
3

Criteria and Evaluation for Ontology Modularization

Techniques

Mathieu d’Aquin1, Anne Schlicht2,

Heiner Stuckenschmidt2, and Marta Sabou1

1 Knowledge Media Institute (KMi)

The Open University, Milton Keynes, UK

{m.daquin, r.m.sabou}@open.ac.uk
2 University of Mannheim, Germany

{anne, heiner}@informatik.uni-mannheim.de

Summary. While many authors have argued for the benefits of applying principles of modu-

larization to ontologies, there is not yet a common understanding of how modules are defined

and what properties they should have. In the previous section, this question was addressed

from a purely logical point of view. In this chapter, we take a broader view on possible criteria

that can be used to determine the quality of a modules. Such criteria include logic-based, but

also structural and application-dependent criteria, sometimes borrowing from related fields

such as software engineering. We give an overview of possible criteria and identify a lack of

application-dependent quality measures. We further report some modularization experiments

and discuss the role of quality criteria and evaluation in the context of these experiments.

3.1 Introduction

Problems with large monolithical ontologies in terms of reusability, scalability and mainte-

nance have lead to an increasing interest in techniques for extracting modules from ontologies.

Currently, existing work suffers from the fact that the notion of modularization is not as well

understood in the context of ontologies as it is in software engineering. While there is a clear

need for ontology modularization, there are no well-defined and broadly accepted ideas about

the criteria that define a good module. As a result, several approaches have been recently used

to extract modules from ontologies, each of them implementing its own intuition about what

a module should contain and what should be its qualities. In addition, a number of formal and

informal modularization criteria have been proposed that are strongly influenced by certain

use cases for modularization. This lack of consensus about quality criteria hinders the devel-

opment of the field as a whole. On one hand, it is difficult to take up the results of the field

outside itself because of a lack of guidelines about which technique to choose under which

circumstances. On the other hand, within the field, it is impossible to compare the various

techniques to each other.

Our hypothesis is that there is no universal way to modularize an ontology and that the

choice of a particular technique or approach should be guided by the requirements of the ap-

plication or scenario relying on modularization. In fact, we have already observed a strong



60 Mathieu d’Aquin et al.

correspondence between the two major use cases in which modularization is needed and the

two types of techniques that are used [7]. First, we distinguish scenarios where a large, mono-

lithic ontology needs to be split up in order to allow its easier maintenance and use (e.g., by

using reasoners and visualization tools). Accordingly, a significant group of techniques re-

ported in the literature perform ontology partitioning by dividing an ontology into a set of

significant modules that together form the original ontology [11, 6, 15]. The second class of

scenarios, geared towards selective use and reuse, are those where a smaller part of an ontol-

ogy that covers certain aspects of the domain is identified as a basis for a specific application.

Candidate parts for reuse need to be small enough to be easily visualized and integrated in

other applications than the one they have been initially built for.Module extraction techniques

address such scenarios and refer to extracting a module from an ontology to be used for a par-

ticular purpose, i.e. covering a particular subvocabulary of the original ontology [14, 12, 7].

Based on the observation above, we believe that modularization criteria should be defined

in terms of the applications for which the modules are created. In the remainder of this chapter,

we survey existing criteria that can be used to evaluate modularization. Our goal is to provide a

framework for evaluating and comparing modularization techniques according to application

requirements, and so, a guideline to chose the right technique or combination of technique in

a given scenario. Accordingly, we describe a set of experiments in which we apply a number

of modularization techniques and analyze the results regarding the considered criteria. Also,

as our main hypothesis is that the evaluation of modularization depends on the application

requirements, these experiments are based a concrete applications scenario: the selection of

relevant knowledge in existing ontology to be used in annotation.

The goal is to characterize the requirements of this particular application using the re-

viewed criteria and thus, to analyze the results of existing ontology modularization techniques

regarding these requirements. Looking at the results of these experiments, we aim at better

understanding the fundamental assumptions underlying the current modularization techniques

and thus, at providing the building blocks for a more comprehensive evaluation, helping the

application developers in choosing the appropriate technique and guiding the designers of

techniques in further developments.

3.2 Use Cases for Modularization

The increasing awareness of the benefits of ontologies for information processing in open and

weakly structured environments has lead to the creation of a number of such ontologies for real

world domains. In complex domains such as medicine these ontologies can contain thousands

of concepts. Examples of such large ontologies are the NCI Thesaurus with about 27.500 and

the Gene Ontology with about 22.000 concepts. Other examples can be found in the area of e-

commerce where product classification such as the UNSPSC or the NAICS contain thousands

of product categories. While being useful for many applications, the size of these ontologies

causes new problems that affect different steps of the ontology life cycle.

Maintenance:

Ontologies that contain thousands of concepts cannot be created and maintained by a single

person. The broad coverage of such large ontologies normally requires a team of experts. In

many cases these experts will be located in different organizations and will work on the same

ontology in parallel. An example for such a situation is the Gene Ontology that is maintained

by a consortium of experts.



3 Criteria and Evaluation for Ontology Modularization Techniques 61

Publication:

Large ontologies are mostly created to provide a standard model of a domain to be used by

developers of individual solutions within that domain. While existing large ontologies often

cover a complete domain, the providers of individual solutions are often only interested in

a specific part of the overall domain. The UNSPSC classification for example contains cate-

gories for all kinds of products and services while the developers of an online computer shop

will only be interested in those categories related to computer hardware and software.

Validation:

The nature of ontologies as reference models for a domain require a high degree of quality of

the respective model. Representing a consensus model, it is also important to have proposed

models validated by different experts. In the case of large ontologies it is often difficult, if not

impossible, to understand the model as a whole due to cognitive limits. What is missing is an

abstracted view on the overall model and its structure as well as the possibility to focus the

inspection of a specific aspect.

