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Abstract—Human activity recognition using mobile device sen-
sors is an active area of research in pervasive computing. In our
work, we aim at implementing activity recognition approaches
that are suitable for real life situations. This paper focuses on
the problem of recognizing the on-body position of the mobile
device which in a real world setting is not known a priori.
We present a new real world data set that has been collected
from 15 participants for 8 common activities were they carried
7 wearable devices in different positions. Further, we introduce
a device localization method that uses random forest classifiers
to predict the device position based on acceleration data. We
perform the most complete experiment in on-body device location
that includes all relevant device positions for the recognition
of a variety of different activities. We show that the method
outperforms other approaches achieving an F-Measure of 89%
across different positions. We also show that the detection of
the device position consistently improves the result of activity
recognition for common activities.

I. INTRODUCTION

Activity Recognition is an active field of research in perva-

sive computing [1]–[4]. The development of wearable devices

such as smart-phones, smart-watches and fitness wristbands

feature a variety of sensors that are carried all day long by

many people (compare [3]) provide new opportunities for

continuous monitoring of human activities such as running,

sitting, standing, or walking [5]. A problem of many existing

studies on the subject is that they are conducted in a highly

controlled environment. In consequence, the results of these

studies often do not carry over to real world applications. Our

aim is to develop robust activity recognition methods based

on mobile device sensors that generate high quality results in

a real world setting.

The quality of activity recognition, especially in a real world

setting, depends on the on-body position of the wearable

device providing the sensor data [6]. Previous studies have

shown that relevant on-body positions are head, upper arm,

forearm, chest/waist, thigh, and shin [2]. Further, in case of

an uncontrolled environment, it is also important to detect the

state transitions between these positions. In this context, the

acceleration sensor is the most interesting sensor to recognize

the device position due to a low power consumption that

enables continuous sensing over a complete day. Moreover,

a lot of studies already achieved good results using the

acceleration sensor in context of activity recognition [5]–[7].

In this paper, we focus on the detection of relevant on-body

positions in the context of everyday movements and activities

using a single accelerator sensor. Further, we examine the

impact of the recognized position information on the accuracy

of the activity recognition. The contributions of our work are

the following:

• We present a new real world data set for on-body position

detection and position-aware activity recognition.

• We perform the most complete experiment in on-body

position detection and activity recognition carried out

so far.

• We present a method based on a random forest classifier

that detects the on-body position with an F-measure

of 89%.

• We show that the recognition method consistently im-

proves the recognition of activities in a real world setting.

The paper is structured as follows: In Section II, the related

work concerning the on-body detection of wearable devices

is summarized. Then, we outline the data collection phase

and present our data set. Section IV covers the process of

feature extraction and classification where we introduce our

approach for on-body position detection and position-aware

activity recognition. In Section V, we present our experimental

results and outline the effect of considering the device position.

Finally, Section VI covers the conclusion and future work of

this paper.

II. RELATED WORK

Researchers have already investigated activity recognition

independent of the device position [8]. However, previous

studies stated that position information increases the accuracy

of the activity recognition but the opinion regarding the impact

of this information on their results differs significantly [1],

[6], [9]. This difference is due to different sets of positions

and activities considered in the different studies. Indeed, so

far nobody considered all relevant body positions in context

of common movements and activities in one study. Therefore,
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it is still unclear how accurate each relevant position can be

detected regarding different activities.

The on-body localization problem of wearable devices plays

an important role because it can help to improve the accuracy

of activity recognition, to optimize the energy consumption

of a device, or to increase the precision of observing the

environment. This is a consequence of the results of previous

studies that investigated the influence of the on-body position

to determine optimal sensor placement in context of activity

recognition [1], [2], [6]. In these studies, it has been shown that

there are seven different body locations that behave differently

in activity recognition, i.e. forearm, head, shin, thigh, upper

arm and waist/chest and that dividing these body parts (e.g.,

head or shin) into smaller regions does not improve the

accuracy [2]. Further studies have shown that the optimal

sensor placement depends on the activity to be recognized [6].

