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Wearable sensors by comprehensive experiments concerning subject-specific and cross-subjects activity
Machine learning recognition approaches that rely on acceleration data. We introduce a device localization
On-body position detection method that predicts the on-body position with an F-measure of 89% and a cross-subjects

activity recognition approach that considers common physical characteristics. In this
context, we present a real world data set that has been collected from 15 participants for
8 common activities where they carried 7 wearable devices in different on-body positions.
Our results show that the detection of the device position consistently improves the
result of activity recognition for common activities. Regarding cross-subjects models, we
identified the waist as the most suitable device location at which the acceleration patterns
for the same activity across several people are most similar. In this context, our results
provide evidence for the reliability of physical characteristics based cross-subjects models.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Activity Recognition is an active field of research in pervasive computing [ 1-3]. The development of wearable devices
such as smart-phones, smart-watches, and fitness wristbands feature a variety of sensors that are carried all day long by
many people (compare [2]) and provide new opportunities for continuous monitoring of human activities such as running,
sitting, standing, or walking [4]. A problem of many existing studies on the subject is that they are conducted in a highly
controlled environment. In consequence, the results of these studies often do not carry over to real world applications. Our
aim is to develop robust activity recognition methods based on mobile device sensors that generate high quality results in
areal world setting.

At present, activity recognition in a real world scenario goes along with several unaddressed problems. First, commonly
itis up to the user where the wearable device is worn and often the device position is chosen with regard of the performed
activity. This means that also transitions between positions have to be detected. Further, most of the existing approaches
focus on a subject-specific approach, i.e., the target user has to collect and label data. This is often not feasible, especially
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in a healthcare scenario where elders or patients should be observed and are unable to perform all activities for a certain
amount of time to collect enough training data. The complement could be a cross-subjects approach that relies on labeled
data of certain people except the target user. More precisely, a classification model is trained on data of several people to
classify the activities of another unseen person. Hence, training and testing data are disjoint sets and these sets represent
different people. In this context, the idea is to take advantage of similar body movement patterns across people.

Preceding works have already state important insights concerning these problems. These include which body areas
provide different information for the same activity which in turn is essential for using sensor data across people. In this
context, the relevant on-body positions that should be distinguished are head, upper arm, forearm, chest/waist, thigh,
and shin [5]. Further, they stated that the on-body device position has an influence on the quality of activity recognition.
Focusing on different cross-subjects approaches, most of the existing works examined leave-one-subject-out [6,7], i.e., the
consideration of all available labeled data except the data of the target person. This often performs significantly worse than a
subject-specific approach due to different acceleration patterns, e.g., an elder has different locomotion patterns than a child.
However, cross-subjects models can be personalized by co-training [8] or adaptation of parameters [9] but a satisfiable initial
recognition model is preferable. Thus, the better the initial model performs the lower the costs for the personalization [10].
In general, these works rely on acceleration sensors and also provide evidence for its reliability [4]. Moreover, an acceleration
sensor has a low power consumption which makes it interesting concerning continuous sensing over a complete day.

This paper is an extension of a previous work [11]. We already focused on the detection of relevant on-body positions
in the context of everyday movements and activities using a single accelerator sensor. Further, we examined the impact of
the recognized position information on the accuracy of the activity recognition. As an extension but not limited to, we also
focus on cross-subjects approaches especially concerning the different device on-body positions. We aim to investigate the
acceleration patterns of our subjects to identify groups which enable to build more reliable initial cross-subjects models for
people that are unable to collect and label data for a subject-specific approach.

The main contributions of our work are the following:

e We show that random forest based approaches are able to recognize the device on-body position (89%) and performed
activity concerning subject-specific (84%) and cross-subjects (79%) approaches.

e We show that transferring labeled data between people of the same gender and with a similar level of fitness and statue
is feasible for cross-subjects activity recognition for people that are unable to collect required data.

e We present comprehensive experiments concerning subject-specific and cross-subjects activity recognition in
consideration of all relevant on-body device position and physical activities.

The paper is structured as follows: In Section 2, the related work of the focused research questions is summarized.
Then, we outline the data collection phase and present our data set. Section 4 covers the process of feature extraction and
classification where we introduce our approach for on-body position detection, position-aware activity recognition, and
cross-subjects activity recognition. In Section 5, we present our experimental results. Finally, Section 6 covers the conclusion
and future work of this paper.

2. Related work

Acceleration sensor based activity recognition has been studied for many years [4,12,13] and enables to recognize
common physical activities such as walking or running. The spreading of wearable devices furthered the feasibility of
this approach in the real world but also gives priority to less focused issues. These include cross-subjects based activity
recognition models and the varying on-body position of the wearable devices.

The cross-subjects activity recognition problem got significantly less attention than subject-specific activity recognition
approaches [14,6] while especially often elders and patients are unable to collect required training data. Commonly,
researchers focus on leave-one-subject-out [ 15] where most researchers state that the models perform worse. Their results
show that especially acceleration patterns of dynamic activities (e.g., climbing stairs) may differ across different users [10].
This result can be attributed to the different physical characteristics, e.g., a child walks faster than an elder or a woman
could have a different body movement than a man. Several researchers already hypothesized that physical characteristics,
i.e., gender, weight, height, and fitness level, could be reliable indicators to choose specific people for a cross-subjects
model [16,14]. However, focusing on common physical activities, this is still an open issue. Besides, researchers also
evaluated a pairwise approach [17], i.e., trained the model on data of one person and evaluated the performance on another.
However, they state that this approach often cannot yield accurate results. Moreover, the performances of these kinds of
approaches concerning different on-body device positions are also still unclear.