Processing:

On a technical level, very large ontologies cause serious scalability problems. The complexity

of reasoning about ontologies is well known to be critical even for smaller ontologies. In the

presence of ontologies like the NCI Thesaurus, not only reasoning engines but also modelling

and visualization tools reach their limits. Currently, there is no modelling tool that can provide

convenient modelling support for ontologies of the size of the NCI ontology.

All these problems are a result of the fact that a large ontology is treated as a single

monolithic model. Most problems would disappear, if the overall model consists of a set of

coherent modules about a certain subtopic that can be used independently of the other modules

while still containing information about its relation to these other modules.

3.3 Modularization Approaches

We consider an ontology O as a set of axioms (subclass, equivalence, instantiation, etc.) and

the signature Sig(O) of an ontology O as the set of entity names occurring in the axioms of

O, i.e. its vocabulary.

In the following, we deal with several approaches for ontology modularization, having

different assumptions about the definition of an ontology module. The assumption we adopt

as a basis for our discussion is that a module is considered to be a significant and self-contained

sub-part of an ontology. Therefore, an module Mi(O) of an ontology O is also a set of axioms

(an ontology), with the minimal constraint that Sig(Mi(O)) ⊆ Sig(O). Note that, while it
may often be desirable, it is not always the case that Mi(O) ⊆ O.

3.3.1 Ontology Partitioning Approaches

The task of partitioning an ontology is the process of splitting up the set of axioms into a set

of modules {M1� · · · � Mk} such that each Mi is an ontology and the union of all modules is



62 Mathieu d’Aquin et al.

semantically equivalent to the original ontology O. Note that some approaches being labeled

as partitioningmethods do not actually create partitions, as the resulting modules may overlap.

There are several approaches for ontology partitioning that have been developed for different

purposes.

The approach of [11] aims at improving the efficiency of inference algorithms by lo-

calizing reasoning. For this purpose, this technique minimizes the shared language (i.e. the

intersection of the signatures) of pairs of modules. A message passing algorithm for reasoning

over the distributed ontology is proposed for implementing resolution-based inference in the

separate modules. Completeness and correctness of some resolution strategies is preserved

and others trade completeness for efficiency.

The approach of [6] partitions an ontology into a set of modules connected by E-
Connections. This approach aims at preserving the completeness of local reasoning within

all created modules. This requirement is supposed to make the approach suitable for support-

ing selective use and reuse since every module can be exploited independently of the others.

A tool that produces sparsely connected modules of reduced size was presented in [15].

The goal of this approach is to support maintenance and use of very large ontologies by provid-

ing the possibility to individually inspect smaller parts of the ontology. The algorithm operates

with a number of parameters that can be used to tune the result to the requirements of a given

application.

3.3.2 Module Extraction Approaches

The task of module extraction consists in reducing an ontology to the sub-part, the module, that

covers a particular sub-vocabulary. This task has been called segmentation in [14] and traversal

view extraction in [12]. More precisely, given an ontology O and a set SV ⊆ Sig(O) of terms

from the ontology, a module extraction mechanism returns a module MSV , supposed to be

the relevant part of O that covers the sub-vocabulary SV (Sig(MSV ) ⊇ SV ). Techniques for

module extraction often rely on the so-called traversal approach: starting from the elements

of the input sub-vocabulary, relations in the ontology are recursively “traversed” to gather

relevant (i.e. related) elements to be included in the module.

Such a technique has been integrated in the PROMPT tool [12], to be used in the Protégé

environment. This approach recursively follows the properties around a selected class of the

ontology, until a given distance is reached. The user can exclude certain properties in order to

adapt the result to the needs of the application.

The mechanism presented in [14] starts from a set of classes of the input ontology and ex-

tracts related elements on the basis of class subsumption and OWL restrictions. Some optional

filters can also be activated to reduce the size of the resulting module. This technique has been

implemented to be used in the Galen project and relies on the Galen Upper Ontology.

Inspired from the previously described techniques, [7] defines an approach for the purpose

of the dynamic selection of relevant modules from online ontologies. The input sub-vocabulary

can contain either classes, properties, or individuals. The mechanism is fully automatized,

is designed to work with different kinds of ontologies (from simple taxonomies to rich and

complex OWL ontologies) and relies on inferences during the modularization process.

3.4 Evaluation Criteria for Modularization

In the previous section, we have briefly presented a number of different approaches for on-

tology partitioning and module extraction. In this section, we take a closer look at different



3 Criteria and Evaluation for Ontology Modularization Techniques 63

criteria for evaluating either the modularization resulting from the application of a modulariza-

tion technique or the system implementing the modularization technique. Before that, we start

by looking at criteria that have been adopted for the classical notion of a module in software

engineering.

3.4.1 Criteria from Software Engineering

The author of [9] reviews a set of features of software engineering modules with respect to

what is called in this chapter the requirements for logical modules. From this analysis, two

general criteria characterizing software engineering modules can be considered: encapsulation

and independence.

Encapsulation.

Encapsulation refers to the distinction between the interface and the body (or implementa-

tion) of a program in software engineering. This distinction does not really apply when using

Semantic Web technologies, but can be related to other notions like substitutability and infor-

mation hiding. Indeed, the fact that a module can be easily exchanged for another, or internally

modified, without side-effects on the application can be a good indication of the quality of the

module. Module extraction techniques are intrinsically related to information hiding, since

they aim at removing from the ontology the elements that are not related to the given sub-

vocabulary, playing the role of an interface between the ontology and the application.

Independence.

A well-designed software module should be independent from the other modules used in

the same applications in the sense that it should be reusable and exploitable separately. The

same applies in ontology engineering, where ontology modules have to be self-contained and

reusable components. Additionally, having independent modules is a way to improve the scal-

ability of reasoning mechanisms by allowing to focus on a smaller set of elements (in the case

of module extraction techniques, see e.g. [14]), or the use of distributed reasoning (in the case

of partitioning techniques, see e.g. [11, 6]).

