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Abstract—Human activity recognition using wearable devices
is an active area of research in pervasive computing. In our work,
we address the problem of reducing the effort for training and
adapting activity recognition approaches to a specific person. We
focus on the problem of cross-subjects based recognition models
and introduce an approach that considers physical characteris-
tics. Further, to adapt such a model to the behavior of a new user,
we present a personalization approach that relies on online and
active machine learning. In this context, we use online random
forest as a classifier to continuously adapt the model without
keeping the already seen data available and an active learning
approach that uses user-feedback for adapting the model while
minimizing the effort for the new user. We test our approaches
on a real world data set that covers 15 participants, 8 common
activities, and 7 different on-body device positions. We show
that our cross-subjects based approach performs constantly +3%
better than the standard approach. Further, the personalized
cross-subjects models, gained through user-feedback, recognize
dynamic activities with an F-measure of 87% where the user has
significantly less effort than collecting and labeling data.

I. INTRODUCTION

Human Activity Recognition is an active field of research
in pervasive computing [1]–[3]. For more than a decade,
researchers have been focusing on inertial sensors to recognize
physical human activities to support people in everyday life.
Due to the development of wearable devices such as smart-
phones, smart-watches, and smart-glasses new opportunities
and challenges arise. People wear these devices all day long
which enable continuous monitoring for the purpose of per-
sonal assistant and health care management. Hence, the focus
shifted from laboratory to real-world applications. However,
most of the existing works target subject-specific activity
recognition which requires labeled training data of the target
person. In context of real world applications, for example in
healthcare, it is often infeasible to ask users to collect the
required amount of data and where such a system should be
usable as fast as possible. For instance, the study in [3] relied
on data that was generated by a set of subjects that had to
perform physical activities for more than an hour based on
a fixed protocol. In order to reduce this effort, we can use a
cross-subjects activity recognition approach which considers
labeled data of several other people and adapts the resulting
model to new subjects at hand. This adaptation is of general
use as also movement patterns of the same person can change
over time, e.g. due to age, fitness level, and injuries. We believe

that our approach significantly reduces the effort for patients
and elders but also lowers the barriers. In a healthcare scenario,
an initial set of labeled activity data for base models could be
acquired from a representative sample of people with different
physiologies in the course of a clinical study. These models
could be adapted to real patients using the adaptation methods
described in this paper on the fly while their activities are
tracked.

Several studies already investigated activity recognition in
a real world scenario relying on an acceleration sensor. They
considered activities like climbing stairs, walking, and stand-
ing and achieved in context of subject-specific approaches
good results [1], [4]. In contrast, cross-subjects approaches
perform often significantly worse [5], [6] where researchers
mainly focused on the leave-one-subject-out method, i.e., they
consider all available labeled data except data of the target
person. Researchers stated that the lower performance is due
to the different acceleration patterns, e.g., children walk in
a different way as elders. They hypothesized that physical
characteristics could be reliable indicators to build meaningful
groups [2], [6]. However, so far this was not entirely investi-
gated and is still an open issue.

In this paper, we present an evolving cross-subjects based
activity recognition approach which is based on an online
learning version of a random forest classifier1. Compared to
other classifiers, previous works stated that the random forest
performs the best in this scenario [3], [7]. To build the initial
activity recognition model, we rely on labeled sensor data
of people that have similar physical characteristics as the
target person. Afterwards, this model is personalized. In this
context, online learning enables to adapt the model without
retraining or keeping the processed training data available.
The information to personalize the model, i.e., to improve
the recognition rate, is gathered by analyzing the classified
data. These classification results enable to perform active
learning, i.e., to query the user. In our scenario, we consider
the activities climbing stairs up and down, jumping, lying,
running, standing, sitting, and walking where we rely on
acceleration sensors. The accelerometer is the most interesting
sensor due to low power consumption as well as the already

1In this paper, we distinguish between online and incremental learning.
The former does not store the processed data where the latter keeps all data
available.
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presented results in previous works [1], [2], [4]. During
the experiments, we evaluate single and multi-sensor setups
as well as distinguish between the relevant on-body device
position, i.e., head, upper arm, forearm, chest, waist, thigh,
and shin [3].

The main contributions of our work are the following:
• We perform comprehensive experiments regarding cross-

subjects models in context of offline and online learning
with single and multi-acceleration sensor setups including
all common activities and on-body positions.

• We show that our group-based cross-subjects approach
performs constantly 3% better than leave-one-subject-out
where we are able to achieve an F-measure of 78%.

• We present an activity recognition approach that personal-
ize with online and active machine learning cross-subjects
based models and achieves a recognition rate of 84% but
dynamic activities even with 87%.

The paper is structured as follows: In Section II, the related
work concerning evolving and adaptive activity recognition
is summarized followed by the description of our data set.
Section IV introduces the online random forest classifier. Af-
terwards, we describe the method and strategy of our approach
in detail. In Section VI, we present our experimental results
and discuss the effect of online and active machine learning.
Finally, Section VII covers the conclusion and future work of
this paper.

