
Probabilistic EL++ with Nominals and Concrete Domains

Melisachew Wudage Chekol and Jakob Huber and
Christian Meilicke and Heiner Stuckenschmidt

Data and Web Science Group
Mannheim, Germany

{mel,jakob,christian,heiner}@informatik.uni-mannheim.de

Abstract

We present MEL++ (M denotes Markov logic
networks) an extension of the log-linear descrip-
tion logics EL++-LL with concrete domains, nom-
inals, and instances. We use Markov logic net-
works (MLNs) in order to find the most proba-
ble, classified and coherent EL++ ontology from
anMEL++ knowledge base. In particular, we de-
velop a novel way to deal with concrete domains
by extending MLN’s cutting plane inference (CPI)
algorithm.

1 Introduction
In description logics (DLs) a concrete domain is a construct
that can be used to define new classes by specifying restric-
tions on attributes that have literal values (as opposed to re-
lationships to other concepts). Practical applications of DLs
usually require concrete properties with values from a fixed
domain, such as strings or integers, supporting built-in pred-
icates. For DLs that are extended with concrete domains,
there exist partial functions mapping objects of the abstract
domain to values of the concrete domain, and can be used
for building complex concepts. Concrete domains can be
used to construct complex concepts as for instance, the axiom
Teenager ≡ Personu∃age.(≥, 13)u∃age.(≤, 19) defines
a teenager as a person whose age is at least 13 and at most 19.
In DLs, concrete domains are also known as datatypes. Sev-
eral probabilistic extensions of DLs opt to exclude datatypes
while, in fact, it is an essential feature as several knowledge
extraction tools produce weighted rules or axioms that con-
tain concrete data values. Reasoning over these data either
to infer new knowledge or to verify correctness is indispens-
able. Additionally, recent advances in information extraction
have paved the way for the automatic construction and growth
of large, semantic knowledge bases from different sources.
However, the very nature of these extraction techniques en-
tails that the resulting knowledge bases may contain a signif-
icant amount of incorrect, incomplete, or even inconsistent
(i.e., uncertain) knowledge, which makes efficient reasoning
and query answering over this kind of uncertain data a chal-
lenge. To address these issues, there exist ongoing studies on
probabilistic knowledge bases.

The study of extending DLs to handle uncertainty and
vagueness has gained momentum recently. There have been
several proposals to add probabilities to various DLs. Prob-
abilistic DLs can be classified in several dimensions. One
possible classification is on the reasoning mechanism used:
Markov logic networks (MLNs), Bayesian networks, and
probabilistic reasoning. There exist some studies that employ
MLNs to extend various DLs. The study in [Lukasiewicz et
al., 2012] extends EL++ with probabilistic uncertainty based
on the annotation of axioms using MLNs. The main focus of
this work is ranking queries in descending order of probabil-
ity of atomic inferences which is different from the objective
of this paper. Another study in [Niepert et al., 2011], presents
a probabilistic extension of the DL EL++ without nominals
and concrete domains in MLN in order to find the most prob-
able coherent ontology. In doing so, they have developed a
reasoner for probabilistic OWL-EL called ELOG [Noessner
and Niepert, 2011]. In this study, we extend this work in
order to deal with concrete domains in addition to nominals
and instances. In databases, MLNs have been used to create
a probabilistic datalog called Datalog+/−. It is an extension
of datalog that allows to express ontological axioms by using
rule-based constraints [Gottlob et al., 2013]. The probabilis-
tic extension of Datalog+/− uses MLNs as the underlying
probabilistic semantics. The focus of this work is on scalable
threshold query answering which is different from that of this
work.

Other literatures extend DLs with Bayesian networks.
Some notable works include: an extension of EL with
Bayesian networks called BEL is presented in [Ceylan and
Penaloza, 2014]. They study the complexity of reasoning un-
der BEL to show that reasoning is intractable. However, their
work does not discuss probabilities in the ABox and concrete
domains are excluded. On the other hand, in [d’Amato et al.,
2008], they added uncertainty to DL-Lite based on Bayesian
networks. Additionally, they have shown that satisfiability
test and query answering in probabilistic DL-Lite can be re-
duced to satisfiability test and query answering in the DL-
Lite family. Further, it is proved that satisfiability checking
and union of conjunctive query answering can be done in
LogSpace in the data complexity.

Numerous literatures studied probabilistic reasoning for
different probabilistic DLs. For instance, [Jung and Lutz,
2012] proposes a framework for querying probabilistic in-