3.4.2 Evaluating Modularizations

Logical Criteria

If we look at ontologies as logical theories, it is a natural approach to define modularization

criteria in terms of their logical properties, i.e. looking at their entailments. Recently, several

papers have been interested in defining such criteria.

Local Correctness.

is probably the most obvious formal relation between a module Mi(O) and its original ontol-
ogy O. It states that every axiom being entailed by Mi(O) should also be entailed by O. In

other terms, nothing has been added in the module that was not originally in the ontology.



64 Mathieu d’Aquin et al.

Local Completeness.

is the reverse property of local correctness. It is considered in many studies as the most im-

portant logical criterion concerning modularization. A module is said to be locally complete

w.r.t. a local signature Loc(Mi) ⊆ Sig(Mi) (e.g., the original set of entities of interest in

an extraction technique) if every entailment of O that concerns only elements of Loc(Mi) is
preserved in Mi(O). Local completeness has been formalized for example in [3] using the

notion of conservative extension and also relates to the one of uniform interpolant described

in [6].

Structural Criteria

[13] describes a set of criteria that can be computed on the basis of the structure of the modu-

larized ontology. The criteria are inherently related to the previously mentioned software en-

gineering criteria as they have been designed to trade-off maintainability as well as efficiency

of reasoning in a distributed system, using distributed modules.

Size.

Despite its evident simplicity, the relative size of a module (number of classes, properties and

individuals) compared to its source ontology is among the most important indicators of the

efficiency of a modularization technique. Indeed, the size of a module has a strong influence

on its maintainability and on the robustness of the applications relying on it: a big amount of

information in one module leads to less flexibility in its exploitation and evolution. On the

other hand, too small modules would not cover a sufficiently broad domain to be useful and

would lead to problems related to other criteria (e.g. connectedness).

Intra-Module Distance.

It is worth to measure how the terms described in a module move closer to each other com-

pared to the original ontology, as an indication of the simplification of the structure of the

module. This intra-module distance is computed by counting the number of relations in the

shortest path from one entity to the other. This is particularly relevant in the case of module

extraction techniques, where reducing the distance between the input terms facilitates their

joint visualization and helps in understanding their relationship in the original ontology.

Quality of the Modules

There are two different kinds of approaches for determining the quality of an existing ontol-

ogy that can be used to evaluate the quality of ontology modules. While some approaches

analyze the representational structures of an ontology on the basis of the actual content, others

compare the content of the ontology with alternative representations of the domain (e.g. a doc-

ument corpus) to determine how well it models relevant aspects of the domain it describes. We

propose to use and combine these approaches in order to get an estimation of the suitability of

a module for describing a certain aspect of a domain.



3 Criteria and Evaluation for Ontology Modularization Techniques 65

Module cohesion.

Cohesion denotes the degree of relatedness of elements within the same module. In the area

of software engineering, a number of measures of cohesion have been defined that try to

measure the connectedness of methods in a module based on criteria such as shared instance

variables [2]. For the case of ontologies, Yao and his colleagues propose a set of cohesion

metrics based on the structure of the inheritance hierarchy [17] and show that these metrics

correlate with the intuition of human evaluators: the number of root classes in the hierarchy,

the number of leaf classes, and the maximum depth of the hierarchy. The relevance of the

definitions depends on all of these factors and only their combination provides a suitable

indicator.

Richness of the representation.

Another important aspect related to the quality of modules is the amount of conceptual in-

formation retained in the module. We can measure this amount using some criteria that are

inspired by the notion of schema richness proposed by Tatir and his colleagues [16] to mea-

sure the quality of ontologies. Here measuring the richness of the specifications in a module

is based on the amount of relational information present in relation to the number of classes.

We distinguish between the richness of the subsumption hierarchy – the average number of

subclass relations per class – and the richness of the relations between classes – the average

number of domain relations per class. It is clear that the richness of semantic information in a

module strongly depends on the richness of the ontology the module originated from. A better

indication of the quality is therefore provided by comparing the richness of the module with

the richness of the corresponding set of concepts in the original ontology.

Domain coverage.

In the context of real applications domain coverage is the most important criterion as it deter-

mines how well the module fits the representational requirements of the application at hand.

In order to be able to determine the domain coverage, we need a suitable representation of

the domain that should be covered by the module. In cases where no instance data exists, we

can adopt techniques of data-driven ontology evaluation that have been proposed in the area

of ontology learning [1]. The idea is to compare the ontology with a corpus of documents in

order to determine how well the ontology describes the content of the documents. These eval-

uations help in determining if the modularization technique have generated significant module

according to the different domains or topics covered by the original ontology. What have to

be evaluated is whether or not these modules are actually focused on a restricted number of

domains, and if the domains are localized in the modularization, i.e. if they have not been

spread over an important number of modules.

Relations Between Modules

Connectedness.

The independence (see Section 3.4.1), and so the efficiency, of a set of modules resulting from

a partitioning technique can be estimated by looking at the degree of interconnectedness of

the generated modules. A modularized ontology can be depicted as a graph, where the axioms

are nodes and edges connect every two axioms that share a symbol. The connectedness of a

module is then evaluated on the basis of the number of edges it shares with other modules.



66 Mathieu d’Aquin et al.

Redundancy.

In case of partitioning techniques that allow modules to overlap, redundancy is a common

way of improving efficiency and robustness. On the other hand, having to deal with redundant

information increases the maintenance effort, and it has been shown in [11] that reasoning

on non-redundant representations of parts of the complete model can lead to performance

improvements.