To avoid the effort that goes along with collecting and labeling training data, researchers have also focused on creating
a cross-subjects model and applying personalization. The idea is to adapt an initial cross-subjects model to the behavior of
the target user to improve the recognition rate by relying on unlabeled but classified acceleration data. For the purpose of
personalization, they focused on co-training [8], parameter adaption [17], and incremental learning [ 18]. Their result show
that personalization is feasible and that a cross-subjects model can improve in a short time. However, their results also
indicate that if the initial model performs worse the personalization may go along with more effort [ 10]. For that reason, a
cross-subjects approach except leave-one-subject-out is preferable especially if the available labeled data set covers certain
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Fig. 1. The framework consists of a wear (1) and hand (2) app (right) which enable to record each sensor and also provide labeling functions. The subject
wears (left) the wearable devices on the head, chest, upper arm, wait, forearm, thigh and shin (top down).

amount of different people. In this context, Vo et al. [ 10] also state that an increasing number of people goes along with a
decreasing activity recognition rate.

Focusing on the on-body device position recognition shows that this problem got also less attention. Initially, researchers
investigated position-independent activity recognition [ 19] but concluded that the recognition rate can differ significantly.
Subsequently, researchers conducted experiments concerning the device position and its influence on the recognition rate
and stated that this information increases the accuracy of the activity recognition but the opinions regarding the impact
are divided [20,13,1]. Reviewing their results, points out that the different statements may result from the sets of positions
and activities that were considered. Indeed, so far nobody considered all relevant on-body positions in context of common
physical activities in one study. Therefore, it is still unclear how accurate each relevant position can be detected regarding
different activities.

So far, the localization problem was only addressed by a couple of researchers. Kunze et al. published one of the first
approaches that first tries to detect if the subject is walking and then used specific patterns of sensor readings to derive the
current device position [21]. However, this approach is limited due to the small set of selected positions and the fact that
position changes are not recognized if the subject does not walk. Deriving the device positions hand, bag, or pocket directly
from the performed physical activity has shown that the effect of the location information on the accuracy of the activity
recognition depends on the performed activity [13].

In general, due to the importance of the sensor placement in context of activity recognition, several researchers also
investigated the influence and effect of different positions concerning the performed activities [20,5,1]. The results of these
studies show that there are seven different body locations that behave differently in activity recognition, i.e., forearm, head,
shin, thigh, upper arm, and waist/chest. Dividing these body parts (e.g., head or shin) into smaller regions does not improve
the accuracy [5]. In addition, further studies have shown that the optimal sensor placement depends on the activity that has
to be recognized [20]. As a result, the benefiting of the position information and also the feasibility to derive device positions
by an accelerometer is stated.

3. Data set

In this paper, we investigate the detection of the on-body position of a wearable device, its influence on the quality of
activity recognition, and the feasibility of cross-subjects activity recognition. For this purpose, we created a data set' which
covers, among others, the acceleration data of the activities climbing stairs down (A1) and up (A ), jumping (As3), lying (A4),
standing (As), sitting (Ag), running/jogging (A7), and walking (Ag) of fifteen subjects (age 31.9 + 12.4, height 173.1 + 6.9,
weight 74.1 £ 13.8, eight males and seven females). For each activity, we recorded simultaneously the acceleration of the
chest (Py), forearm (P,), head (P3), shin (Py), thigh (Ps), upper arm (Pg ), and waist (P;). Each subject performed each activity
roughly 10 min except for jumping due to the physical exertion ( ~1.7 min). In detail, we recorded for each position and
axes 1065 min of sensor data which is equally distributed between male and female subjects. Concerning cross-subjects
activity recognition, we want to emphasize that our group of subjects comprises several different kind of people. Hence,
there are significant differences concerning fitness, physique, age, weight, height, and movement behavior. To the best of
our knowledge the result is the most complete, realistic, and transparent data set for on-body position dependent approaches
that is currently available.

The required data was collected using customary smart-phones and a smart-watch? which were attached to the
mentioned positions (see Fig. 1(a)). The devices were synchronized with the time service of the network provider and the

1 http://sensor.informatik.uni-mannheim.de.
2 “Samsung Galaxy S4” and “LG G Watch R”.
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Table 1
Summary of considered feature methods.
Methods
Time Correlation coefficient (Pearson), entropy (Shannon), gravity (roll, pitch), mean, mean absolute deviation,

interquartile range (type R-5), kurtosis, median, standard deviation, variance
Frequency  Energy (Fourier, Parseval), entropy (Fourier, Shannon), DC mean (Fourier)

accelerometer was sensed with a sampling rate of 50 Hz where the data was stored on a local SD card. The sampling rate
was chosen with consideration of battery life and with reference to previous studies [17,22]. The recording of the data was
performed using a self-developed sensor data collector and labeling framework. The framework consists of a Wear (1) and
Hand (2) application (see Fig. 1(b)) which interact with each other via Bluetooth. The application provides the possibility to
control the built-in sensors, to specify the sampling rate, and to record several sensors simultaneously. The binary® and the
source code” of this application are publicly available.

To attach the devices to the relevant body positions, common objects and clothes were used such as a sport armband
case, trouser pocket, shirt pocket, or the bra. There was no further fixation of the devices to closely resemble their use in
everyday life. We used a belt to attach a phone to the head to avoid that the subject had to hold this device during the
performance of the activities. This simulates that the subject is making a phone call.

The data collection took place under realistic conditions, i.e., the subjects walked through the city, jogged in a forest, or
climbed up the stairs of a guard tower of an old castle. The order of the activities was left to the subjects but they were
instructed to stand idle for a few seconds before and after the activity was performed. Concerning the activities, there were
no instructions. It was up to the subjects, e.g., how fast they wanted to walk or how they wanted to sit. In this context,
typically the subjects used their smart-phone, talked with somebody else, or were eating and drinking something.

Each movement was recorded by a video camera to facilitate the usage of our data set also by other people. Our data set
is available' and covers beside the mentioned acceleration data also GPS, gyroscope, light, magnetic field, and sound level
data which were also recorded during the data collection phase but is not considered in the following. Besides, there is also
a detailed description of each subject including images of the attached devices and a short report.