II. RELATED WORK

Subject-specific activity recognition has been extensively
investigated by many researchers [1], [3], [4], [8]. They
achieved reliable recognition rates in many different scenarios
but required for each subject a labeled training set. Further,
changes in user’s motion patterns are often not considered
which leads to worse recognition rate over time.

As a first approach to reduce the need of labeled data,
researchers have investigated cross-subjects approaches. Es-
pecially, the leave-one-subject-out approach was evaluated
comprehensively and researchers stated that it performs sig-
nificantly worse compared to a subject-specific classifier [6],
[9], [10]. This even holds if several acceleration sensors are
considered simultaneously [10]. The researchers conclude that
this is due to differences in the physical characteristics of
the considered subjects, i.e., fitness level, gender, and body
structure. Indeed, researchers hypothesize that these kinds of
characteristics could be reliable indicators to identify subjects
with similar acceleration data [2], [6]. So far, this assumption
was only considered in few works. Maekawa et al. [11] applied
this concept successfully but also state that a minimum number
of subjects are required. However, the authors relied on five
acceleration sensors and also considered activities of daily
life (e.g., play pingpong) which makes it difficult to interpret
the aggregated results. Besides, in some works models were
trained on one person and used on another without considering
any characteristics [5], [12], [13]. They state that such a model
often cannot yield accurate results if it is used on different
subjects and that a personalization is required. In our work,

we will focus on this hypothesis but also investigate cross-
subjects approaches concerning their performance in context
of all relevant on-body device positions and combinations.

Instead of using labeled training data across subjects, several
researchers also investigated semi-supervised approaches, e.g.,
active learning, to reduce the labeling effort [14], [15]. These
works aim at extracting the most informative unlabeled sam-
ples to minimize the user interaction. By using active learning,
the user could be queried regarding these samples to gain
new knowledge. Their results show that active learning does
improve the learning performance and also that it is possible
to achieve comparable recognition rates with respect to a
supervised approach [14]. In this context, the most informative
unlabeled samples could be identified by interpreting the
classifiers confidence values [16]. However, this approach still
requires a small, initial labeled data set of the target user.

Indeed, using labeled data across subjects and active learn-
ing do not exclude each other but are complementary. Hence,
the labeled data could be used across subjects to build a
base model which could be personalized by information which
was gathered by active learning. So far, personalization of an
existing activity recognition model was realized by updating
parameter of an existing model [17], [18], or incremental
learning [19]–[21]. In this context, researchers evaluated neu-
ral network [20], [22], support vector machine [23], and fuzzy
rule [24], [25] based approaches and even if the results of these
works are difficult to compare due to the different setups, the
results show that the concept of personalization is feasible.
Besides, to gather additional information to personalize a
model, researchers also focused on the unlabeled sensor data
and applied successfully the concept of co-training [14], [26].

So far, concerning our scenario, nobody combined all of
these techniques where in addition especially the mentioned
personalization approaches have limitations. Concerning pa-
rameter adaption, the structure of the model is almost fixed
where incremental learning has to keep all data available and
commonly also does not distinguish between newer and older
information. Indeed, some of these works also performed re-
training to process new gathered data which is often unfea-
sible. For that purpose, we will rely on and investigate an
online version of the random forest classifier which overcomes
all of these limitations. In this context, the influence and
performance concerning the users’ effort that goes along with
active learning or the relation concerning the number of
uncertain samples, queries, and achieved improvement is also
unclear.

III. DATA SET

In this paper, we investigate cross-subjects based models
that should be personalized by relying on online and active
machine learning. In this context, we consider the physical
characteristics of our subjects to identify people with similar
acceleration patterns. We focus on all common on-body device
positions and activities and evaluate their influence on the
quality of activity recognition.
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Fig. 1. Sensor placement. Each subject wore the wearable devices on the
head, chest, upper arm, waist, forearm, thigh, and shin (top down).

In a previous work [3], we created a data set2 where we
focused on a real world scenario. The data set covers, among
others, the acceleration data of the activities climbing stairs
down (A1) and up (A2), jumping (A3), lying (A4), stand-
ing (A5), sitting (A6), running/jogging (A7), and walking (A8)
of fifteen subjects (age 31.9 ± 12.4, height 173.1 ± 6.9,
weight 74.1 ± 13.8, eight males and seven females). For
each activity, we recorded simultaneously the acceleration
of the body positions chest (P1), forearm (P2), head (P3),
shin (P4), thigh (P5), upper arm (P6), and waist (P7). Each
subject performed each activity roughly 10 minutes expect
for jumping due to the physical exertion (∼1.7 minutes). In
detail, we recorded for each position and axes 1065 minutes
where in addition everything was also captured by a video
camera (third-person). Our data set covers several different
groups of people, e.g., young, old, slim, strong, athletic, and
nonathletic. Concerning male and female, the amount of data
is equally distributed. These allow to investigate the physical
characteristics in relation to the recorded acceleration data.