In addition, computing the level of redundancy (the overlap) in modules generated using

different techniques can be a way to compare and relate these techniques. More precisely, it

can indicate whether these techniques rely on similar intuitions, if one is more general than

the other, or, on the contrary, if they result in very different (and possibly complementary)

modules.

Inter-module distance.

Counting the number of modules that have to be considered to relate two entities can help in

characterizing the communication effort caused by the partition of an ontology. Indeed, if the

modules resulting from an ontology partitioning technique are intended to be used on different

machines, over a network, the inter-module distance gives an indication of the amount of

distant access to other modules that is required to manipulate the considered entities.

3.4.3 Application Criteria

In [7] the authors focus on the use of modularization for a particular application. This leads

to the definition of several criteria, most of them characterizing the adequacy of the design

of a modularization tool with respect to constraints introduced by the application: assump-

tions on the ontology, the level of user interaction, and the availability of tools for using the

resulting modules. Additionally, applications may have different requirements regarding the

performance of the modularization tool.

Assumptions on the ontology.

Most of the existing approaches rely on some assumptions. For example, those described

in [5] and [14] are explicitly made to work on OWL ontologies, whereas [15] can be used

either on RDF or OWL but only exploits RDF features. In [14], the ontology is required to

be well-designed and to use complex OWL constructs to describe classes. Moreover, some of

the filters used to reduce the size of a module are dependent on elements of the Galen upper

ontology.

Level of user interaction.

In many systems the required user entries are limited to the inputs of the algorithm. In certain

cases, some numerical parameters can be required [15] or some additional procedures can be

manually (de)activated [14]. The technique in [12] has been integrated in the Protégé ontol-

ogy editor to support knowledge reuse during the building of a new ontology. In this case,

modularization is an interactive process where the user has the possibility to extend the cur-

rent module by choosing a new starting point for the traversal algorithm among the boundary

classes of the module.



3 Criteria and Evaluation for Ontology Modularization Techniques 67

Use of modules.

Regarding the aspect of actually using modules in other applications, we only know of two

approaches that make their modules available to reasoners/theorem provers (but not to any

other applications). The modules extracted in [5] are linked together using E-Connections and
aim at being used in a reasoner. In a similar way, the knowledge base partitions created by the

approache of [11] are used in a dedicated theorem prover.

Performance.

Most of the papers concerning modularization techniques do not give any indication about the

performance of the employed method (with the noticeable exception of [14]). Performance is a

particularly important element to be considered when using a modularization technique for the

purpose of an application. Different applications may have different requirements, depending

on whether the modularization is intended to be used dynamically, at run-time, or as a “batch”

process.

3.5 Experiments with Modularization Techniques and Criteria

In this section, we apply the criteria described in the previous section to a particular application

scenario, on the basis of two well defined examples. The idea is to evaluate how these criteria

can be used in characterizing the application requirements and the assumptions underlying the

modularization techniques.

3.5.1 The Knowledge Selection Scenario

Knowledge selection has been described in [7] as the process of selecting the relevant knowl-

edge components from online available ontologies and has been in particular applied to the

Magpie application. Magpie [8] is a Semantic Web browser which helps users to quickly make

sense of the information provided by a Web page by allowing them to visually access the se-

mantic data associated with that page. Available as a browser plugin in which a set of classes

are displayed, Magpie can identify instances of these classes in the current Web page and

highlight them with the color associated to each class. Core to Magpie is a manually selected

ontology that contains the information needed to identify the relevant instances in Web pages.

In our current work we are extending Magpie towards open semantic browsing in which

the tool automatically selects and combines online ontologies relevant to the content of the

current page. As such, the user is relieved from manually choosing a suitable ontology every

time he wishes to browse new content. Such an extension of our tool relies on mechanisms

that can not only dynamically select appropriate ontologies from the Web, but can also extract

from these ontologies the relevant and useful parts to describe classes in the current Web page.

Our previous work and experiences in ontology selection [10] made it clear that modu-

larization may play a crucial role in complementing the current selection techniques. Indeed,

selection algorithms tend to run into two major problems. First, if the selection returns a large

ontology this is virtually useless for a tool such as Magpie which only visualises a relatively

small number of classes at a time. Unfortunately, in the experiments we have performed large

ontologies are often returned. What is needed instead is that the selection process returns a

part (module) of the ontology that defines the relevant set of terms. A second problem is that



68 Mathieu d’Aquin et al.

in many cases it is difficult to find a single ontology that covers all terms (we observed this

knowledge sparseness phenomenon in [10]). However, a combination of one or more ontolo-

gies could cover all the query terms. This problem is related to modularization in the sense

that it is easier to combine small and focused knowledge modules than ontologies of large size

and coverage.

Fig. 3.1. The knowledge selection process and its use for semantic browsing with Magpie.

These considerations justify the need to extend selection techniques with modularization

capabilities. In Figure 3.1 we depict the three major generic steps of the knowledge selection

process that integrates ontology selection, modularization and merging.

3.5.2 Experimental Setting

In the scenario described in the previous section, modularization is integrated in a fully au-

tomatic process, manipulating automatically selected online ontologies for the purpose of an-

notation in Magpie. In this section, we simulate the process of knowledge selection on two

examples, using four different techniques, in order to evaluate and compare their results3.

The purpose is to characterize the requirements of this particular scenario using the criteria

defined in Section 3.4, and to show how modularization techniques respond to the selected

experiments regarding these requirements.

The Examples

We consider two examples, originally described in the context of ontology selection in [10],

where the goal is to obtain an ontology module for the annotation of news stories. We simulate

the scenario described in Section 3.5.1 by manually extracting relevant keywords in these

stories, using ontology selection tools4 to retrieve ontologies covering these terms, and then

applying modularization techniques on these ontologies (steps 1 and 2 in figure 3.1).