4. Method

Following most existing works, we use a supervised approach, both for on-body localization and for activity recognition.
The introduced data set was used as training data and for evaluation. In the following, we describe the features generated
from the sensor data and the learning methods and strategies used in our study.

4.1. Feature extraction

The essential idea behind generating features from time dependent data streams is to segment the recorded data
into windows and compute a feature vector for each window. Preceding studies in the context of activity recognition
already examined different settings regarding the window size and meaningful features [ 14,23]. They state that overlapping
windows are more suitable because they can handle transitions more accurately. Further, the window size depends on
the kind of activities which should be recognized. In our context, most of the existing studies considered a size between
one and three seconds [19,3,24]. However, so far there is no agreed set of features. Indeed, a comparison of the different
but overlapping feature sets of previous studies is difficult due to their different settings and goals. Nevertheless, some
researchers have compared different groups of features and also state that frequency-based features improve the accuracy
of the recognition [24].

Based on these results, we use windows which overlap by half and have a length of one second. Further, we consider the
most common time- and frequency-based features that were used in previous work (see Table 1) where time-based feature
values are transformed into frequency-based feature values by applying Discrete Fourier transform®.

We also computed gravity-based features that provide information of the device orientation. The gravity component was
extracted from the recorded accelerometer data. We applied a low-pass filter® to separate the acceleration and gravitational
forces to derive the gravity vectors. These vectors enable to determine the orientation of the device by computing the angles
between them also known as roll and pitch (see Fig. 2). The azimuth angle, however, cannot be calculated because the
direction of north is required. This means that it is not possible to derive if the device is back-to-front. Further, we only
consider absolute values of the acceleration so that we do not distinguish if the device is upside down. We consider these

3 https://play.google.com/store/apps/details?id=de.unima.ar.collector.
4 https://github.com/sztyler/sensordatacollector.

5 The Fourier transformation can be applied with different scaling factors. We use the JTransforms implementation (https://github.com/wendykierp/
JTransforms) which scales by 1.

6 A low-pass filter passes values which have a lower frequency as the specified cutoff frequency and attenuates values that have a higher frequency.
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Fig. 2. Gravity-based features. The coordinate system is defined in reference to the screen. The acceleration of the device is measured along the axes. The
gravity enables to compute the angle between the axes to determine the orientation (roll, pitch). To calculate azimuth, the direction of north is required.

four cases as the same orientation. To be more flexible and avoid overfitting, we also transform the roll and pitch angles in
one of sixteen predefined discretized orientations. Besides, the gravity-based features are only considered in the context of
on-body position detection or static activities. Previous works already showed that this feature is beneficial to distinguish
between standing and lying.

The feature extraction process was performed with a self-developed framework that computes all mentioned features.
The framework is available’ and enables to specify the mentioned settings. As a result, the framework returns a list of feature
vectors which are in the following further processed.

4.2. Random forest classifiers

Decision trees have already successfully been used for activity recognition, however, it is well known that classical
decision trees are sensitive to overfitting when the generated trees become very deep. In order to overcome the overfitting
problem, ensemble methods have been proposed that balance the results of multiple decision trees that have been trained
on different parts of the training data. Random forest classifiers are one of these ensemble methods that have been proposed
by Breiman [25]. A random forest classifier is constructed in the following way:

Let D = {(X1,¥1), ..., (Xn, yn)} be a learning problem with feature vectors x; and results y;. In a first step a number of
samples Sy, ..., Sy are drawn from D using sampling with replacement. For each sample S;, a decision tree classifier f; is
trained using a variation of the classical decision tree learning algorithm that uses feature bagging. This means that for each
branching decision in the decision tree construction only a randomly selected subset of feature vectors is taken into account.
This is necessary to ensure that the different generated decision trees are uncorrelated [26]. In this context, the decision tree
considers the information gain of each feature to determine the importance during the construction.

The resulting set of uncorrelated decision trees can now be used to determine the outcome for an unseen feature vector
X' based on the principle of bagging. In particular, the result is determined by averaging over the predicted results of all
individual decision trees as follows:

N 1<
f&) = @), (1)
i=1

For the case of a classification problem, the combined classifier essentially performs a majority vote over the outcomes
of the individual decision trees. It has been shown that bagging prevents the overfitting problem as the combination of
multiple classifiers has a significantly lower variance than an individual classifier.

4.3. On-body position detection

We treat position detection as a multi-class classification problem with target classes being head, upper arm, forearm,
chest, waist, thigh, and shin that correspond to the relevant positions according to Vahdatpour et al. [5].

In initial experiments, we observed a major problem when trying to distinguish between different device positions while
considering all performed activities. More precisely, data of the activities lying, standing, and sitting frequently leads to
misclassification of device positions. This is caused by the fact that in context of these three activities the human body only
has a slight acceleration so that the computed feature vectors are not easily distinguishable. To address this problem, we
distinguish between static (standing, sitting, lying) and dynamic (climbing up/down, jumping, running, walking) activities
and consider these two groups in the following as two types of activity-levels. This enables to consider different features
sets. Hence, we train a classifier that distinguishes between static and dynamic activities that is used as a first step in the
position detection process (see Fig. 3). A similar distinction has been made by Yang et al. [27] to improve the accuracy of
activity recognition.

7 https://github.com/sztyler/sensorfeatureextraction.
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Fig. 3. Activity Recognition. The nodes illustrate the target class and the edges the applied classifier. The current window is classified as “dynamic”
(climbing, jumping, running, walking) or “static” (standing, sitting, lying). Subsequently, the device position is recognized and a position specific classifier
applied to derive the performed activity.

We trained both classifiers using stratified sampling combined with 10-fold cross validation to ensure that all folds cover
the same ratio of classes. Further, to make the result more stable, we performed 10 runs where each time the data set was
randomized and the ten folds were recreated. The classifiers were trained and evaluated for each subject individually. Thus,
we did not consider several subjects at once.