The data was collected by using customary smart-phones
and a smart-watch3 which were attached to the mentioned
positions (see Figure 1). The devices were synchronized with
the time service provider and the inertial sensors were sensed
with a sampling rate of 50 Hz where the data was stored
on a local SD card. The sampling rate was chosen with
consideration of battery life as well as with reference to
previous studies [4], [12]. The recording of the data was
performed using a self-developed sensor data collector and
labeling framework4.

To attach the devices to the mentioned body positions, com-
mon objects and clothes were used such as a sport armband
case, trouser pocket, shirt pocket, or the bra. There was no
further fixation of the devices to closely resemble their use in

2http://sensor.informatik.uni-mannheim.de#dataset realworld
3Samsung Galaxy S4 an LG G Watch R
4https://github.com/sztyler/sensordatacollector

everyday life. In case of the head we used a belt to avoid that
the subject had to hold this device during the performance of
the activities. This simulates that the subject phones during the
activities, alternatively it could be considered as smart-glasses.

The data collection took place under realistic conditions,
i.e., the subjects walked through a city, jogged in a forest, or
climbed up the stairs of a guard tower of an old castle. The
order of the activities was left to the subjects but they were
instructed to stand idle for a few seconds before and after
an activity was performed. There were no further instructions
concerning how the activities should be performed or how
fast they have to walk. For instance, while sitting, the subjects
typically used their smart-phone, talked with somebody else,
or were eating and drinking something.

Beside the accelerometer, we also recorded the GPS, gyro-
scope, light, magnetic field, and sound level sensors. However,
in this work, we focus only on the acceleration data. To
facilitate the usage of our data set also by other people, we
recorded each movement also by a video camera. Our data
set is free available2 and covers also a detailed description of
each subject including images of the attached devices.

Compared to the well known data sets OPPORTUNITY [27]
and COSAR [28], we did not focus on activities of daily
living but physical activities. Indeed, it would be possible
to derive the physical activities from the activities of daily
living and both data sets also cover acceleration data from
on-body devices, however, several aspects and activities are
not covered. On the one hand, OPPORTUNITY covers several
different on-body positions but provides only one single dy-
namic activity (walking) where on the other hand the COSAR
data set covers several different physical activities but provides
only acceleration data for two on-body positions. Besides, both
data sets cover significant fewer subjects (four and six) which
are too few to analyze and compare physical characteristics.

IV. ONLINE RANDOM FOREST

Random Forests [31] are usually used in context of com-
puter vision and machine learning applications where they
achieve state-of-the-art results [3], [7]. They are ensembles of
randomized decision trees combined with bagging for reducing
variance and boosting to handle the bias. The result of a
random forest classifier is made robust against overfitting and
outliers by ensuring that the individual trees whose results are
combined are uncorrelated.

A random forest R consists of T individual decision trees
ti where T is predefined. Considering a training set D =
{(x1, cm), ..., (xn, co)} where d ∈ D is a sample consisting
of a feature vector xi and a corresponding class c ∈ C. Each
tree is initialized with a randomly selected subset of tests
g(x) > θ where g is a function that maps the sample to
a scalar value (a feature) and θ is a threshold for deciding
whether the sample will go to the left or the right subtree.
Subsequently, the entropy of each of the selected features is
calculated (e.g., Information Gain or Gini Index) and the node
is split on the feature that maximizes the quality measurement.
The threshold for each feature at each node is chosen by
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Algorithm 1 OnlineBagging(R, Lo, d) [29]

1: for each base model ti ∈ R, i ∈ {1, 2, ..., T} do
2: Set k according to Poission(1).
3: do k times
4: ti = L0(ti, d).
5: end for}

Algorithm 2 OfflineBagging(T, Lb, D) [30]

1: for each i ∈ {1, 2, ..., T} do
2: Di = Sample With Replacement(D,|D|)
3: ti = Lb(Di)
4: end for
5: Return {t1, t2, ..., tT }

analyzing the samples that belong to the node or can also
be chosen at random. In case of a random choice, R is
named an extremely randomized forest [32]. The resulting
set of uncorrelated decision trees is used to determine the
class of an unseen feature vector x′i. In particular the result
is determined by averaging over the predicted results of all
individual decision trees as follows:

pR(c|x′i) =
1

T

T∑
k=1

ptk(c|x′i) (1)

where the resulting class is C(x′i) = argmax
c∈C

pR(c|x′i).
Considering the random forest classifier in online mode, the

main differences are the implementation of bagging, i.e. the
generation of subsamples used for constructing the individual
trees, and the growing of the individual random decisions trees.

It has been proven that bagging improves the predictive
power of random forests by generating replicated bootstrap
samples of the training set D [30]. Hence, for each decision
tree ti, the training set is sampled with replacement, so, the
set keeps the same size but some instances that occur in the
original training set may not appear where others could appear
more than once. This requires that the whole training set has to
be available at once. Oza [29] introduced an online version of
bagging (see Algorithm 1) where the number of occurrences
of a sample for training an individual tree is drawn from a
Poisson distribution with a constant parameter. This means
that the subsample for a tree can be determined on the fly as
a new sample becomes available. Oza provides both theoretical
and experimental evidence that the results of online bagging
converges towards the results of offline/batch bagging (see
Algorithm 2).