stance data in the presence of an OWL 2 QL ontology and
provides the data complexity of computing answer probabil-
ities in this framework. In [Gutiérrez-Basulto et al., 2011],
they established the complexity of subsumption for a proba-
bilistic variant of the DL EL. They apply probabilities only
to concepts. The complexity of concept subsumption in these
settings is ExpTime-hard. Probabilistic extensions of ex-
pressive description logics SHIF(D) and SHOIN (D) are
studied in [Lukasiewicz, 2008]. Probabilistic knowledge can
be expressed both in the TBox and ABox. These logics are
based on probabilistic lexicographic entailment from prob-
abilistic default reasoning [Lukasiewicz, 2002] as underly-
ing probabilistic reasoning formalism. Further, Probabilistic
ALC is introduced in [Heinsohn, 1994]. It allows uncertainty
to be expressed in the TBox but does not allow probabilities
in conceptual and relational assertions. It is based on proba-
bilistic reasoning in probabilistic logics. For further informa-
tion, we refer the reader to [Heinsohn, 1994] and the refer-
ences therein. Lastly, the pioneering work of Jaeger [Jaeger,
1994] proposes a probabilistic extension of ALC, which al-
lows for terminological probabilistic knowledge about con-
cepts and roles and about concept instances, respectively, but
does not support assertional probabilistic knowledge about
role instances (although a possible extension in this direc-
tion is mentioned). The uncertainty reasoning formalism in
[Jaeger, 1994] is essentially based on probabilistic reason-
ing in probabilistic logics, as the one in [Heinsohn, 1994],
but coupled with cross-entropy minimization to combine ter-
minological probabilistic knowledge with assertional proba-
bilistic knowledge.

As discussed above, most of the studies that involve ex-
tending description logics to deal with uncertainty by using
either Bayesian or Markov logic networks often excluded
concrete domains. This is partly due to either the lack of
supporting features or the difficulty in dealing with them. In
this paper, we study a novel way of dealing with uncertainty
involving concrete domains. In addition, we provide an ex-
tension to EL++-LL with nominals, instances, and concrete
domains.

2 Preliminaries
In this section, we present a brief summary of: EL++,
Markov logic networks, integer linear programs, and EL++-
LL. For a detailed discussion on these subjects, we refer the
reader to [Baader et al., 2005; Richardson and Domingos,
2006; Schrijver, 1998; Niepert et al., 2011] and the references
therein.

2.1 EL++

EL++ is the description logic underlying the OWL 2 profile
OWL-EL.

Syntax
Given a set of concept names NC, role names NR, individu-
als NI, and feature names NF, EL++ concepts and roles are
formed according to the following syntax:

C ::= > | ⊥ | A | C uD | ∃R.C | {a} | ∃F.r

A concept in EL++ is either a top, bottom concept, an atomic
concept or a complex concept (formed by conjunction and ex-
istential restriction). Given a datatype restriction r = (o, v)
and x ∈ D, we say that x satisfies r and write r(x) iff
(x, v) ∈ o, where o ∈ {<,≤, >,≥,=}, o is interpreted as the
standard relation on real numbers, and D ⊆ R is a concrete
domain [Despoina et al., 2011]. In this work, we consider
only numerical concrete domains (also known as datatypes).
Additionally, in order to ensure that reasoning remains poly-
nomial, concrete domains must satisfy a condition called p-
admissibility. This restriction guarantees that satisfiability of
concrete domains can be solved in polynomial time, and that
concept disjunction cannot be expressed using concrete con-
cepts [Baader et al., 2005]. As an example consider ≤ and
≥ predicates for integers, this allows to express A v B t C
by fromulating the axioms A v ∃R.(≤, 5), ∃R.(≤, 2) v B
and ∃R.(≥, 2) v C. Thus, allowing both ≤ and ≥ has the
same effect as extending EL++ with disjunction, which is
well known to cause intractability [Despoina et al., 2011]. In
[Despoina et al., 2011], it has been shown that these restric-
tions can be significantly relaxed without loosing tractability.
This work can take advantage of these relaxations to support
more features. An EL++ TBox contains a set of GCI (Gen-
eral Concept Inclusion) axioms, i.e., C v D, as well as role
inclusion axioms, i.e., R1 ◦ · · · ◦Rk v R.

Semantics
The semantics of EL++ concepts and roles is given by an
interpretation function I = (∆I , .I) which consists of a non-
empty (abstract) domain ∆I and a mapping .I that assigns to
each atomic concept A ∈ NC a subset of ∆I , to each abstract
role R ∈ NR a subset of ∆I ×∆I , to each concrete relation
F ∈ NF a subset of ∆I × D, and to each individual a ∈ NI

an element of ∆I . The mapping ·I is extended to all concepts
and roles as follows:

(>)I = ∆I

(⊥)I = ∅
({a})I = {aI}

(C uD)I = CI ∩DI

(∃R.C) = {x ∈ ∆I | ∃y ∈ ∆I :

(x, y) ∈ RI ∧ y ∈ CI}
(∃F.r)I = {x ∈ ∆I | ∃v ∈ D : (x, v) ∈ F I

∧ r(v)}
(C v D)I = CI ⊆ DI

(R1 ◦ · · · ◦Rk v R)I = RI1 ◦ · · · ◦RIk ⊆ RI

Knowledge about specific objects can be expressed using
concept and role assertions of the form C(a) and R(a, b). The
axioms and assertions are contained in the TBox and ABox,
respectively, which together form a knowledge base (KB). An
EL++ knowledge base (or ontology)O = (T ,A) consists of
a set T of general concept inclusion axioms (TBox) and role
inclusion axioms, and possibly a set A of assertional axioms
(ABox). A concept name C in an ontologyO, is unsatisfiable
iff, for each interpretation I ofO, CI = ∅. An ontologyO is

incoherent iff there exists an unsatisfiable concept name C in
O, i.e., C |= ⊥ [Flouris et al., 2006].