4.4. Subject-specific activity recognition

In the activity recognition phase, we aim to detect the activities climbing stairs up and down, jumping, lying, running,
sitting, standing, and walking. In this context, we evaluate the impact of the information of the device position. For this
purpose, we construct position-independent and position-aware activity classifiers and compare their performance on our
data set.

The position-independent activity recognition approach simply consists of a single classifier per subject that is trained on
all data independent of the recognized device position. We expect this recognition approach to perform sub-optimal as the
motion information from the sensors can be assumed to be very different in the different positions for the same activity.

The position-aware activity recognition approach consists of a set of individual classifiers, one for each device position and
each subject. The classifier to be used is determined in a position recognition step that is executed before the actual activity
recognition. Fig. 3 provides an overview of the detection process: First, the unlabeled record is classified as a dynamic or
a static activity. As mentioned above, this step is necessary as we can more reliably detect the device position if we know
whether the performed activity is a static or adynamic activity. Then, the position of the device is recognized with an activity-
level dependent classifier that uses a feature set that has been optimized for the type of activity. Finally, the performed
activity is recognized by selecting and applying the classifier for the detected device position. Obviously, the performance of
the position-aware activity recognition approach relies on the correct identification of the device position. Therefore, to test
the feasibility of this approach, we use the results of the activity-level dependent position detection experiments - including
all mistakes made - as input for the activity recognition experiments.

With the availability of wearable devices different from mobile phones - e.g. smart-watches and smart-bands - a natural
question that also arises is whether using these devices in addition to a smart-phone can further improve the recognition
rate. Hence, in addition we also address this question by investigating activity classification based on sensor information
from multiple sensors. In order to be as general as possible, we consider combinations of two and three acceleration
sensors at arbitrary positions. We consider the same set of features as before, but compute them separately for each sensor.
Therefore, for each considered on-body position we have separate features. Subsequently, the resulting feature vectors of
the windows that describe the same point in time are unified in a single feature vector.

4.5. Cross-subjects activity recognition

The initial idea of a cross-subjects based model is to perform activity recognition also for people, e.g. elders, which are
unable to collect and label required data but, e.g., need to be observed. Commonly, a cross-subjects approach relies on labeled
sensor data of several people where the most known approach is leave-one-subject-out. Thus, a single classifier is trained
on all available labeled data expect data of the target person. Compared to our subject-specific approach, we focus on the
performance of different cross-subjects approaches depending on the individual on-body device positions, i.e., we assume
that we know the device position. However, we also evaluate how well the positions themselves could be recognized. For
that purpose, we construct and evaluate the following cross-subjects approaches: Randomly, Leave-One-Subject-Out, Top-
Pairs, and Physical. Especially, the physical-based approach could be promising as this idea was already hypothesized but
not investigated in several previous works. For all approaches, we follow a group-based approach where the groups are
dynamically determined and can overlap for different subjects. Thus, a group represents certain people whose labeled data
is considered to train a classification model for an unseen subject.
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Fig. 4. Cross-subjects activity recognition by relying on demographic characteristics, i.e., fitness, gender, and physique. For instance, to determine the
activities of the target person T, we do this based on the known labeled data of subjects 1, 3, and 4 (matches) which have the same fitness-level or gender
and physique as T.

Leave-One-Subject-Out This approach was most often considered in related works and performs often differently
depending on the considered data set. We build for each subject a classifier that relies on all available labeled
data except the target person. We consider this approach as baseline.

Top-Pairs We compare our subjects pairwise to identify the best matches for each subject, i.e., we trained a classifier on
data of one person and evaluated the performance on another. Based on these results, we build a classifier for a
target user that consists of the top five matches. In this context, it is unclear if the best matches taken together
perform better or even worse due to contradictions. Indeed, this approach can only be evaluated if labeled data of
the target person is available. For that purpose and in reference to our scenario, we consider only one minute per
activity of the available labeled data of the target user.

Physical In initial experiments, we investigated whether demographic characteristics, in our case gender, fitness, and
physique can be used to determine a group of people whose data can be used to recognize activities of a previous
unseen subject. For this purpose, we identified these characteristics for each subject from the data set. While gender
and physique (strong and slim) were determined based on the videos of the exercises, we took the distance covered
in 10 min running to classify the subjects into five fitness levels. The choice based on the idea that people with the
same fitness level have similar patterns concerning running while the gender and physique could be characterizing
for walking. For clarification, Fig. 4 illustrates this process. In case that there is at most one match, we fallback and
apply leave-one-subject-out due to results of pairwise approaches of related work [17].

Randomly As an additional reference, we also build classifiers where the number of considered people and also the people
themselves are chosen at random except the target user. We repeat this approach ten times and consider the
average as recognition rate.

During our experiments, we initially focus on dynamic activities because we believe that the acceleration patterns
of static activities are less characterized by the individual behavior. We examine the performance and benefits of the
introduced cross-subjects models but also the individual performance in context of each on-body position. Finally, we
discuss and compare the results of our subject-specific and cross-subjects approaches also in context of a multi-sensor
setup.

5. Results

In the following, we outline the conducted experiments and present our results to show the effect of the proposed device
localization approach but also the influence of the derived location in context of activity recognition. Subsequently, we
evaluate our introduced cross-subjects activity recognition approaches. Due to lack of space, we only present the aggregated
results of all subjects. Further, we also removed some tables which belong to the original publication [11]. However, the
individual results of each subject and classifier are available®. Unless otherwise specified, the provided results are based on
the random forest classifier which turned out to consistently perform better than other classification techniques.

5.1. On-body position detection

For the first experiment, we evaluated an activity-independent approach to create a baseline. Thus, we trained for each
subject a single classifier on the data of all performed activities and each position. Table 2 shows the result and illustrates
that the device position can be recognized with an F-measure of 81%. In this context, the shin (P4) has the highest (88%)
and the forearm (P,) and upper arm (Pg) the lowest (79%/78%) recognition rate. The latter highlights the problem regarding

8 http://sensor.informatik.uni-mannheim.de#results2016activity.
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Table 2
Activity-independent position recognition rates for differ-
ent on-body locations.