The growing of an online decision tree based on the concept
of an extremely randomized tree. As in the beginning, the
complete data set is not available, split decision are postponed
until enough information is available. This is guided by two
parameters: the minimal number of samples that have to be
seen before deciding and the minimal quality measurement
that has to be achieved by the split. In order to be able
to further construct the decision tree, statistics about class
membership of new samples are propagated through the tree
and provides the basis for computing the quality measurement
of possible splits. As these statistics can easily be updated
on the fly, the trees are refined as new samples arrive. In
order to compensate for changes in the distribution of arriving
information, the results can be adapted by deleting trees whose
performance degrade with new information.

Saffari et al. combined the introduced concepts, i.e., online
bagging, online decision trees, and random feature selection

and developed the first publicly available version of an online
random forest [33]. They presented experiments which show
that the random forest in online mode converged to the results
that were achieved in offline mode. Besides, the authors
implemented this classifier in C++. As we want perform the
activity recognition on wearable devices, i.e. on an Android
platform, we reimplemented this classifier in Java. We repeated
the experiments performed by Saffari et al. [33] and achieved
the same results. Further, we enhanced the original implemen-
tation by implementing threading, incremental learning, and
information gain as a quality measurement to split nodes. Our
implementation is also publicly available5.

V. METHOD

In the following, we introduce the feature generation from
the acceleration sensor data and subsequently our proposed
approach for cross-subjects based activity recognition and
personalization.

A. Feature Extraction

The essential idea behind generating features from time
depended data streams is to segment the recorded data into
windows and compute a feature vector for each window.
Several preceding studies in the context of activity recognition
already examined different settings regarding the window
size [34] and meaningful features [35]. They state that over-
lapping windows are more suitable because they can handle
transitions more accurately. Further, the window size depends
on the kind of activities which should be recognized. In our
context, most of the existing studies considered a size between
one and three seconds [34].

In [3], we investigated the most common time- and fre-
quency-based features that were considered in previous works
(see Table I). Our earlier experiments showed that especially
in context of the random forest it is to prefer to consider all of
these features because this classifier is robust against outlier
and also considers the entropy of the individual features.
Hence, meaningless features do not affect negatively the result
where a reduction of the considered feature set could lead
to lower recognition rates. Besides, comparing feature sets of
related work is difficult due to the different setups. However,
some researchers have compared different groups of features
and also state explicitly that frequency-based features improve
the accuracy of the recognition [35].

In addition to these features, we also computed gravity-
based features that provide information of the device orienta-
tion. The gravity component was extracted from the recorded

5http://sensor.informatik.uni-mannheim.de/#onlineforest
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TABLE I
SUMMARY OF CONSIDERED STATISTICAL FEATURES.

Methods
Time Correlation coefficient (Pearson), entropy (Shannon),

gravity (roll, pitch), mean, mean absolute deviation,
interquartile range (type R-5), kurtosis, median, stan-
dard deviation, variance

Frequency Energy (Fourier, Parseval), entropy (Fourier, Shan-
non), DC mean (Fourier)

accelerometer data. We applied a low-pass filter6 to separate
the acceleration and gravitational force to derive the gravity
vectors. These vectors allow to determine the orientation of the
device by computing the angles between them, also known
as roll and pitch. The azimuth angle, however, cannot be
calculated because the direction of north is required. This
means that it is not possible to derive if the device is back-
to-front. Further, we only consider absolute values of the
acceleration so that we do not distinguish if the device is
upside down. Hence, we consider these four cases as the same
position. To be more flexible and avoid overfitting, we also
transform the roll and pitch angles in one of sixteen predefined
discretized orientations. The gravity-based features are only
considered in the context of static activities to distinguish
between standing and lying.

Summarizing, we use windows which overlap by half and
have a length of one second. Further, we consider the most
common time- and frequency-based features where time-based
feature values are transformed into frequency-based ones by
applying Discrete Fourier transform7.

B. Cross-Subjects Activity Recognition

Cross-subjects activity recognition focuses on building an
initial classification model for a specific user by relying
on labeled acceleration data of other users. The most com-
mon approach is leave-one-subject-out where the classifier is
trained on all labeled training data except the labeled data
that correspond to the target user. In contrast, we aim to build
a cross-subjects model for a user that relies only on labeled
data of users that might have similar acceleration patterns. We
believe that this is promising concerning the recognition rates.

To determine which users have similar acceleration patterns,
we rely on physical characteristics, i.e., gender, fitness, and
physique. In preliminary experiments, we identified that people
who have the same gender and physique or fitness also have
similar acceleration patterns. However, typically people do
not have exactly the same physical characteristics but only
some characteristics are similar. As a result, these people have
comparable acceleration patterns for some activities but not for
all. The idea is that people with the same fitness level also have
similar acceleration patterns regarding running whereas gender
and physique could be characterizing concerning walking.

6A low-pass filter passes values which have a lower frequency as the
specified cutoff frequency and attenuates values that have a higher frequency.

7The Fourier transformation can be applied with different scaling fac-
tors. We use the JTransforms implementation (https://github.com/wendykierp/
JTransforms) which scales by 1.
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Fig. 2. Our cross-subjects based activity recognition approach. A subject has
similar acceleration patterns to people in the same row and column.