In the first example, we consider the case where we want to annotate the news stories

available on the KMi website5. We used the keywords Student, Researcher, and University to

select ontologies to be modularized, and obtain three ontologies covering these terms:

3 Actual results are available at http://webrum.uni-mannheim.de/math/lski/

Modularization
4 in particular Watson (http://watson.kmi.open.ac.uk).
5 http://news.kmi.open.ac.uk/



3 Criteria and Evaluation for Ontology Modularization Techniques 69

ISWC: http://annotation.semanticweb.org/iswc/iswc.owl

KA: http://protege.stanford.edu/plugins/owl/owl-library/ka.owl

Portal: http://www.aktors.org/ontology/portal

It is worth to mention that this example is designed to be simple: we have chosen a well

covered domain and obtained three well defined OWL ontologies of small size (33 to 169

classes).

The second example was used in [10] to illustrate the difficulties encountered by ontology

selection algorithms. Consequently, it also introduces more difficulties for the modularization

techniques, in particular because of the variety of the retrieved ontologies in terms of size and

quality. It is based on the following news snippet:

“The Queen will be 80 on 21 April and she is celebrating her birthday with a family dinner

hosted by Prince Charles at Windsor Castle”6

Using the keywords Queen, Birthday and Dinner, we obtained the following ontologies,

covering (sometimes only partially) this set of terms:

OntoSem: http://morpheus.cs.umbc.edu/aks1/ontosem.owl

TAP: http://athena.ics.forth.gr:9090/RDF/VRP/Examples/tap.rdf

Mid-Level: http://reliant.teknowledge.com/DAML/Mid-level-ontology.owl, covering only

the terms Queen and Birthday

Compared to Example 1, the ontologies used in Example 2 are bigger (from 1835 classes in

Mid-Level to 7596 in OntoSem). Moreover, they contain different levels of descriptions. For

example, OntoSem is a big, complex OWL ontology containing a lot of properties (about

600), whereas TAP is simple RDFS taxonomy without any properties. In that sense, we use

Example 1 to assess basic characteristics of the modularization techniques and then, rely on

Example 2 to show how these characteristics are influenced by the properties of the ontologies.

Evaluated criteria.

Logical criteria are of particular importance when the modules resulting of the modularization

techniques are intended to be used in reasoning mechanisms, but should not be emphasized in

our use case, which focuses on a human interpretation of the module.

On the contrary, structural criteria are fundamental indicators for estimating the efficiency

of the modularization techniques. Indeed, the size of the returned ontology module is crucial

since Magpie only needs relevant parts of ontologies, small enough to be visualized within

the browser and to be easily interpreted by the user in relation with the current Web page.

However, it is essential to keep enough knowledge in the module to maintain a understandable

structure around the considered terms.

Evaluating the quality of the resulting modules is a crucial task, in particular in applica-

tions where modularization is intended to facilitate ontology reuse. However, applying and

interpreting the metrics for evaluating module quality require important (human) effort, which

go beyond the scope of our experiments, intending to simulate an automatic process.

Criteria dedicated to sets of interconnected modules resulting from partitioning techniques

– redundancy, connectedness, and inter-module distance – are not relevant in the considered

scenario, as we are only interested in one module. One of the goals of modularization in our

use case is to facilitate the exploitation, and so the interpretation, of the knowledge related

to the input terms in ontologies. In that sense, the intra-module distance between these terms

6 http://news.billinge.com/1/hi/entertainment/4820796.stm



70 Mathieu d’Aquin et al.

should be reduced in such a way that they can be considered and apprehended together by the

user.

In the knowledge selection scenario, modularization is integrated in a complete process,

leading to particular constraints concerning application criteria. The results of Example 2

should help to better understand which assumptions the different techniques rely on. Since

knowledge selection is fully automatized, the required level of user interaction should be

minimal. Finally, in the considered scenario, modularization is intended to be used at run-

time, leading to fundamental constraints concerning the performance of the modularization

tool.

3.5.3 Experimented Techniques

As already described in [7], it is quite obvious that module extraction techniques fit better in

the considered scenario than partitioning tools. Indeed, we want to obtain onemodule covering

the set of keywords used for the selection of the ontology and constituting a sub-vocabulary

of this ontology. However, the result of partitioning techniques can also be used by selecting

the set of generated modules that cover the considered terms. The criteria are then evaluated

on this set of modules as grouped together by union.

We have chosen to consider only available partitioning and module extraction techniques

that are sufficiently stable and that can easily be used on the previously described ontologies

(e.g., without requiring language conversion). We have selected two ontology partitioning

tools:

PATO: A standalone application described in [15].

SWOOP: The partitioning functionality included in the SWOOP ontology editor and de-

scribed in [5].

and two module extraction tools:

KMi: A standalone application developed at KMi for the purpose of the knowledge selection

scenario, as described in [7].

Prompt: The module extraction feature of the Prompt toolkit, integrated as a plugin of the

Protégé ontology editor, as described in [12].

These tools are described in more details below.

Ontology Partitioning Technique: SWOOP

SWOOP7 is a popular ontology editor, focused on OWL ontologies and relying on an

hypertext-like way of navigating in the ontology entities (see Figure 3.2). SWOOP is de-

veloped by the same group who made the Pellet OWL reasoner, and inference capabilities can

be used during the editing process thanks to Pellet. Another particularity of SWOOP is that,

in addition to standard OWL ontologies, it can manage E-Connections based ontologies: local
ontologies linked together by E-Connections [4].

SWOOP integrates a fully automatic ontology partitioning functionality. This functional-

ity, based on the paper [5], is supposed to divide standard OWL ontologies to create a set of

local ontologies, linked together by E-Connections. This partitioning feature of the SWOOP

editor is further referred to as SWOOP.