To simplify the transformation probabilistic EL++ KB into
FOL, we first obtain the normal form of the KB in such a way
that satisfiability is preserved [Baader et al., 2005; Krötzsch,
2011]. An EL++ KB is in normal form its axioms are in the
following form:

C(a) R(a, b) A v ⊥
> v C A v {c} {a} v {c}
A v C A uB v C ∃R.A v C

A v ∃R.B R1 v R2 R1 ◦R2 v R

A v ∃F.r ∃F.r v A

where A,B,C ∈ NC, R,R1, R2 ∈ NR, F ∈ NF, r is a
datatype restriction, and a, b, c ∈ NI.

It is possible to provide a probabilistic extension of EL++

using MLNs. An EL++ KB can be seen as a set of hard con-
straints on the set of possible interpretations: if an interpreta-
tion violates even one axiom or assertion, it has zero proba-
bility. The basic idea in MLNs is to soften these constraints,
i.e., when an interpretation violates one axiom or assertion
in the KB it is less probable, but not impossible. The fewer
axioms an interpretation violates, the more probable it be-
comes. Each axiom and assertion has an associated weight
that reflects how strong a constraint is: the higher the weight,
the greater the difference in log probability between an inter-
pretation that satisfies the axiom and one that does not, other
things being equal [Richardson and Domingos, 2006].

2.2 Markov Logic Networks
Markov Logic Networks (MLNs) combine Markov networks
and first-order logic (FOL) by attaching weights to first-
order formulas and viewing these as templates for features
of Markov networks [Richardson and Domingos, 2006]. An
MNL L is a set of pairs (Fi, wi) where Fi is a formula in
FOL and wi is a real number representing a weight. To-
gether with a finite set of constants C, it defines a Markov
Network ML,C , where ML,C contains one node for each pos-
sible grounding of each predicate appearing in L. The value
of the node is 1 if the ground predicate is true, and 0 oth-
erwise. The probability distribution over possible worlds x
specified by the ground Markov network ML,C is given by:

P (X = x) =
1

Z
exp
(F∑
i=1

wini(x)
)

where F is the number of formulas in the MLN and ni(x) is
the number of true groundings of Fi in x. The groundings of
a formula are formed simply by replacing its variables with
constants in all possible ways. The Herbrand Universe H
for an MLN L is the set of all terms that can be constructed
from the constants in L. The Herbrand Base HB is often
defined as the set of all ground predicates (atoms) that can be
constructed using the predicates in L and the terms in H . In
this paper we focus on MLNs whose formulas are function-
free clauses.

In order to compute a maximum a-posteriori (MAP) state
of an MLN, we formulate the problem as an integer linear
program (ILP) using the cutting plane inference algorithm.

Integer Linear Program (ILP)
An integer linear program (ILP) is a linear program where
each unknown variable is required to have integer values
[Schrijver, 1998]. A Linear Programming (LP) is an opti-
mization problem of the form:

min cTx

subject to A1x ≤ b1

A2x = b2

where cTx is a cost or objective function, A1x ≤ b1 and
A2x = b2 are constraints, and x denotes a vector of vari-
ables. In addition, c ∈ Rn, bi ∈ Rmi , Ai ∈ Rn×mi , i = 1, 2
are given and x ∈ Zn is an n-vector to be determined. In other
words, we try to find the minimum of a linear function over
a feasible set defined by a finite number of linear constraints.
It can be shown that a problem with linear equalities or linear
inequalities (for instance ≤) can always be put in the above
form, implying that this formulation is more general than it
might look. An ILP problem is obtained from an LP prob-
lem by requiring that all entries of the solution vector x are
integers. LP problems are “easy” to solve (they are in the
complexity class P), whereas ILP problems are, in general,
difficult (they are NP-hard) [Schrijver, 1998].

Example 1 Consider the following ILP

min − x− 2y

subject to x + y + z1 = 3

x + z2 = 2

y + z3 = 2

x, y, zi ≥ 0

The optimal value of the ILP is when (x, y, z1, z2, z3) =
(1, 1, 1, 1, 1) with value −3.

2.3 Cutting Plane Inference (CPI)
A MAP query corresponds to an optimization problem with
linear constraints and a linear objective function. Hence, it
can be formulated and solved as an instance of an integer lin-
ear program (ILP). [Riedel, 2012] introduced cutting plane
inference as a meta algorithm that transforms an MLN into
ILP. The basic idea of CPI is to add all constraints to the ILP
that violate the current intermediate solution. This process is
repeated until no (additional) violated ground clauses exist.
An ILP solver resolves the conflicts by computing an optimal
truth assignment for an MLN. Hence, the solution of the final
ILP corresponds to the MAP state. It is necessary to execute
several iterations as the intermediate solution changes after
each iteration and more violated clauses might be detected.
At the beginning of each CPI iteration it is necessary to deter-
mine the violated ground clauses G that are specified by the
MLN and are in conflict with the intermediate solution. A bi-
nary ILP variable x` ∈ {0, 1} gets assigned to each grounded
predicate occurring in a violated clause g ∈ G. The value of
the the variable x` is 1 if the respective literal ` is true and
0 when it is false. These variables are used to generate ILP
constraints that are added to the ILP for each violated ground
clause. For each clause g ∈ G, we define L+(g) as the set of

ground atoms that occur unnegated in g and L−(g) as the set
of ground atoms that occur negated in g. The transformation
scheme depends on the weight wg ∈ R of the violated clause
g. It is also necessary to create a binary variable zg for every
g with wg 6= ∞ that is used in the objective of the ILP. For
every ground clause g with wg > 0, the following constraint
has to be added to the ILP.∑