Figure 2 shows how we classified and grouped our subjects.
For instance, if we want to build a cross-subjects based activity
recognition model for subject 10 then we consider the labeled
data of all subjects that are in the same row (same fitness
level: 2, 4, 7, 13) or column (same gender and physique: 3,
9). This means that we follow a group-based approach, where
the groups are dynamically determined and can overlap for
different subjects. The gender and physique were derived from
the recorded images where we distinguished between a strong
and slim physique. The fitness level results from the distance
that the subject covered in 10 minutes running. We focused on
a practical and feasible classification system for lower barriers
and easy adoption.

C. Personalization: Online and Active Learning

Online learning enables to evolve an existing model without
keeping the whole data set available. The model is adapted
over time to the behavior of a user where recent received
information is more weighted than older. In this context, we
use online learning to adapt a cross-subjects model by new
information that is gathered from the classified windows. In the
following, we introduce the techniques smoothing and user-
feedback which we apply to gather this information. Both
techniques are applied separately (see Figure 3).

We apply smoothing if a single classified window is sur-
rounded by windows that belong to another activity. More

Active Learning

Smoothing

classification 

result

Ask

User

aggregate uncertain 

recognitions

Online Learning

update

update
Body Sensor 

Network

Labeled data set 

for base model

New 

labeled 

data set

Updatable 

Model

Fig. 3. Personalization of a cross-subjects based model by online and active
machine learning. This approach analyzes the classified windows regarding
their uncertainty to gather new information.
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precisely, if two preceding and two succeeding windows have
the same class but another than the surrounded then the label
is adjusted. The sample of the adjusted record is also used to
update the model. Concerning user-feedback (active learning),
we ask the user for feedback on certain samples that have
been classified with a low confidence. As it is unfeasible to
ask the user for a specific window we analyze and cluster
the classified windows for a specific time interval. If several
classified windows with a low uncertainty occur close to each
other, we ask the user for that specific time interval. Based
on preliminary experiments, we decided that a sequence of
uncertain classified windows is interrupted if the distance
between two uncertain windows is ≥ 5 seconds. Further, we
only asked the user for feedback if a sequence was longer
than 30 seconds. This value was chosen in regard to the
amount of the available testing data. Figure 3 shows our
approach in detail. The initial model classifies the acceleration
data of the target user. Subsequently, the classified windows
are analyzed to identify uncertain classified windows. These
windows are used to gather new knowledge by user-feedback
and smoothing.

The idea is that smoothing provides information regarding
minor classification errors where user-feedback targets major
classification errors. Hence, the resulting information from
user-feedback and smoothing is combined to create a new
small labeled data set to update the initial model. To maximize
the information gathering, we focused on classified windows
with a low uncertainty. Of course, the number of uncertain
windows depends on a predefined threshold. Hence, during
our experiments, we also consider several different confidence
value thresholds and analyze the relation between uncertainty,
user interaction, and gained recognition rate.

To evaluate the improvement of our recognition model over
time, we perform five iterations of this approach. In this con-
text, an iteration comprises that first the model has to process a
certain amount of acceleration data where subsequently user-
feedback and smoothing are performed separately. Afterwards,
the model is updated with the gathered data and the new
performance is measured. To avoid overfitting, we separated
the data set of the target user in two equally sized parts
where the classes are equally distributed. The one half is used
to perform the introduced approach where the other half is
considered to evaluate the performance of the evolving model.
Hence, in each iteration, the model classifies new unseen
acceleration data where the evolving model is always evaluated
with the same data set. We repeat our experiments several
times where we also consider other splits of the data sets to
make the results more stable. For these experiments, we rely
on the introduced online random forest classifier.

VI. RESULTS

In the following, we present our results and outline the con-
ducted experiments8 to show the performance of the proposed

8We provide our preprocessed files, i.e., the computed windows and features
for easier verification of our results on our result website.

cross-subjects activity recognition approach but also the effect
of smoothing and active learning to personalize the model.
The introduced methods were evaluated for each individual
subject. Due to lack of space, we only present the aggregated
results of all subjects. However, the individual results of
each dimension (i.e., subject, activity, device position, and
number of accelerometers) are available9. Unless otherwise
specified, the provided results are aggregated over all two-part
acceleration combinations (21).

A. Cross-Subjects Activity Recognition

In a first experiment, we compare our group-based recogni-
tion model with the standard leave-one-subject-out approach
that is typically used in the literature. For each subject, we
trained a single classifier on the data of all other people.
To have an additional reference, we also considered a cross-
subjects approach where number and people were chosen at
random (randomly). We repeat the random approach ten times
and present the average recognition rates.

TABLE II
RECOGNITION RATES (F-MEASURE) OF THE INTRODUCED

CROSS-SUBJECTS BASED APPROACHES.