As a result, the benefiting of the position information and also

the feasibility to derive device positions by an accelerometer

is stated.

So far, the localization problem was only addressed by a

couple of researchers. Kunze et al. published one of the first

approaches where he first tried to detect if the user is walking

and then used specific patterns of sensor readings to derive the

current device position [10]. However, this approach is limited

due to the small set of selected positions and the fact that

position changes are not recognized if the user does not walk.

Recently, researchers investigated also the possibility to derive

the positions hand, bag, and pocket from different common

activities [9]. In this context, they stated that the effect of the

location information on the accuracy of the activity recognition

depends on the performed activity.

While these studies focused on on-body position detection

with an accelerometer, several researchers also examined the

possibilities to detect if the phone is located in- or out-

pocket [11], in a bag [9], [12], or still worn by the same

person [13]. In this context, they also used other sensors such

as a microphone, light, or proximity sensor. They highlight

that an accurate detection is possible but also point out that it

is difficult to control the environment regarding brightness or

sound level which has to be considered as the crucial problem.

III. DATA SET

In this paper, we investigate the detection of the on-body

position of a wearable device and its influence on the quality

of activity recognition. For this purpose, we created a data

set1 which covers, among others, the acceleration data of

the activities climbing stairs down (A1) and up (A2), jump-

ing (A3), lying (A4), standing (A5), sitting (A6), running/

jogging (A7), and walking (A8) of fifteen subjects (age 31.9±
12.4, height 173.1 ± 6.9, weight 74.1 ± 13.8, eight males

and seven females). For each activity, we recorded simul-

taneously the acceleration of the body positions chest (P1),

forearm (P2), head (P3), shin (P4), thigh (P5), upper arm (P6),

and waist (P7). Each subject performed each activity roughly

1 http://sensor.informatik.uni-mannheim.de/

Fig. 1. Sensor placement. The subject wears the wearable devices on the
head, chest, upper arm, waist, forearm, thigh, and shin (top down).

10 minutes except for jumping due to the physical exertion

(∼1.7 minutes). In detail, we recorded for each position and

axes 1065 minutes. Concerning male and female, the amount

of data is equally distributed. To the best of our knowledge

the result is the most complete, realistic, and transparent data

set for on-body position detection that is currently available.

The required data was collected using customary smart-

phones and a smart-watch2 which were attached to the men-

tioned positions (see Figure 1). The devices were synchro-

nized with the time service of the network provider and

the accelerometer was sensed with a sampling rate of 50

Hz where the data was stored on a local SD card. The

sampling rate was chosen with consideration of battery life

as well as with reference to previous studies [7], [14]. The

recording of the data was performed using a self-developed

sensor data collector and labeling framework. The framework

consists of a Wear (1) and Hand (2) application (see Figure 2)

which interact with each other via Bluetooth. This application

provides the possibility to control the built-in sensors, specify

the sampling rate, and record several sensors simultaneously.

The binary3 and the source code4 of this application are

publicly available.

To attach the devices to the relevant body positions, com-

mon objects and clothes were used such as a sport armband

case, trouser pocket, shirt pocket, or the bra. There was no

further fixation of the device to closely resemble their use in

everyday life. In case of the head we used a belt to avoid that

the subject had to hold this device during the performance of

2“Samsung Galaxy S4” and “LG G Watch R”
3https://play.google.com/store/apps/details?id=de.unima.ar.collector
4https://github.com/sztyler/sensordatacollector



Fig. 2. Sensor Data Collector. The framework consists of a wear (1) and
hand (2) app which allows to record each sensor that is available and provides
labeling and visualization functions.

the activities. This simulates that the subject phones during

the activities.

The data collection took place under realistic conditions,

i.e., the subjects walked through the city, jogged in a forest,

or climbed up the stairs of a guard tower of an old castle.

The order of the activities was left to the subjects but they

were instructed to stand idle for a few seconds before and

after the activity was performed. Concerning the activities,

there were no instructions. It was up to the subject, e.g., how

fast they wanted to walk or how they wanted to sit. In this

context, typically the subjects used their smart-phone, talked

with somebody else, or were eating and drinking something

while they were standing or sitting.