`∈L+(g)

x` +
∑

`∈L−(g)

(1− x`) ≥ zg

A ground atom ` that is set to false (true if it appears negated)
by evidence will not be included in the ILP as it cannot fulfil
the respective constraint. For every g with weight wg < 0,
we add the following constraint to the ILP:∑

`∈L+(g)

x` +
∑

`∈L−(g)

(1− x`) ≤ (|L+(g)|+ |L−(g)|)zg

The variable zg expresses if a ground formula g is true con-
sidering the optimal solution of the ILP. However, for every g
with weight wg = ∞ this variable can be replaced with 1 as
the respective formula cannot be violated in any solution:∑

`∈L+(g)

x` +
∑

`∈L−(g)

(1− x`) ≥ 1

Finally, the objective of the ILP sums up the weights of the
(satisfied) ground formulas:

max
∑
g∈G

wgzg

The MAP state corresponds to the solution of the ILP in the
last CPI iteration. It can be directly obtained from the so-
lution as the assignment of the variables x` can be directly
mapped to the optimal truth values for the ground predicates,
i.e., xi = true if the corresponding ILP variable is 1 and
xi = false otherwise. The MAP state of an EL++-LL
TBox can be computed by a reduction into CPI.

2.4 EL++-LL
EL++-LL (Log-linear EL++) is a probabilistic extension of
EL++ without nominals and concrete domains [Niepert et al.,
2011]. Each EL++-LL TBox axiom is either deterministic
(i.e., axioms that are known to be true) or uncertain (i.e., ax-
ioms that have a degree of confidence). The uncertain axioms
have associated weight. Formally, a EL++-LL TBox is given
by T = (T D, T U), where T D and T U , is a set of pairs of
〈S,wS〉where S is an axiom and wS is its real-valued weight,
denote deterministic and uncertain axioms respectively.

The semantics of an EL++-LL TBox is given by a joint
probability distribution over a coherent EL++ TBox. Given
TBoxes T = (T D, T U) and T ′ over the same vocabulary,
the probability of T ′ is given by:

P (T ′) =


1

Z
exp

(∑
{∀(S,wS)∈T U :T ′|=S}

wS

)
if T ′ |= T D ∧ T ′ 6|= ⊥

0 otherwise

In order to generate the most probable, coherent and clas-
sified TBox using MLN, EL++ completion rules and EL++-
LL TBox axioms are translated into FOL formulae.

In the following, we show how to extend EL++-LL with
nominals, instances, and concrete domains.

3 Extending EL++-LL with Nominals,
Instances and Concrete Domains

In [Niepert et al., 2011], the authors claim that their ap-
proach is extensible to the Horn fragments of DLs (look
[Krötzsch, 2011] for instance). To take advantage of this
claim, we extend EL++-LL with probabilistic knowledge ex-
pressed through nominals, individuals, and concrete domains.
The syntax of this extension (that we call MEL++) is the
same as that of EL++-LL, basically, it is the syntax of EL++

with weights attached to each uncertain axiom and assertion.
An MEL++ KB has two components: deterministic KBD

and uncertain KBU knowledge bases. In order to provide se-
mantics, we assume that KBD is coherent. The semantics of
coherentMEL++ KBs is given by a probability distribution
as defined below.
Definition 1 Given an MEL++ knowledge base KB =
(KBD,KBU) over a vocabulary of NC, NR, NF, and NI,
the semantics of a coherent KBi = (KBD

i ,KBU
i) over the

same vocabulary is given by a probability distribution:

P (KB′) =


1

Z
exp

(∑
{∀(oj ,wj)∈KBU :KBi|=oj}

wj

)
if KBi |= KBD ∧KBi 6|= ⊥

0 otherwise

Example 2 Consider anMEL++ KB = (KBD,KBU):
KBD = { Toddler uAdult v ⊥},
KBU = {〈Toddler v ∃age.(≤, 3), 0.8〉,

〈∃age.(≤, 3) v Person, 0.7〉,
〈Toddler v Adult, 0.1〉, 〈age(john, 2), 0.7〉}

The probabilities of the axioms and assertions can be com-
puted as follows:

P
(
{Toddler v ∃age.(≤, 3)}

)
=

1

Z
exp(0.8)

P
(
{Toddler v Adult}

)
= 0

P

(
{Toddler v ∃age.(≤, 3), age(john, 2),

∃age.(≤, 3) v Person}
)

=
1

Z
exp(2.2)

P
(
{}
)

=
1

Z
exp(0)

P
(
{Toddler uAdult v ⊥}

)
= 1

Z = exp(0.8) + exp(2.2) + exp(0.7) + exp(0)

In order to derive the most probable, classified and coher-
ent EL++ ontology from anMEL++ KB, we transform the
KB, TBox completions rules [Baader et al., 2005], concrete
domains, and ABox completion rules [Krötzsch, 2011] into
FOL formulae.

