reasoning – dealing with uncertainty and in-
consistency. In: Uncertainty Reasoning for the Semantic Web I, Lecture Notes in Computer
Science, vol. 5327, pp. 366–384. Springer Berlin / Heidelberg (2008)

12. Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very large
knowledge bases. International Journal on Semantic Web and Information Systems 5(2), 25–
48 (2009)

13. Hitzler, P., van Harmelen, F.: A reasonable semantic web. Journal of Semantic Web 1(1-2),
39–44 (2010)

14. Lehmann, J.: DL-Learner: learning concepts in description logics. Journal of Machine Learn-
ing Research (JMLR) 10, 2639–2642 (2009)

15. Lehmann, J., Bühmann, L.: ORE – a tool for repairing and enriching knowledge bases. In:
The Semantic Web – ISWC 2010, Lecture Notes in Computer Science, vol. 6497, pp. 177–
193. Springer Berlin / Heidelberg (2010)

16. Mädche, A., Staab, S.: Discovering conceptual relations from text. In: Proceedings of the
14th European Conference on Artificial Intelligence (ECAI). pp. 321–325. IOS Press (2000)

17. Meilicke, C., Völker, J., Stuckenschmidt, H.: Learning disjointness for debugging mappings
between lightweight ontologies. In: Knowledge Engineering: Practice and Patterns, Lecture
Notes in Computer Science, vol. 5268, pp. 93–108. Springer Berlin / Heidelberg (2008)

18. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging owl ontologies. In: Proceedings of the 14th
international conference on World Wide Web (WWW). pp. 633–640. ACM (2005)

19. Qi, G., Haase, P., Huang, Z., Ji, Q., Pan, J.Z., Völker, J.: A kernel revision operator for
terminologies - algorithms and evaluation. In: The Semantic Web – ISWC 2008. pp. 419–
434. Springer Berlin / Heidelberg (2008)

20. Schlobach, S.: Debugging and semantic clarification by pinpointing. In: The Semantic Web:
Research and Applications. Lecture Notes in Computer Science, vol. 3532, pp. 27–44.
Springer Berlin / Heidelberg (2005)

21. Schlobach, S.: Diagnosing terminologies. In: Proceedings of the 20th National Conference
on Artificial Intelligence (NCAI). vol. 2, pp. 670–675. AAAI Press (2005)

22. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl reasoner.
Web Semantics 5, 51–53 (2007)

23. Stumme, G., Hotho, A., Berendt, B.: Semantic web mining: State of the art and future direc-
tions. Journal of Web Semantics 4(2), 124–143 (2006)

24. Teng, W.G., Hsieh, M.J., Chen, M.S.: On the mining of substitution rules for statistically
dependent items. In: Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM). pp. 442–449. IEEE Computer Society (2002)

25. Völker, J., Niepert, M.: Statistical schema induction. In: The Semantic Web: Research and
Applications. Lecture Notes in Computer Science, vol. 6643, pp. 124–138. Springer Berlin /
Heidelberg (2011)

26. Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning disjointness. In: The Semantic Web:
Research and Applications. pp. 175–189. Lecture Notes in Computer Science, Springer
Berlin / Heidelberg (2007)

27. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann Series in Data Management Systems, Morgan Kaufmann, 2nd edn.
(2005)

28. Zhang, C., Zhang, S.: Association rule mining: models and algorithms. Springer Berlin /
Heidelberg (2002)