Class  Precision  Recall FP-Rate  F-measure

P 0.79 0.82 0.04 0.80
P, 0.79 0.78 0.03 0.79
P3 0.79 0.82 0.04 0.80
Py 0.90 0.86 0.02 0.88
Ps 0.83 0.80 0.03 0.82
Ps 0.79 0.78 0.03 0.78
P; 0.79 0.81 0.04 0.80
avg. 0.81 0.81 0.03 0.81

Table 3

Position recognition rates for static activities and different feature sets:
Shows that orientation and time-based features are needed for an accurate
recognition.

Features Precision  Recall ~FP-Rate  F-measure
Time-based features  0.72 0.72 0.05 0.72
With orientation 0.88 0.88 0.02 0.88
Only orientation 0.54 0.53 0.08 0.54
Table 4
Detailed results for the proposed position recognition
method.
Class  Precision  Recall FP-Rate  F-measure
Py 0.87 0.89 0.11 0.88
P, 0.87 0.85 0.15 0.86
Ps 0.86 0.89 0.11 0.87
Py 0.95 0.92 0.08 0.94
Ps 0.91 0.90 0.10 0.91
Ps 0.85 0.84 0.16 0.85
Py 0.91 0.92 0.08 0.92
avg. 0.89 0.89 0.11 0.89

the flexibility of the arm during each activity and also indicates that these two positions are the most problematic device
locations. Examining the confusion matrix, shows that the individual positions are not confused. Indeed, the false-positives
and the false-negatives are almost evenly distributed.

Further investigations point to the fact that the recognition rate of the correct device location is higher if the related
activity is characterized by stronger acceleration. Hence, the separation between static and dynamic activities results in
significantly different recognition rates for these two kinds of activity groups (72%/89%).

We examined the feature set and figured out that the gravity vector of the device provides useful information. However,
attention should be paid to the fact that our experiments also showed that the gravity vector and derived features (roll
and pitch) lead to overfitting. If a classifier was trained for a specific position then the position recognition rate dropped
after the device was reattached for this position. This is mainly because the orientation of the device was slightly changed
by the subject. The orientation seems not to be a reliable indicator of the current device position. However, investigations
have shown that static activities and the device orientation are correlated. Thus, the orientation enables to separate implicit
between the static activities which results in less misclassifications of the device position across these activities. In this
context, we only considered the introduced discretized orientation. Table 3 summarizes the results and shows that the
recognition rate of the device localization in context of static activities increases by 16%.

Certainly, the usage of different feature sets for these two kinds of activity groups (static and dynamic) requires the ability
to separate between them. Hence, we constructed a classifier that decides to which activity group the performed activity
belongs. The results clearly show that the segmentation performs very well (F-measure: 97%).

As a result, we evaluated the approach where we first decide if a static or dynamic activity is performed and then apply
an activity-level specific position classifier. Compared to the baseline, Table 4 shows that this approach has an 8% higher
recognition rate. In this context, the shin is still the best (94%) and the arm (forearm and upper arm) the worst (86%/85%)
position. Looking at the confusion matrix still exposes an evenly distribution of the false-negatives and false-positives but
certainly lower values. This indicates that the distinction of the activity-levels, more precise, the individual handling of the
dimensions of the data leads to a better distinction of the device positions. Hence, the experiments show that in most of the
cases it is possible to recognize the device position correctly. In general, the considered positions seem not to be confused
concerning the classification which confirms that each position provides different information for the same activity.
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Table 5
Results of the baseline method for activity recognition
without position information.

Class  Precision  Recall FP-Rate  F-measure

Aq 0.84 0.76 0.02 0.80
Ay 0.77 0.81 0.04 0.79
As 0.99 0.94 0.00 0.96
Ay 0.83 0.83 0.03 0.83
As 0.68 0.77 0.06 0.72
Ag 0.70 0.64 0.05 0.67
A; 0.93 0.89 0.01 0.91
Ag 0.85 0.87 0.03 0.86
avg. 0.80 0.80 0.03 0.80
Table 6
Confusion matrix for the baseline activity recognition method without position
information.
Predicted
A] A2 A3 A4 A5 Ag A7 Ag
Ay 4997 910 2 3 41 23 52 554
Ay 514 6758 1 36 155 108 36 784
As 5 2 1114 0 0 0 66 0
Ay 14 94 0 7208 512 837 63 5
As 20 108 0 370 6652 1231 224 12
As 19 117 0 1000 1798 5622 150 15
A7 69 95 6 52 611 177 8712 22
Asg 290 741 0 3 49 23 17 7677

In summary, our position-recognition approach that makes use of a random forest classifier and distinguishes between
different activity levels achieves an average performance of 89% across all positions.

5.2. Subject-specific activity recognition

The whole idea of our work is based on the idea that knowledge about the device position improves activity recognition.
Therefore, we also have to show that the position-aware activity recognition approach that uses the automatically detected
device position outperforms the baseline approach that does not consider the device position. For this purpose, we
constructed and examined the introduced position-independent activity classifier for each subject which was trained
on all data of all positions. Table 5 illustrates the performance of this approach and shows that the correct activity is
recognized with an F-measure of 80%. However, considering the individual activities, it shows that the recognition rate
is unequally distributed. Thus, sitting (As) has a significantly worse (67%) and jumping (As) a much better (96%) recognition
rate. Additionally, the activities climbing down (A,) and standing (As) are often confused with other activities. In this context,
the corresponding confusion matrix (see Table 6) emphasizes that the recognized activity is often wrong if a performed
activity is similar to another, i.e., lying (A4), standing (As), and sitting (Ag) but also climbing up (A1), down (A,), and walking
(Ag) are often confused.