3.1 Nominals
(Un)certain axioms that contain nominals can be translated
into FOL in MNL by using Definition 2. Inference in MNL
can be done by converting the completion rule CR6 [Baader
et al., 2005] into FOL and enforcing that each nominal
ai ∈ NI is distinct. Alternatively, unique name assumption
for individuals names can be enforced by using the axiom
{a} u {b} v ⊥ for all relevant individual names a and b. In
addition, the transformation of TBox completion rules into
FOL in MNL is given in Table 1.

By using nominals, instance knowledge can be added to an
ABox.

3.2 ABox
Since the description logic EL++ is equipped with nominals.
ABox knowledge can be converted into TBox axioms. Thus,
with nominals, ABox becomes syntactic sugar:

C(a)⇔ {a} v C, R(a, b)⇔ {a} v ∃R.{b}
Instance checking in turn is directly reducible to subsumption
checking in the presence of nominals. There exist two ways to
represent uncertain ABox assertions, i.e., C(a) and R(a, b),
in MLN:

i. transform ABox assertions into TBox axioms using
nominals as follows:

〈C(a), w1〉 ⇔ 〈{a} v C,w1〉
〈R(a, b), w2〉 ⇔ 〈{a} v ∃R.{b}, w2〉

iii. introduce two new predicates for each instance type as:
〈C(a), w1〉 7→ inst(a,C) w1

〈R(a, b), w2〉 7→ rinst(a,R, b) w2

This approach requires transforming ABox completion
rules into FOL, so as to generate classified ontologies.

In this paper, we consider the second approach (ii)1. Next,
we show how concrete domains are translated into the MLN
framework.

3.3 Concrete Domains
Reasoning over uncertain concrete domains can be done by
transforming the datatype predicates in the axioms and asser-
tions into mixed integer programming as shown in [Straccia,
2012]. However, in this work, we introduce an efficient ap-
proach that transforms the predicates into a test function that
evaluates to true or false based on the grounding generated
by an extension of the CPI algorithm. Inference involving
axioms that contain concrete domains can be done according
to the deduction rules given below:

A v B B v ∃F.(o, v)

A v ∃F.(o, v)

A v ∃F.(o1, v1) ∃F.(o2, v2) v B

A v B
eval(o1, v1, o2, v2)

∃F.(o, v1) v A F (a, v2)

A(a)
eval(o, v1,=, v2)

A(a) A v ∃F.(=, v)

F (a, v)

1We leave a comparison of the two approaches as a future work.

where eval(. . .) checks if all possible values of the first
operator-value pair (o1, v1) are covered by the possible val-
ues of the second operator-value pair (o2, v2), when so, it
evaluates to true otherwise false. The function eval(. . .) is
defined based on a datatypeD, i.e., N or Z or R, and algebraic
operators. Some of the algebraic comparisons, computed via
eval(. . .), that are useful to determine inference are listed be-
low:

eval(≤, v1, <, v2) := v1 < v2

eval(≤, v1,≤, v2) := v1 ≤ v2

eval(=, v1, <, v2) := v1 < v2

eval(=, v1,≤, v2) := v1 ≤ v2

eval(=, v1,=, v2) := v1 = v2

eval(=, v1,≥, v2) := v1 ≥ v2

eval(=, v1, >, v2) := v1 > v2

eval(≥, v1,≥, v2) := v1 ≥ v2

eval(≥, v1, >, v2) := v1 > v2

eval(>, v1, >, v2) := v1 ≥ v2

This function is computed on-demand after each CPI itera-
tion as discussed in the next section. The translation of the
deduction rules into FOL is given in Table 1 and Table 2.

Example 3 Consider an MEL++ KB = {〈2Y earOld v
∃age.(=, 2), 0.7〉, 〈∃age.(≤, 3) v Toddler, 0.8〉} that con-
tains axioms expressed using concrete domains. From the
KB, the axiom 2Y earOld v Toddler can be inferred since
eval(o1, v1, o2, v2) is true, i.e., eval(=, 2,≤, 3) := 2 ≤ 3.

So far we have discussed how axioms and assertions can be
translated into FOL. Next, we show how the most probable
KB is derived using MAP inference.

4 Computing a Most Probable KB
To derive the most probable classified and coherent ontol-
ogy from a weighted EL++ KB, we proceed by transforming
TBox and ABox completion rules, schema axioms, and asser-
tions into function-free FOL formulae. The formulae corre-
sponding to the translation of completion rules into FOL are
shown in Table 1 and Table 2. The formulae from F1 through
F9 are taken from [Niepert et al., 2011]. Additionally, a bijec-
tive mapping function is provided in Definition 2 to transform
axioms and assertions into formulae. Of particular interest for
us is proposing a novel way to deal with concrete domains
under MLN by modifying the Cutting Plane Inference (CPI)
algorithm.