From these elements we can already get an evaluation of some of the application criteria:

SWOOP is fully automatic, works only on OWL ontologies (without imports) and there exist

tools (the SWOOP editor, Pellet) to exploit the resulting set of modules.

7 http://www.mindswap.org/2004/SWOOP/



3 Criteria and Evaluation for Ontology Modularization Techniques 71

Fig. 3.2. Screenshot of the SWOOP editor.

Ontology Partitioning Technique: PATO

PATO is a standalone application written in java (see Figure 3.3) and implementing the tech-

nique described in [15]. In principle, PATO divides an ontology into a set of modules by first

computing a dependency graph between the entities of the ontology, relying on RDF(S) rela-

tions between them. Entities are then clustered according to measures inspired from the field

of network analysis, aiming at minimizing the interconnections between modules.

Concerning the application criteria, as it can be seen in Figure 3.3, PATO is supposed to

be fine-tuned using different parameters at each step of the partitioning process. However, an

ongoing work is currently conducted towards the automatic configuration of PATO [13]. No

particular reasoner is available for exploiting modules resulting from this tools. However, each

module is a self-contained OWL ontology that can be used with usual tools. Finally, even if it

works with most of the ontologies in RDF(S) or OWL, PATO only exploits the representation

primitive of RDF(S).

Module Extraction Technique: Prompt

Prompt8 is a toolkit, integrated as a plugin of the Protégé ontology editor9 for comparing,

merging and extracting views from ontologies. What we refer to as Prompt in the following

corresponds to the part that concerns module extraction and that is called traversal view ex-

traction in the Prompt toolkit [12]. This tool is designed as an interactive process for extracting

sub-parts (modules, views) of ontologies to be integrated in the currently edited ontology (see

8 http://protege.stanford.edu/plugins/prompt/prompt.html
9 http://protege.stanford.edu/



72 Mathieu d’Aquin et al.

Fig. 3.3. Screenshot of the PATO tool.

Figure 3.4). A class of the source ontology is first selected by the user, using the standard

navigation interface of Protégé. The principle of the approach is to recursively “traverse” the

ontology relations from this class to reach other classes to be included. The relations to follow

and the distances for which they have to be followed (the level of recursion) have to be first

entered by the user. The whole process is incremental in the sense that new classes can be

selected from the boundaries of the current module as new starting points for the extraction of

other classes, which are added to the module, expending its boundaries.

Concerning the criterion on the level of user interaction, it is quite obvious that Prompt

is not automatic at all: it requires the intervention of the user at each step of the process. The

interactive nature of Prompt make it harder to evaluate (the resulting module is dependent on

the user who defined it), but can also be seen as an advantage, as Prompt is less dependent

on a particular intuition on modularization, and so, less restricted in terms of usage scenar-

ios. Concerning other application criteria, Prompt can be used on any ontology manageable

by Protégé and generates modules (views) that are integrated in Protégé ontologies. The per-

formance of the system in terms of time is obviously an irrelevant criterion for evaluating

Prompt.

Module Extraction Technique: KMi

What is called hereKMi is a technique developed at the Knowledge Media Institute (the Open

University, UK) and described in [7]. It is also a “traversal approach”, inspired from the two

previous techniques for module extraction. One of the particularities of KMi is that it takes



3 Criteria and Evaluation for Ontology Modularization Techniques 73

Fig. 3.4. Screenshot of the Prompt view extraction tool.

into account inferences during the modularization process, in order to validate some interesting

logical properties. Moreover, KMi generally generates smaller modules (e.g. than GALEN)

by taking shortcuts in the ontology hierarchy10, while keeping all the necessary elements for

describing the included entities.

KMi takes as an input only a sub-vocabulary of the source ontology, in the form of a

set of class, property and individual names. Some other parameters can be modified through

the interface (see Figure 3.5) but, since only the sub-vocabulary is required, KMi can be

considered as fully automatic.

Moreover, KMi has been designed to work with – and exploit the content of – any kind

of ontology, from simple taxonomies in RDF(S) to complex OWL structures. Finally, as the

resulting module is a standard, self-contained ontology, there is no need for particular tools to

exploit it.

3.5.4 Results

Running the four modularization techniques on the three ontologies of the first example al-

lowed us to test how they behave on simple, but yet practical real word examples. The second

example concerns larger ontologies, with more heterogeneous levels of description. For ex-

ample, TAP contains around 5500 classes, but no property or individual, whereasMid-Level

10 In particular, by including only the common super class of included classes, rather than the

whole branches of super-classes.



74 Mathieu d’Aquin et al.

Fig. 3.5. Screenshot of the KMi module extraction tool.

relies on almost 200 properties and is populated with more than 650 individuals for less than

2000 classes.

Evaluating the Modularizations

Analyzing the modules resulting from the considered modularization techniques is a way to

better understand on which kinds of assumptions these techniques rely, and if these assump-

tions fit the requirements of the application.

Size.

Figure 3.6 shows the size of the resulting modules for each system on Example 1 in terms of

number of classes and properties (we did not include number of individuals as it is not a rel-

evant indicator here). It can be easily remarked that SWOOP generally generates very large

modules, containing 100% of the classes for two of the three ontologies, and an important

proportion of the properties: in most of the cases, SWOOP generates one module with almost

the same content as the original ontology. Because it has not been really configured for the

experiment, Prompt also generates big modules. The tool developed in KMi is focused on

generating modules with a small number of classes (the smallest), so that the ontology hier-

archy would be easy to visualize. It nevertheless includes a large proportion of the properties,

in order to keep the definition of the included classes intact. Pato is optimized to give an

appropriate size. It generally operates an important reduction of the size of the ontology.