Number of Accelerometers
1 2 3 4 5 6

Randomly 0.61 0.69 0.75 0.77 0.79 0.80

Leave-one-out 0.65 0.74 0.79 0.82 0.83 0.85

Our Method 0.68 0.78 0.82 0.85 0.87 0.88

Table II shows the results of the corresponding experiments
and indicates that our group-based approach consistently per-
forms better than the other approaches (+3%) where randomly
produces the worst results (−4.5%). Indeed, with an increasing
number of accelerometers the gap between the recognition
rates seems to remain stable. The results also show that the
recognition rates are far worse than a subject-specific classifier
(compare results on the same dataset from [3]). At least a four-
sensor setup seems to be necessary to achieve even satisfying
recognition rates. This is not feasible in a real world scenario
and underlines the necessity for adapting the model to new
individuals.

Considering the individual activities, Table III shows the
recognition rates of the different approaches. We can see that
our approach performs satisfying concerning all activities.
Focusing on static (77.7%) and dynamic (78.2%) activities
separately, points out that their recognition rates are similar
but the rates for climbing stairs (A1 and A2, 69%) and walking
(A8, 70%) are lower. Varying movement speed and patterns
of these activities cause these lower recognition rates. In
contrast, running (A7) and jumping (A3) have significantly
higher recognition rates because the strong acceleration is a
reliable indicator. Indeed, considering the confusion matrix
(not presented), climbing stairs and walking are activities that
are often confused among each other. This problem occurs
independently of the number of accelerometers.

9http://sensor.informatik.uni-mannheim.de/#results2017online
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TABLE III
RESULTS (F-MEASURE) SHOW THE RECOGNITION RATES FOR THE
INDIVIDUAL ACTIVITIES OF THE CROSS-SUBJECTS APPROACHES.

Offline Learning
Class Randomly Leave-one-out Our approach
A1 0.62 0.66 0.69

A2 0.63 0.67 0.69

A3 0.79 0.88 0.87

A4 0.81 0.83 0.86

A5 0.71 0.73 0.79

A6 0.59 0.63 0.68

A7 0.88 0.90 0.96

A8 0.60 0.67 0.70

avg. 0.69 0.74 0.78

TABLE IV
RECOGNITION RATES OF INTERESTING ACCELEROMETER/POSITION

COMBINATIONS (OUR APPROACH).

Offline Learning
P2-P5 (Watch & Phone) P3-P5 (Glasses & Phone)

Class Precision Recall F1 Precision Recall F1

A1 0.61 0.58 0.59 0.44 0.61 0.51

A2 0.56 0.74 0.64 0.65 0.72 0.69

A3 0.99 0.87 0.93 0.99 0.75 0.85

A4 0.64 0.39 0.48 0.83 0.77 0.80

A5 0.84 0.80 0.82 0.77 0.79 0.78

A6 0.48 0.70 0.57 0.64 0.67 0.66

A7 0.98 0.97 0.98 0.96 0.93 0.94

A8 0.77 0.61 0.68 0.74 0.48 0.58

avg. 0.71 0.69 0.69 0.74 0.72 0.72

Subsequently, we investigated changes in the recognition
rate for different combinations of sensors that are realistic in
a real world setting, in particular thigh and forearm (smart-
phone and smart-watch) and thigh and head (smart-phone
and smart-glasses). Table IV summarizes these results. As
we can see, these interesting combinations (smart-phone and
smart-watch (69%) and smart-phone and smart-glasses (72%))
perform significantly worse than the best two-sensor combi-
nation, which is waist and shin. This is additional evidence
that a cross-subjects based model needs personalization to
be applicable in a real-world setting. In this context, it also
points out that it depends on the set of activities that should
be recognized which combination is most suitable. Besides,
these results provide also evidence that the considered physical
characteristics are reliable properties to identify which people
can be considered for a group-based cross-subjects model.
We analyzed the individual activities concerning all on-body
device positions and combinations and in each case our
approach performs equal or better. Certainly, due to the size
of our data set, it is likely that there are further meaningful
characteristics which we could not identify. However, these
results confirm the hypothesis of previous works [2], [6].

B. Personalization: Online and Active Learning

The core idea of is this work is that feedback concerning the
classification results improves the cross-subjects based activity
recognition model. To confirm this thesis, we performed a se-
ries of experiments in improving the group-based recognition

TABLE V
IMPROVEMENTS OF THE RECOGNITION RATE CONCERNING

PERSONALIZATION OF THE BASE MODEL.

Online & Active Learning
Class Our method

(Base)
+ Smoothing + User-Feedback + Smoothing &

User-Feedback
A1 0.65 0.67 0.80 0.80

A2 0.66 0.68 0.80 0.81

A3 0.82 0.87 0.89 0.90

A4 0.86 0.86 0.88 0.88

A5 0.77 0.77 0.79 0.79

A6 0.66 0.66 0.70 0.70

A7 0.95 0.96 0.97 0.97

A8 0.71 0.74 0.86 0.87

avg. 0.76 0.78 0.83 0.84

models using online and active learning. More precisely, first
we analyze the difference in performance regarding offline
and online learning. Subsequently, we investigate our intro-
duced information gathering methods, i.e., user-feedback and
smoothing, to personalize the model. Finally, we focus on the
obtained activity recognition rate concerning certain aspects.