In EL++, it is possible to build incoherent TBox axioms
due to the presence of the bottom concept ⊥, for instance,
consider the axiom {a} v ⊥, this cannot be satisfied by any
interpretation. To filter out such incoherencies in models gen-
erated by MLN, we include the formula ∀c : ¬sub(c,⊥) (for-
mula F9 in Table 1) to the translation of the completion rules
into FOL. This technique has already been used in [Niepert et
al., 2011].

Definition 2 [MappingMEL++ KB into Ground FOL pred-
icates] The function ϕ translates a normalized MEL++

F1 ∀c : sub(c, c)

F2 ∀c : sub(c,>)

F3 ∀c, c′, d : sub(c, c′) ∧ sub(c′, d)⇒ sub(c, d)

F4 ∀c, c1, c2, d : sub(c, c1) ∧ sub(c, c2) ∧ int(c1, c2, d)⇒ sub(c, d)

F5 ∀c, c′, r, d : sub(c, c′) ∧ rsup(c′, r, d)⇒ rsup(c, r, d)

F6 ∀c, r, d, d′, e : rsup(c, r, d) ∧ sub(d, d′) ∧ rsub(d′, r, e)⇒ sub(c, e)

F7 ∀c, r, d, s : rsup(c, r, d) ∧ psub(r, s)⇒ rsup(c, s, d)

F8 ∀c, r1, r2, r3, d, e : rsup(c, r1, d) ∧ rsup(d, r2, e) ∧ pcomp(r1, r2, r3)⇒ rsup(c, r3, e)

F9 ∀c : ¬sub(c,⊥)

F10 ∀c, d, a, r : subNom(c, a) ∧ subNom(d, a) ∧ rsup(c, r, d)→ sub(c, d)

F11 ∀c, d, a, r, b : subNom(c, a) ∧ subNom(d, a) ∧ rsupNom(b, r, d)→ sub(c, d)

F12 ∀c, d, f, o, v : sub(c, d) ∧ rsupEx(d, f, o, v)⇒ rsupEx(c, f, o, v)

F13 ∀c, d, f, o, v : rsupEx(c, f, o1, v1) ∧ rsubEx(f, o2, v2, d) ∧ eval(o1, v1, o2, v2)⇒ sub(c, d)

Table 1: TBox completion rules.

F14 ∀x,A,B : inst(x,A) ∧ sub(A,B)⇒ inst(x,B)

F15 ∀x,A1, A2, B : inst(x,A1) ∧ inst(x,A2) ∧ int(A1, A2, B)⇒ inst(x,B)

F16 ∀x, y,R,A,B : rinst(x,R, y) ∧ inst(y,A) ∧ rsub(A,R,B)⇒ inst(x,B)

F17 ∀x, y,R : rinst(x,R, y) ∧ inst(y,⊥)⇒ inst(x,⊥)

F18 ∀x, y,R, S : rinst(x,R, y) ∧ psub(R,S)⇒ rinst(x,R, y)

F19 ∀x, y, z, R1, R2, R3 : rinst(x,R1, y) ∧ rinst(y,R2, z) ∧ pcomp(R1, R2, R3)⇒ rinst(x,R3, z)

F20 ∀x, a,B : ninst(x, a) ∧ inst(x,B)⇒ inst(a,B)

F21 ∀x, a,B : ninst(x, a) ∧ inst(a,B)⇒ inst(x,B)

F22 ∀x, a, z, R : ninst(x, a) ∧ rinst(z,R, x)⇒ rinst(z,R, a)

F23 ∀x,A,B : sub(>, A) ∧ inst(x,B)⇒ inst(x,A)

F24 ∀x, x′, R,A,B : inst(x, a) ∧ rsup(A,R,B)⇒ rinst(x,R, x′)

F25 ∀x, x′, R,A,B : inst(x, a) ∧ rsup(A,R,B)⇒ inst(x′, B)

F26 ∀f, op, v, C : rsupEx(f, op, v, C) ∧ rinst(a, f, v′) ∧ eval(v, op, v′)⇒ inst(a,A)

F27 ∀a,A, f, v : inst(a,A) ∧ rsubEx(A, f,=, v)⇒ rinst(a, f, v)

F28 ∀a,A1, A2, f, v : inst(a,A1) ∧ inst(a,A2) ∧ intEx(A1, A2, f, op, v)⇒ rinst(a, f, v)

Table 2: ABox completion rules.

knowledge base KB into FOL formulae in MLN as follows:

C(a) 7→ inst(a,C)

R(a, b) 7→ rinst(a,R, b)

A v ⊥ 7→ sub(A,⊥)

> v C 7→ sub(>, C)

A v {c} 7→ subNom(A, {c})
{a} v {c} 7→ sub({a}, {c})

A v C 7→ sub(A,C)

A uB v C 7→ int(A,B,C)

∃R.A v C 7→ rsub(A,R,C)

A v ∃R.B 7→ rsup(A,R,B)

A v ∃F.(o, v) 7→ rsupEx(A,F, o, v)

∃F.(o, v) v A 7→ rsubEx(F, o, v, A)

R1 v R2 7→ psub(R1, R2)

R1 ◦R2 v R 7→ pcom(R1, R2, R)

int({ai}, {aj},⊥) where ai, aj ∈ NI and i 6= j

where a, b, c ∈ NI, A,B,C ∈ NC, R,R1, R2 ∈ NR, F ∈
NF, o ∈ {<,≤, >,≥,=}, and v ∈ R (set of real numbers).