Concerning Example 2, the difference between SWOOP and other techniques is even

more significant. Indeed, because of the poor structure of the considered ontologies (restricted



3 Criteria and Evaluation for Ontology Modularization Techniques 75

Fig. 3.6. Relative size of the resulting modules for the first example.

uses of OWL constructs, few or insufficiently defined properties), KMi and Pato result in

particularly small modules (less than 10 classes), whereas SWOOP still includes most of the

content of the ontology in a single module.

Intra-module distance.

The KMi tool relies on mechanisms that “takes shortcuts” in the class hierarchy for reduc-

ing the size of the module. Indeed, instead of including all the super-classes of the included

classes, it only considers classes that relate these entities: their common super-classes. In that

sense, the distance between the considered terms is also reduced in modules provided byKMi.

For example, in the Portal ontology, by eliminating an intermediary class between Researcher

and Person, KMi has reduced the distance between Researcher and Student, while keeping a

well formed structure for the module. Since they do not include this kind of mechanisms, the

other techniques generate modules in which the distance between included terms are the same

as in the original ontology.

Logical criteria.

SWOOP is the only tool that can guarantee the local completeness of the module. The focus

SWOOP put on logical criteria can be an explanation of its unsatisfactory results concerning

the size of the module. KMi has been designed to provide modules where a weaker notion of

local completeness holds [7], which can be useful to facilitate the interpretation of the module

by the user. This property generally holds also for other techniques.

Application Criteria

Application criteria takes an important part of the evaluation, as our goal is to integrate the

modularization technique into an broader scenario having particular requirements. Table 3.1

summaries the evaluation of these criteria on the considered tools.



76 Mathieu d’Aquin et al.

Ontology Interaction Tool support Perf. (Ex1/Ex2)

SWOOP RDF(S)/OWL Automatic SWOOP/ (few sec/sec-min)

(in SWOOP) Pellet

PATO RDF(S) Parameters OWL tools (few sec/min)

Prompt RDF(S)/OWL, Frame Interactive Protégé N/A

(in Protégé)

KMI RDF(S)/OWL Automatic OWL tools (few sec/min)

(parsed by Jena)

Table 3.1. Evaluation of the application criteria: Assumption on the source ontology, level of

required user interaction, availability of tools for manipulating modules, and performance on

both Example 1 and Example 2.

Level of interaction.

As already mentioned, SWOOP is fully automatic and does not need any parameters besides

the input ontology. As a module extraction tool, KMi requires, in addition to the source on-

tology, a set of terms from the signature of the ontology, defining the sub-vocabulary to be

covered by the module. This sub-vocabulary corresponds to the initial terms used for selecting

the ontology: Researcher, Student and University. Pato has to be fine tuned with several pa-

rameters, depending on the ontology and on the requirements of the application. Here, it has

been configured in such a way that modularizations in which the considered terms are in the

same module are preferred. Prompt is an interactive mechanism, in which the user is involved

in each step of the process. In particular, the class to be covered and the property to traverse

have to be manually selected, requiring that the user has a good insight of the content of the

ontology, can easily navigate in it, and that he understands the modularization mechanism.

When using Prompt, we manually included the input terms and tried to obtain an (intuitively)

good module, without going too deep in the configuration. Note that, since the system crashed

at the early stage of the process, we did not manage to obtain results for theKA ontology with

Prompt.

Assumption on the source ontology.

In addition to what have been already mentioned concerning the type of ontologies the mod-

ularization tools are supposed to handle, it follows from the experiments that some of the

techniques are not designed to take into account big and heterogeneous ontologies like the

ones of Example 2. It is particularly hard for the user to handle the process of module ex-

traction in Prompt when having to deal with several thousands of classes and hundreds of

properties. We also did not manage to partition the OntoSem ontology using Pato because of

the way OntoSem makes use of the label annotation property.

Moreover, the results obtained concerning the size of the modules in Example 2 shows that

techniques are highly influenced by the inherent properties of the ontology to be modularized

and that, in general, they assume a high level of description.

Performance.

Apart from Prompt for which this criteria is irrelevant, each tool has only taken a few seconds

or less on the small ontologies of Example 1. The ontologies in Example 2 are bigger and



3 Criteria and Evaluation for Ontology Modularization Techniques 77

more heterogeneous. These elements obviously have an important impact on the performance

of the modularization techniques: in the worst cases (Pato and KMi on TAP), it takes several

minutes to get a modularization and none of the tested techniques can be used at run-time for

such ontologies. However, as already observed in [14], loading and processing a big ontology

generally takes longer than the actual modularization process.

3.6 Conclusion and Discussion

There is currently an important growth in interest concerning modularization techniques for

ontologies, as more ontology designers and users become aware of the difficulty of reusing,

exploiting and maintaining big, monolithic ontologies. The considered notion of modularity

comes from software engineering, but, unfortunately, it is not yet as well understood and

used in the context of ontology design as it is for software development. Different techniques

implicitly rely on different assumptions about modularity in ontologies and these different

intuitions require to be made explicit.

We have reported on preliminary steps towards the characterization of ontology modular-

ization techniques. We reviewed existing modularization tools as well as criteria for evaluating

different aspects of a modularization (logical, structural, application level), and used them on

a particular scenario: the automatic selection of knowledge components for the annotation

of Web pages. The main conclusion of these experiments is that the evaluation of a modu-

larization (technique) is a difficult and subjective task that requires a formal, well described

framework – a benchmark – taking into account the requirements of applications. Such a

framework would be useful in two ways: first for application developers, it would provide a

guide for choosing the appropriate modularization technique, and second, for the developers

of modularization techniques, it would give directions in which techniques can be improved

with respect to particular scenarios. More detailed conclusions are presented below, focusing

on issues to be addressed for the evaluation of modularization techniques.