In contrast, the introduced position-aware approach achieves a 4% higher F-measure. Table 7 shows that in case of
each activity, the consideration of the device localization results in a higher or equal recognition rate. Concerning the
static activities, we can observe that the F-measure values increased notably. Indeed, the activities lying (+6%), standing
(45%), and sitting (4+9%) have improved the most. The related confusion matrix (see Table 8) makes clear that the problem
of misclassification is not completely solved but better handled than before. For dynamic activities, the recognition rate
improved slightly.

Considering the activities and positions in detail (see Table 9), it leads to the fact that there is no optimal device position.
The chest, waist, thigh, and shin perform on average at best but they perform different depending on the activity. Thus, the
activity climbing stairs up is best handled by the chest (up to 5% better) whereas the thigh recognizes the activity standing the
best (up to 14% better). This confirms a statement of a previous work where they stated that the optimal sensor placement
depends on the activity [20]. Further, it points out that most of the positions perform still bad regarding the static activities.
This indicates that even low acceleration combined with the (predicted) device position makes it hard to distinguish between
such activities. Besides, there are also activities where each position performs very well. Hence, the activities running (>91%)
and jumping (>95%) are equally well recognized for all positions due to the high acceleration of the devices. These show that
the acceleration strength is decisive concerning the activity recognition rate and that in case of low acceleration additional
information of the environment or context-related information are required.

Despite the fact that we recognized only in 89% of all cases a correct device position and compared with the position-
independent approach (80%), these results indicate clearly that the consideration of the device position results in a higher
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Table 7
Results of the proposed activity recognition method that
uses automatically detected device positions.

Class  Precision  Recall FP-Rate  F-measure

Ay 0.84 0.77 0.02 0.81
Ay 0.78 0.81 0.04 0.79
As 0.99 0.95 0.00 0.97
Ay 0.90 0.88 0.02 0.89
As 0.74 0.81 0.05 0.77
As 0.78 0.74 0.04 0.76
Az 0.94 0.91 0.01 0.92
Ag 0.85 0.88 0.03 0.86
avg. 0.84 0.83 0.03 0.84

Table 8
Mean confusion matrix: Proposed activity recognition method using automat-
ically detected device position.

Predicted

A1 Az A3 A4 A5 As A7 Ag
Aq 5080 849 2 4 42 24 40 548
Ay 526 6820 1 26 134 87 31 768
As 7 5 1130 0 0 0 46 1
Ay 18 94 0 7660 324 579 57 8
As 19 99 0 217 7000 1020 244 15
As 19 112 0 582 1380 6470 141 18
A7 70 96 11 38 535 142 8830 24
Ag 287 709 1 3 50 24 14 7720

Table 9

Results of the proposed activity recognition method with known
device positions.

Class Py P, Ps Py Ps Pg P;

Ay 08 075 076 083 081 080 0.82
Ay 083 072 076 084 083 0.78 0.80
As 097 097 097 095 095 098 0.97

Ay 089 083 089 090 086 094 0.91
As 072 073 071 086 084 075 0.81
As 072 076 065 082 080 074 0.82
Az 092 091 091 093 094 092 0.93
Ag 089 082 082 089 088 085 0.88

avg. 084 080 079 087 086 083 0.86
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Fig. 5. The recognition rates of a multi-sensor setup. It illustrates the possible improvements of the recognition rate for each activity.

activity recognition rate (84%). So, the results show that it does not depend on the activity but on the device position if
the information of the device position improves the activity recognition rate. In this context, also the individual handling
of the different dimensions (e.g., device position and activity-level) leads to a better distinction of the target classes, so to
a better recognition rate. Especially in the context of the static activities, these two approaches lead to a significant better
recognition.
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Fig. 7. Performance of the different classifiers for position-aware activity recognition. The on-body device position was detected in a previous step by the
activity-level dependent approach (Random Forest).

If we shift our focus to a scenario where we could rely on additional wearable devices, Fig. 5 shows the improvements
concerning the different activities. Indeed, considering all activities, a two-part setup performs always better then a single
sensor independent of the selected on-body device positions. Hence, the worst two-part setup (head and upper arm)
still achieves a recognition rate of >90% where the best combination (tight and waist) has up to 94%. Besides, the worst
combinations always cover a position which is located on the arm or on the head. This is consistent with the preceding
results, i.e., it is due to the flexibility. In contrast, the best two-part combinations consist always of the sensors which
performed the best in a single sensor environment. All of this also holds if we compare a three- and two-part setup.

Considering the individual activities, the biggest improvements with a two-part setup could be achieved concerning
sitting (Ag, +11%), climbing stairs (A1, +10% and A,, +9%) and walking (Ag, +6%). This is strong evidence that already one
additional wearable device increases the robustness and quality of the recognition system significantly. Further, it does not
matter if the on-body position selection is up to the subject. A third sensor still improves the recognition for all activities
but less significant.

5.3. Comparison with other classification methods

In order to show the benefits of using the proposed random forest classifier, we compared its performance to the one of
other common classification methods, in particular Artificial Neural Network (ANN), Decision Tree (DT), k-Nearest Neighbors
(kNN), Naive Bayes (NB), and Support Vector Machine (SVM). All of these classifiers were used in previous works on activity
recognition and achieved good results.

Considering the activity-level dependent position recognition approach, the other classifiers performed worse. Fig. 6
illustrates the results and shows clearly that Random Forest (89%) outperforms the other classifiers. In this context, NB (39%)
performed the worst probably due to assumption that all features are independent. In contrast, k-NN (75%), ANN (77%), and
SVM (78%) achieved reasonable results. We performed parameter optimization and choose a radial basis function regarding
SVM. The DT (82%) performed second best but the recognition rate is much worse (—7%). Besides, the training phase of the
RF was one of the fastest whereas ANN and SVM took the longest.