Lemma 1 The translation of an EL++ KB into FOL and vice
versa can be done in polynomial time in the size of the knowl-
edge base [Lukasiewicz et al., 2012].

From the above Lemma, we see that the translation of
MEL++ KB completion rules, axioms, and assertions into
FOL in MLN does not affect the complexity of inference in
MLN. Besides, as typed variables and constants greatly re-
duce size of ground Markov nets. We introduce types to all
of the predicates shown in Tables 1 and Table 2.

Theorem 1 Given anMEL++ ontology KB = (T ,A) and
KB′ ⊆ KB, a Herbrand interpretation H is a model of KB′,
i.e.,H |= KB′ if and only if there exist a mapping function ϕ
such that ϕ(H) |= KB′.

So far we have introduced a mapping function ϕ for KB
assertions and axioms and completion rules as formulae (F1–
F28). The next step requires using MAP inference of MLN to
obtain the most probable ontology of a givenMEL++ KB.

4.1 Maximum A-Posteriori Inference (MAP)
In order to deal with MEL++ datatypes, we introduced a
predicate called eval(. . .) in the translation of EL++ comple-
tion rules into FOL, depicted in Table 1 and Table 2. The truth
value of eval(. . .) is computed by evaluating the logical ex-
pressions corresponding to datatypes in anMEL++ KB. For
instance, consider the eval(. . .) predicate in Example 3. In
the following, we show how the expression (=, 2) ⊆ (≤, 3),
operator-value pair coverage, i.e., is evaluated by extending
the CPI algorithm. Thus, we propose an extension of CPI by
incorporating algebraic expressions. In particular, our exten-
sion addresses a limitation of MLN with respect to concrete
domains. In general, all (numerical) values are represented as
constants in MLN. The only semantics that are related to con-
stants might be the type to which they belong. This enables
more efficient grounding and leads to smaller MLNs. How-
ever, this does hardly cover the characteristics of numerical
values. Therefore, we exploit the iterative character of CPI in
order to evaluate numerical (in)equalities. The extension can
be considered as additional features that are only used on-
demand. It is formula-specific as it affects the ground values
and the truth value of specific constraints. Hence, it can be
implemented as an extension of the detection of the violated
constraints.

The algorithm identifies at the beginning of each CPI it-
eration for each formula all violated groundings considering
the current intermediate solution. Each of the violated ground
clauses has to be translated and added to the ILP. Therefore,
an ILP variable is generated for each ground predicate as
well as additional ILP constraints. Datatype ground predi-
cates eval(. . .) appear during this process as any other predi-
cates. However, we exploit there semantics to decide whether
eval(. . .) predicates evaluate to true or false. Depending on
the result of the evaluation of the attached boolean expres-
sion of the respective predicate, we decide whether it is nec-
essary to add the violated ground clause to the ILP. For in-
stance, if the datatype predicate is positive (negative) and it
appears without negation (or negation) in the formula, we do
not add the ground clause to the ILP as it is not violated in
the current iteration. Otherwise, we need to add the clause
to the ILP but leave out the datatype ground predicates as
they can not fulfil the violated clause, i.e., the respective lit-
eral is false due to evidence. Hence, we do not introduce ILP

variables for datatype predicates as they will not be added to
the ILP. Instead, we compute the truth value of the datatype
predicates on-the-fly and only on-demand. Hence, the pro-
posed approach improves the efficiency of processing numer-
ical predicates in a Markov logic solver without sacrificing
the performance. We implemented this algorithm as an ex-
tension to the MLN inference engine ROCKIT2 [Noessner et
al., 2013]. We leave out testing this implementation with dif-
ferent ontologies as a future work.

Theorem 2 Given the following:

• an MEL++ knowledge base KB = (KBD,KBU)
formed from a vocabulary containing a finite set of in-
dividuals NI, concepts NC, features NF, and roles NR,
• HB as a Herbrand base of the formulae F in Table 1

and Table 2 over the same vocabulary,

• G1 as a set of ground formulae constructed from KBD,
and
• G2 as a set of ground formulae constructed from KBU ,

the most probable coherent and classified ontology is ob-
tained with:

ϕ−1(Î) = arg max
HB⊇I|=G1∪F

(∑
(oj ,wj)∈G2:I|=oj

wj

)
From Theorem 2 and the results in [Roth, 1996], finding

the most probable, classified and coherent MEL++ KB is
in NP. The hardness of this complexity bound can be ob-
tained by reducing partial weighted MaxSAT problem into
an MEL++ MAP query. Consequently, the MAP problem
forMEL++ is NP-hard.

5 Conclusion
In this work, we have extended EL++-LL intoMEL++ with
nominals, concrete domains and instances. In particular, we
proposed an extension to the CPI algorithm in order to deal
with reasoning under uncertain concrete domains. We have
implemented the proposed approach and planned to carry out
experiments in the future. We will also investigate to extend
the proposed approach to other datatypes such as Date, Time,
and so on.