No Universal Modularization. As described in [7], the technique developed at KMi has

been explicitly designed for the purpose of the knowledge selection scenario. Therefore, it is

not really surprising that it obtained almost the best results for most of the evaluated criteria.

Beyond the simple comparison of techniques, this result tends to demonstrate our original as-

sumption: the evaluation of a modularization depends on the application requirements. Indeed,

other scenarios may require more logical properties to hold, a better defined distribution of the

module, or a more active involvement of the user, leading to the use of other techniques. It

appears that techniques are designed to be used in particular scenarios, and so, that it is impor-

tant to characterize them in terms of the requirements they fulfill to facilitate the development

of applications relying on ontology modularization.

Existing Criteria are not Sufficient. In our experiments, we rely on criteria that have

been explicitly used to evaluate different aspects of a modularization, with the underlying as-

sumption that these aspects are relevant indicators of its efficiency, its usability or its relevance.

However, when looking at the resulting modules, it seems obvious that important criteria are

missing for evaluating the quality of a modularization. For example, in our scenario, it seems

fundamental that the module keeps a good structure or that it maintains a well defined descrip-

tion of the included entities. It can be argued that it is the role of logical criteria to evaluate

how formal properties are preserved in ontology modules, but it can be easily shown (at least

experimentally) that they are insufficient to evaluate the design quality of a modularization.

Integrating the evaluation of the quality (or rather qualities) of the produced modules is there-

for an important task. We cannot expect modularization techniques to generate good quality



78 Mathieu d’Aquin et al.

modules from poorly designed ontologies, but, using these metrics, we can measure to which

extent the inherent qualities of the source ontology are preserved in its modularization.

Techniques Need to be Improved. The difference in quality of the results for our sec-

ond example (big, heterogeneous ontologies), compared to the first one (small, well defined

ontologies), shows that, even if they are generally well designed and implemented, ontol-

ogy modularization techniques need lots of improvements in terms of robustness, stability and

scalability to be actually usable in real life scenarios. The evaluation of the considered criteria,

taking into account different aspects of modularization, explicitly demonstrates that existing

modularization techniques rely on different assumptions on ontologies and modularity of on-

tologies. Being restricted to particular use cases and ontologies prevent these techniques to

be really usable in an environment like the Semantic Web, considering its inherent scale and

heterogeneity.

References

1. C. Brewster, H. Alani, S. Dasmahapatra, and Y. Wilks. Data Driven Ontology Evalua-

tion. In Proceedings of International Conference on Language Resources and Evaluation,

2004.

2. S. R. Chidamber and C. F. Kemerer. A Metrics Suite for Object Oriented Design. IEEE

Trans. Softw. Eng., 20(6):476–493, 1994.

3. B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. A Logical Framework for

Modularity of Ontologies. In Proc. of the International Joint Conference on Artificial

Intelligence, IJCAI, 2007.

4. B. Cuenca Grau, B. Parsia, and E. Sirin. Combining OWL ontologies using E-

Connections. Web Semantics: Science, Services and Agents on the World Wide Web,

4(1):40–59, January 2006.

5. B. Cuenca Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Automatic Partitioning of OWL

Ontologies Using E-Connections. In Proc. of Description Logic Workshop �DL), 2005.

6. B. Cuenca Grau, B. Parsia, E. Sirin, and A Kalyanpur. Modularity and Web Ontologies.

In Proc. of the International Conference on Principles of Knowledge Representation and

Reasoning, KR, 2006.

7. M. d’Aquin, M. Sabou, and E. Motta. Modularization: a Key for the Dynamic Selection

of Relevant Knowledge Components. In Proc. of the ISWC 2006 Workshop on Modular

Ontologies, 2006.

8. M. Dzbor, J. Domingue, and E. Motta. Magpie - towards a semantic web browser. In

Proc. of the Second International Semantic Web Conference �ISWC), 2003.

9. F. Loebe. Requirements for Logical Modules. In Proc. of the ISWC 2006 Workshop on

Modular Ontologies, 2006.

10. V. Lopez M. Sabou and E. Motta. Ontology Selection on the Real Semantic Web: How

to Cover the Queens Birthday Dinner? In Proc. of the European Knowledge Acquisition

Workshop �EKAW), Podebrady, Czech Republic, 2nd-6th October 2006.

11. B. MacCartney, S. McIlraith, E. Amir, and T.E. Uribe. Practical Partition-Based Theorem

Proving for Large Knowledge Bases. In Proc. of the International Joint Conference on

Artificial Intelligence �IJCAI), 2003.

12. N.F. Noy and M.A. Musen. Specifying Ontology Views by Traversal. In Proc. of the

International Semantic Web Conference �ISWC), 2004.

13. A. Schlicht and H. Stuckenschmidt. Towards Structural Criteria for Ontology Modular-

ization. In Proc. of the ISWC 2006 Workshop on Modular Ontologies, 2006.



3 Criteria and Evaluation for Ontology Modularization Techniques 79

14. J. Seidenberg and A. Rector. Web Ontology Segmentation: Analysis, Classification and

Use. In Proc. of the World Wide Web Conference �WWW), 2006.

15. H. Stuckenschmidt and M. Klein. Structure-Based Partitioning of of Large Concept Hi-

erarchies. In Proc. of the International Semantic Web Conference �ISWC), 2004.

16. S. Tartir, I. Budak Arpinar, M. Moore, A. P. Sheth, and B. Aleman-Meza. OntoQA:

Metric-Based Ontology Quality Analysis. In IEEE ICDM 2005 Workshop on Knowl-

edge Acquisition from Distributed, Autonomous, Semantically Heterogeneous Data and

Knowledge Sources, 2005.

17. H. Yao, A. M. Orme, and L. Etzkorn. Cohesion metrics for ontology design and applica-

tion. Journal of Computer Science, 1:107–113, 2005.