Concerning activity recognition, we evaluated the performance of the classifiers in context of position-aware activity
recognition based on the recognized device positions of the random forest. Fig. 7 shows that RF (84%) achieved the highest
activity recognition rate where NB (61%) performed the worst. Further, k-NN (70%) and SVM (71%) performed almost
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Table 10

Dynamic activity recognition (F-measure): Performance
of cross-subjects approaches on each individual device
position. Each classifier was only trained and tested with
data of a specific on-body position.

Position =~ Randomly L10 Top-Pairs  Physical

Py 0.64 0.70 0.69 0.68
P, 0.60 0.66 0.64 0.65
Ps3 0.56 0.62 0.61 0.61
Py 0.63 0.70 0.71 0.70
Ps 0.54 0.58 0.58 0.59
Pg 0.65 0.72 0.71 0.72
P; 0.69 0.76 0.77 0.78
Table 11

Dynamic activity recognition rate (F-measure) for each
cross-subjects approach: The classifiers were trained on
data that belongs to the waist (P;).

Class Randomly L10  Top-Pairs  Physical

Aq 0.62 0.65 0.69 0.69
Ay 0.62 070 0.70 0.70
As 0.75 083 082 0.78
A7 0.87 089 092 0.91
Ag 0.63 076  0.75 0.78
avg. 0.69 076  0.77 0.78

equal but worse than ANN (75%) and DT (76%). Besides, we also evaluated the performance of all classifiers in a position-
independent scenario but it exposed that independent of the classification technique the position-aware approach is always
better.

These results show that the use of the random forest classifier is not only the best classification method for determining
the device position, it also outperforms all other classifiers with respect to determining the activity given a hypothesis about
the position of the device.

5.4. Cross-subjects activity recognition

In several cases, people are unable to collect and label data which is required for a subject-specific approach. Therefore,
we also focused on the feasibility to recognize the performed activity and device position by relying only on labeled sensor
data of other people. For that purpose, we evaluate the performance of the introduced cross-subjects approaches randomly,
leave-one-subject-out (L10), top-pairs, and physical. We aim to clarify how differently these approaches perform but also
the performance in general depending on the device position and compared to a subject-specific approach. During the first
experiments, we only consider dynamic activities as target classes to avoid misinterpretation. Thus, we assume that static
activities are less characterized by an individual person, i.e., the subtle acceleration that is performed by these activities is
probably similar for many different groups of people.

As a first step, we focused on the activity recognition rate of position-dependent classifiers to expose differences in
performance. Table 10 shows that across all positions the introduced approaches perform comparable but the recognition
rate varies significantly. The waist seems to be the best on-body position for all approaches where physical achieves the
highest activity recognition rate (78%). In this context, the results indicate that the acceleration patterns for the same activity
across several users are most similar at this position. Considering the baseline (L10), top-pairs (+1%) and physical (+2%)
perform slightly better while they have to process significantly less data. Besides, previous work already showed that L10
would not scale in a large-user environment due to the varying behavior. Actually, the classifier seems only to learn the
dominant behavior across all people, i.e., individual behavior is lost and rate as noise. Considering the other positions, it
points out that surprisingly the thigh (Ps) based classifier performs the worst. We examined the individual acceleration
patterns and detected that the bad performance results from the unstable position of the device (trouser pocket). Hence,
the device was able to move slightly during the data collection. This kind of noise could be handled by a subject-specific
approach because it was consistent but this is not the case across subjects. However, this does not mean that the position is
unsuitable but, e.g., needs more effort concerning personalization [10].

Considering the recognition rate of the individual activities, Table 11 shows the corresponding recognition rates of the
waist-based classifier. Independent of the evaluated approaches, climbing stairs (~70%) has the lowest and running (~91%)
the best recognition rate. Indeed, compared to L10, it points out that physical recognizes all activities better expect jumping.
In this context, especially climbing stairs and walking have a higher recognition rate. This is remarkable because these are
the only dynamic activities which are most often confused. We believe that this is evidence for the feasibility to rely on
common physical characteristics to identify meaningful groups. However, we also conclude that our considered physical
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Table 12

Improvement of the activity recognition rate (physical) with an
additional accelerometer. The classifier was trained on data that belongs
to the shin (P4) and waist (P;).

Class P, (transmitter belt) P4-P; (add’l

smart-band)

Precision Recall Fy Precision Recall Fi

Ay 0.70 0.67 068 0.72 0.74 0.73
A 0.71 0.69 070 0.72 0.75 0.74
As 0.73 0.84 078 0.83 0.92 0.87
Ay 0.98 0.92 095 0.99 0.92 0.95
As 0.69 0.82 075 074 0.88 0.80
As 0.76 0.80 0.78 0.80 0.86 0.83
Az 0.91 0.78 0.84 0.94 0.79 0.86
As 0.77 0.79 078 0.83 0.75 0.79
avg. 0.79 0.79 079 083 0.81 0.82

Table 13
Confusion matrix: Cross-subjects based approach (physical, P4 and P;).
Predicted
A A, As As As As A; As
Aq 10404 2098 2 1 43 46 383 1121
Ay 1561 13683 0 10 447 456 178 1828
Az 13 0 2342 0 0 0 196 0
Ay 6 88 0 17175 157 1273 28 5
As 7 11 0 1 16192 1992 271 1
As 2 49 0 138 2308 16142 50 3
A; 780 158 496 41 2571 380 16508 35
Ag 1683 2847 0 0 100 17 19 14213

characteristics do not cover the features of jumping. Besides, top-pairs performs slightly better than L10 but, e.g., concerning
walking even worse. We noticed during the experiments that the acceleration patterns were partly contradictory while the
classifier learned the dominant behavior.

Subsequently, we also considered static activities (A4—Ag). Table 12 shows that the recognition rate seems to be stable
but the recognition rate of dynamic activities drops slightly. During this experiment, we also applied the introduced static
and dynamic activity split (including all errors) to consider the gravity based feature in context of static activities. On the one
hand, this division caused the deterioration of the dynamic activity recognition rate, on the other hand the confusion matrix
shows (not presented) that especially lying (A4) and standing (As) are significantly less confused due to the considered
gravity based feature. Thus, the results indicate that this feature is also reliable across people. Compared to our subject-
specific approach (see Table 9), especially the recognition of climbing stairs performs worse whereas the recognition rate of
static activities is comparable (£2%). This confirms our initial assumption concerning static activities in context of cross-
subjects models.