Table III and V illustrate the activity recognition rate for
our approach in offline and online mode. It points out that
in online mode the recognition rate is slightly worse (−2%).
This is due to fact that in online mode the classifier does
not know the whole data set a priori. Therefore, the chosen
internal thresholds of the classifier concerning the node splits
and features are coarser. In turn, this ensures that the trained
classifier is not fitted to a specific data set. Further, the lower
initial recognition rate of the base model is the drawback to
enable updating of the model on the fly without knowing or
storing preceding data.

Applying our personalization approach (smoothing & user-
feedback) improves the recognition rate of the base model
by +8% (see Table V). Considering the individual activities
show that the recognition rate improves for all activities
(up to +16%). If we examine static and dynamic activities
separately (see Table VI), it strikes that the recognition rate
improves especially for dynamic activities (+11%) where
the performance concerning static activities increases slightly
(+3%). This means that the dynamic activities are much better
characterized by acceleration data and that even the gravity-
based features that we took into account for static activities did
not resolve this issue. The corresponding confusion matrix (see
Table VII) confirms this statement. Hence, the static activities
lying (A4), standing (A5), and sitting (A6) are often confused

TABLE VI
DISTINCTION BETWEEN STATIC AND DYNAMIC ACTIVITIES CONCERNING

ONLINE AND OFFLINE TRAINING.

Static Dynamic
Method Precision Recall F1 Precision Recall F1

Our approach (offline) 0.78 0.77 0.78 0.79 0.78 0.78

Our approach (online) 0.77 0.76 0.76 0.76 0.75 0.76

+ Smoothing 0.79 0.79 0.79 0.88 0.85 0.86

+ User-Feedback 0.80 0.79 0.79 0.86 0.86 0.86

+ Smoothing & U-F 0.80 0.79 0.79 0.88 0.86 0.87
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TABLE VII
CONFUSION MATRIX AFTER THE PERSONALIZATION OF THE BASE MODEL
(OUR APPROACH) WITH ONLINE AND ACTIVE LEARNING. THE PRESENTED

VALUES ARE DIVIDED BY 100 AND ROUNDED.

Predicted
A1 A2 A3 A4 A5 A6 A7 A8

A1 1878 378 0 0 0 0 16 188

A2 189 2481 0 0 0 0 21 230

A3 2 1 378 0 0 0 57 0

A4 0 0 0 1768 66 462 0 0

A5 0 0 0 22 2546 544 0 0

A6 0 0 0 175 719 2259 0 0

A7 42 30 23 0 0 0 3660 8

A8 101 354 0 0 0 0 12 2881

among each other. Even user-feedback only improves the
recognition of these activities slightly. In contrast, the dynamic
activities also cover activities that are confused (climbing
down (A1), climbing up (A2), and walking (A8)) but the user-
feedback mostly resolves this problem.

Evaluating these two techniques separately and together
showed that they improve different parts of the activity recog-
nition model thus complementing each other (see Table V
and VI). Focusing only on smoothing, the performance of the
base model improves by ∼1-2% where mostly the recognition
rate of dynamic activities increased. This indicates that this
kind of minor errors occur less frequency. Indeed, the more
acceleration data was processed by our updatable model, the
less frequently such errors occurred.

Focusing on the same specific device position combinations
as in the previous section (see Table IV and VIII), it points
out that also for these combinations the recognition rate
improved significantly (watch & phone (+11%), glasses &
phone (+12%)). Considering the individual activities, espe-
cially walking (A8) achieves a satisfying recognition rate (85%
and 86%). As in the preceding results, jumping (A3) and
running (A7) have the highest and sitting (A6) the lowest
recognition rates.

The personalization of a cross-subjects model is a contin-
uous process. Figure 4 shows how the performance evolves
over time and clarifies that especially the recognition rate of
dynamic activities improves significantly (87%). Each time
interval covers acceleration data for each activity and also the
same amount of data across the intervals that are classified
by our model. For both activity types, we can observe that

TABLE VIII
AFTER PERSONALIZATION OF THE BASE MODEL (OUR APPROACH):
RECOGNITION RATES OF INTERESTING ACCELEROMETER/POSITION

COMBINATIONS.

Online & Active Learning
P2-P5 (Watch & Phone) P3-P5 (Glasses & Phone)

Class Precision Recall F1 Precision Recall F1

A1 0.80 0.72 0.76 0.79 0.77 0.78

A2 0.77 0.81 0.79 0.82 0.84 0.83

A3 0.98 0.87 0.92 0.97 0.83 0.89

A4 0.83 0.61 0.70 0.90 0.79 0.84

A5 0.82 0.82 0.82 0.77 0.89 0.83

A6 0.59 0.75 0.66 0.73 0.72 0.73

A7 0.98 0.98 0.98 0.97 0.97 0.97

A8 0.83 0.86 0.85 0.87 0.88 0.87

avg. 0.81 0.80 0.80 0.84 0.84 0.84

the recognition rate increased mostly during the first two time
intervals. This indicates that the number of windows with a
low confidence classification decreases with each iteration.
The recognition rate of static activities seems to converge
which is an indicator that the acceleration data is not sufficient.
Nevertheless, the recognition rate of the base model improves
after the first iteration by +4% and after five iterations by
+8% (84%).