References
[Baader et al., 2005] Franz Baader, Sebastian Brandt, and

Carsten Lutz. Pushing the el envelope. In IJCAI, volume 5,
pages 364–369, 2005.

[Ceylan and Penaloza, 2014] Ismail Ilkan Ceylan and Rafael
Penaloza. Bayesian description logics. In Proceedings
of the 27th International Workshop on Description Logics
(DL 2014). CEUR Workshop Proceedings, volume 1193,
pages 447–458, 2014.

[d’Amato et al., 2008] Claudia d’Amato, Nicola Fanizzi,
and Thomas Lukasiewicz. Tractable reasoning with
bayesian description logics. In Scalable Uncertainty Man-
agement, pages 146–159. Springer, 2008.
2https://code.google.com/p/rockit/

[Despoina et al., 2011] M Despoina, Y Kazakov, and I Hor-
rocks. Tractable extensions of the description logic el with
numerical datatypes. Journal of Automated Reasoning,
2011.

[Flouris et al., 2006] Giorgos Flouris, Zhisheng Huang,
Jeff Z Pan, Dimitris Plexousakis, and Holger Wache. In-
consistencies, negations and changes in ontologies. In
Proceedings of the National Conference on Artificial In-
telligence, volume 21, page 1295. Menlo Park, CA; Cam-
bridge, MA; London; AAAI Press; MIT Press; 1999,
2006.

[Gottlob et al., 2013] Georg Gottlob, Thomas Lukasiewicz,
Maria Vanina Martinez, and Gerardo I Simari. Query an-
swering under probabilistic uncertainty in datalog+/- on-
tologies. Annals of Mathematics and Artificial Intelli-
gence, 69(1):37–72, 2013.

[Gutiérrez-Basulto et al., 2011] Vı́ctor Gutiérrez-Basulto,
Jean Christoph Jung, Carsten Lutz, and Lutz Schröder. A
closer look at the probabilistic description logic prob-el.
In AAAI, 2011.

[Heinsohn, 1994] Jochen Heinsohn. Probabilistic descrip-
tion logics. In Proceedings of the Tenth international
conference on Uncertainty in artificial intelligence, pages
311–318. Morgan Kaufmann Publishers Inc., 1994.

[Jaeger, 1994] Manfred Jaeger. Probabilistic reasoning in
terminological logics. In Proceedings of KR-94, 5-th In-
ternational Conference on Principles of Knowledge Rep-
resentation and Reasoning, pages 305–316, 1994.

[Jung and Lutz, 2012] Jean Christoph Jung and Carsten
Lutz. Ontology-based access to probabilistic data with
owl ql. In The Semantic Web–ISWC 2012, pages 182–197.
Springer, 2012.

[Krötzsch, 2011] Markus Krötzsch. Efficient rule-based in-
ferencing for owl el. In IJCAI, volume 11, pages 2668–
2673, 2011.

[Lukasiewicz et al., 2012] Thomas Lukasiewicz, Maria Van-
ina Martinez, Giorgio Orsi, and Gerardo I Simari. Heuris-
tic ranking in tightly coupled probabilistic description log-
ics. arXiv preprint arXiv:1210.4894, 2012.

[Lukasiewicz, 2002] Thomas Lukasiewicz. Probabilistic de-
fault reasoning with conditional constraints. Annals of
Mathematics and Artificial Intelligence, 34(1-3):35–88,
2002.

[Lukasiewicz, 2008] Thomas Lukasiewicz. Expressive
probabilistic description logics. Artificial Intelligence,
172(6):852–883, 2008.

[Niepert et al., 2011] Mathias Niepert, Jan Noessner, and
Heiner Stuckenschmidt. Log-linear description logics. In
IJCAI, pages 2153–2158, 2011.

[Noessner and Niepert, 2011] Jan Noessner and Mathias
Niepert. Elog: a probabilistic reasoner for owl el. In Web
Reasoning and Rule Systems, pages 281–286. Springer,
2011.

[Noessner et al., 2013] Jan Noessner, Mathias Niepert, and
Heiner Stuckenschmidt. Rockit: Exploiting parallelism

and symmetry for map inference in statistical relational
models. In Twenty-Seventh AAAI Conference on Artificial
Intelligence, 2013.

[Richardson and Domingos, 2006] Matthew Richardson and
Pedro Domingos. Markov logic networks. Machine learn-
ing, 62(1-2):107–136, 2006.

[Riedel, 2012] Sebastian Riedel. Improving the accuracy
and efficiency of map inference for markov logic. arXiv
preprint arXiv:1206.3282, 2012.

[Roth, 1996] Dan Roth. On the hardness of approximate rea-
soning. Artificial Intelligence, 82(1):273–302, 1996.

[Schrijver, 1998] Alexander Schrijver. Theory of linear and
integer programming. John Wiley & Sons, 1998.

[Straccia, 2012] Umberto Straccia. Description logics with
fuzzy concrete domains. arXiv preprint arXiv:1207.1410,
2012.