To address the difference in performance, we also analyzed the improvement that could be achieved by an additional
acceleration sensor. After all, several people already wear two devices. Table 12 illustrates the possible improvement if
we combine two of the best performing on-body device positions. In average, the recognition rate increases by 3% where
especially the recognition of climbing stairs improved (4+5%). On the downside, walking only increased slightly. However,
this also makes clear that this activity is the most challenging while it is the one that is most often performed during the day.
In this context, Table 13 shows the corresponding confusion matrix. It strikes that the problematic groups are still climbing up
(A1), climbing down (A,), walking (Ag) and lying (A4), sitting (As), standing (Ag). Compared to our subject-specific approach,
it points out that no new issues arise but existing will become more manifest, e.g., jumping is more often confused with
running.

Finally, we also investigated if cross-subjects based models are able to recognize the on-body device position. Table 14
shows the individual recognition rate. Independent of the approach, it points out that the recognition quality differs
significantly across the different positions where waist (78%) and shin (74%) are best recognized. Considering the overall
results, we have to state that the position recognition rates are not sufficient to be considered as part of an activity
recognition system. However, these results also confirm our assumption that the waist seems to be the best on-body device
position for cross-subjects activity recognition.

In general, the results show that cross-subjects models are feasible for activity recognition if the on-body device position
is known a-priori. In this context, the waist is the best device position for cross-subjects activity recognition where we were
able to achieve a recognition rate of 79%. Considering an additional wearable device, improved the performance by +3%.
Thus, our results indicate that it is feasible to monitor the physical activities of people which are unable to collect and label
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Table 14

Activity-independent position recognition (F-measure):
Performance of cross-subjects approaches concerning the
recognition of the on-body device position.

Class Randomly L10  Top-Pairs  Physical

Py 0.56 0.63 0.59 0.61
P, 0.58 063  0.59 0.58
P3 0.54 0.61 0.56 0.57
Py 0.68 074 0.72 0.73
Ps 0.53 060 0.57 0.58
Ps 0.50 057 053 0.54
P, 0.74 078 0.76 0.77

required data. Further, the physical based approach performed the best in context of the most reliable device position where
especially walking and climbing stairs are better handled. Besides, we consider the recognition of the device position in a
cross-subjects scenario still as open issue which needs further investigations.

6. Conclusion and future work

In this paper, we targeted open issues which go along with activity recognition in a real world scenario. Commonly it
is up to the user on which on-body position the device is worn, further, several people, e.g. elders, are unable to collect
and label the required amount of data to create a classification model. For that purpose, on one hand, we investigated the
feasibility to recognize the wearable device position by relying on a common acceleration sensor and if the recognized
position influences the activity recognition rate. On the other hand, we examined the performance of different cross-subjects
approaches dependent on the different device positions to clarify their feasibility.

The experiments were performed by relying on our large real world data set that comprises 8 different physical activities
of 15 people where for each activity 7 on-body positions were recorded simultaneously. Considering this data, our results
show that the best recognition rates were achieved with the machine learning technique random forest. In this context,
we were able to recognize in a subject-specific scenario, the on-body device position with an F-measure of 89% where this
information, including all errors, improved the activity recognition performance by +4% (84%). Hence, the results provide
evidence for the improvement of the activity recognition rate in case that the on-body position is known.

Subsequently, we evaluated several cross-subjects activity recognition approaches where the classifier was trained on
labeled data of certain people expect data of the target user. The results show that the waist is the best on-body position for
cross-subjects activity recognition due to the fact that the acceleration patterns for the same activity across different users
are most similar at this position. Further, the results of the individual approaches show that abstract physical characteristics
of subjects enable us to build meaningful cross-subjects classifiers. Considering the most reliable device position, the
physical based approach was able to achieve a recognition rate of 79%. Considering an additional wearable device, the
recognition rate improves by +3% (82%).

In context of previous works concerning on-body detection, researchers presented lower or equivalent recognition rates
and considered less positions and activities. Coskun et al. considered the hand, trousers (thigh), and backpack and achieved
a recognition rate of 85% [ 13]. Furthermore, Vahdatpour et al. considered the same on-body positions as we did expect the
chest and considered only the activity walking but achieved an accuracy of 89% [5]. This indicates that the consideration of
more positions and activities lead to a lower recognition rate as we can see in the results of our first experiments that did not
distinguish between static and dynamic activities. However, as presented, due to the individual handling of different activity-
level groups, our approach performs significantly better in a real world scenario where people change the orientation, device
position, and activity all the time.

In case of cross-subjects activity recognition, most existing works focused on leave-one-subject-out where the opinions
tend to state that this approach is not reliable. In this context, Vo et al. [ 10] clarifies that an increasing number of considered
subjects goes along with a decreasing activity recognition performance. We attribute this behavior to the fact that the
classifier learns only the most dominant behaviors across people. To counteract this behavior, researchers suggest to rely
on specific groups where Lara et al. [14] and Weiss et al. [16] hypothesized that physical characteristics such as gender,
weight, and fitness level could be reliable indicators to form groups. In our work, we investigated this hypothesis and our
results provide evidence for the correctness where especially the problematic group climbing stairs up, down and walking
was better handled. However, we also have to state that the considered physical characteristics did not cover the features
of the activity jumping.

As future work, we plan to investigate two aspects. On the one hand, we want to focus on personalization of a cross-
subjects model and the associated effort for the target user by using active machine learning. On the other hand, we also
want to expand our experiments by considering a larger group of people to identify, e.g., less obvious physical characteristics
to improve the performance.
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