We also evaluated different thresholds for the confidence
value of the classified windows. Figure 5 shows the ratio
between additional obtained recognition rate (first derivative,
slope) and the number of questions that has to be answered
by the target person. It depicts that a higher confidence value
results in a larger number of classified windows that are
considered as uncertain so the number of questions increases.
Of course, the number of questions depends on the number of
considered activities, more precisely, the number of activity
instances that are covered by the considered data set. During
our experiments, we assumed that all considered activities
occurred exactly once during a time interval. For our presented
results, we considered a threshold of 0.5 to keep the number
of questions small but cover the turning point of the slope.
Hence, in average each user had to answer ∼10 questions to
improve the base recognition model by +8%. Besides, if the
threshold is high, the slope function converges to zero, i.e.,
windows with a high confidence value are correct classified.

Finally, we examined the relation between the activity
recognition rate and the number of trees of an online random
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Fig. 4. Static vs. dynamic activity recognition: Improvement due to active learning of the base recognition model (our approach) over time.
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Fig. 5. Progression of the activity recognition rate dependent on the
confidence threshold concerning uncertain windows.

forest classifier (see Figure 6). It points out that already a forest
with 10 trees performs comparable to a forest with 100 trees.
Indeed, their recognition rate differs only by ∼1-2% where
precision and recall are close to each other. The advantages
which result from a small forest are less computational power,
lower memory usage, and a shorter computation time. This
result shows the feasibility of online learning on wearable
devices.

All of these results are a strong evidence for the feasibility
that cross-subjects based models can be personalized by online
and active machine learning. The personalized models achieve
recognition rates of 84% and for dynamic activities even 87%.
Concerning static activities, gravity-based features enable to
decrease the confusion between standing and lying where
sitting is still often confused with these two activities. Further,
instead of collection a labeled data set, the personalization of
an existing base model is significantly less effort for the target
user and also feasible for elderly and patients. Besides, the
achieved recognition rates are comparable to subject-specific
approaches of previous works [3], [4].

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigated the feasibility to personalize
cross-subjects activity recognition models using an online
random forest as a classifier to improve the model over time
using user-feedback (active learning) and smoothing. In this
context, we examined different kinds of cross-subjects based
model, i.e., leave-one-subject-out, randomly selected subjects,
and relying on subjects with similar physical characteristics.
Further, we considered all common on-body device positions
and combinations and focused on common activities. For the
experiments, we considered a large real world data set that
covers 15 subjects, 8 different activities, and 7 on-body device
positions. Besides, the online random forest classifier was self-
implemented since there was no Java implementation available
which is preferable for most wearable devices.

The results show that our group-based recognition model
performs the best (78%). Subsequently, the personalization
experiments were conducted showing that the recognition rate
for a new subject can be improved to 84% while dynamic
activities which are normally of higher interest could be
recognized with 87% (F-measure). These results show on

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0 20 40 60 80 100

Trees

F
−

M
e

a
s
u

re

F−Measure

Precision

Recall

Fig. 6. Influence of the size of the random forest concerning the activity
recognition rate.

the one hand that physical characteristic (fitness level, body
structure, and gender) enable to build promising cross-subjects
activity recognition models as a basis for personalization while
on the other hand online and active learning are a suitable
way for increasing significantly the recognition rate of such
a model. The resulting effort for the target user that goes
along with the personalization is limited to 10 questions, i.e.,
significantly less effort than collecting and labeling a new data
set. Thus, the benefits for the user are evident and make an
application in a real world situation more feasible.

In previous works, Weiss et al. [6] and Lara et al. [2]
already hypothesized that common physical characteristics
could be reliable indicators to build cross-subjects models.
In our work, we analyzed and evaluated this hypothesis and
provide evidences for its correctness. With respect of person-
alization, we can state that our approach achieves a higher
improvement than a combination of neural networks and fuzzy
clustering [20] or online parameter optimization [17], [18].
Further, related work also suggests that an extension of our
approach by co-training could be a promising idea [14].

So far, we have shown that activity recognition based on
wearable devices can be reliably executed in a real world
setting and the necessary training effort can be reduced signifi-
cantly using online and active learning. However, in our work,
we have only considered rather basic activities like walking
and running. Many interesting scenarios, however, require the
recognition of activities on a higher level of abstraction. For a
healthcare setting for example it would be highly beneficial to
be able to recognize high level activities such as working, per-
forming sports, or eating. In future work, we will investigate
how our work so far can be extended towards the recognition
of such higher level activities. We expect that this will require
the use of background knowledge about the nature of and
relations between high level activities. In previous works,
we have already proposed purely unsupervised methods for
recognizing high level activities [36], [37], these approaches
however, were only tested in a highly restricted setting. Trying
to recognize high level activities in more realistic open world
settings will come with significant challenges both with respect
to acquiring background knowledge and developing robust
recognition methods.
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