Each movement was recorded by a video camera to facilitate

the usage of our data set also by other people. Our data set is

available1 and covers beside the mentioned acceleration data

also GPS, gyroscope, light, magnetic field, and sound level

data which were also recorded during the data collection phase

but will not considered in the following. Besides, there is also

a detailed description of each subject including images of the

attached devices and a short report.

IV. METHOD

Following most existing work, we use a supervised ap-

proach, both for on-body localization and for activity recogni-

tion. The introduced data set was used as training data and for

evaluation. In the following, we describe the features generated

from the sensor data and the learning methods and strategies

used in our study.

A. Feature Extraction

The essential idea behind generating features from time

depended data streams is to segment the recorded data into

windows and compute a feature vector for each window.

Preceding studies in the context of activity recognition already

examined different settings regarding the window size and

meaningful features [15]. They state that overlapping windows

are more suitable because they can handle transitions more

accurately. Further, the window size depends on the kind of

TABLE I
SUMMARY OF CONSIDERED FEATURE METHODS.

Methods
Time Correlation coefficient (Pearson), entropy (Shannon),

gravity (roll, pitch), mean, mean absolute deviation,
interquartile range (type R-5), kurtosis, median, stan-
dard deviation, variance

Frequency Energy (Fourier, Parseval), entropy (Fourier, Shan-
non), DC mean (Fourier)

activities which should be recognized. In our context, most of

the existing studies considered a size between one and three

seconds [4], [8], [16]. However, so far there is no agreed

set of features. Indeed, a comparison of the different but

overlapping feature sets of previous studies is difficult due

to the different settings and goals of the studies. Nevertheless,

some researchers have compared different groups of features

and also stated that frequency-based features improve the

accuracy of the recognition [16].

Hence, based on these results, we use windows which

overlap by half and have a length of one second. Further, we

consider the most common time- and frequency-based features

that were used in previous work (see Table I) where time-

based feature values are transformed into frequency-based

ones by applying Discrete Fourier transform5. Finally, for the

experiments, we performed attribute selection to optimize the

feature vector.

In this context, we also computed gravity-based features

that provide information of the device orientation. The gravity

component was extracted from the recorded accelerometer

data. We applied a low-pass filter6 to separate the acceleration

and gravitational force to derive the gravity vectors. These

vectors allow to determine the orientation of the device by

computing the angles between them, also known as roll and

pitch (see Figure 3). The azimuth angle, however, cannot be

calculated because the direction of north is required. This

means that it is not possible to derive if the device is back-

to-front. Further, we only consider absolute value of the

acceleration so that we do not distinguish if the device is

upside down. Hence, we consider these four cases as the same

position. To be more flexible and avoid overfitting, we also

transform the roll and pitch angles in one of sixteen predefined

discretized orientations. Besides, the gravity-based features are

only considered in the context of on-body position detection.

The feature extraction process was performed with a self-

developed framework that computes all mentioned features.

The framework is available7 and allows to specify the men-

tioned settings. As a result, the framework returns a list of

feature vectors which are in the following further processed.

5The Fourier transformation can be applied with different scaling fac-
tors. We use the JTransforms implementation (https://github.com/wendykierp/
JTransforms) which scales by 1.

6A low-pass filter passes values which have a lower frequency as the
specified cutoff frequency and attenuates values that have a higher frequency.

7https://github.com/sztyler/sensorfeatureextraction



Fig. 3. The coordinate system is defined in reference to the screen. The
acceleration of the device is measured along the axes. The gravity enables to
compute the angle between the axes to determine the orientation (roll, pitch).
To calculate azimuth, the direction of north is required.

B. Random Forest Classifiers

Decision trees have already successfully been used for

activity recognition, however, it is well known that classical

decision trees are sensitive to overfitting when the generated

trees become very deep. In order to overcome the overfitting

problem, ensemble methods have been proposed that balance

the results of multiple decision trees that have been trained on

different parts of the training data. Random forest classifiers

are one of these ensemble methods that have been proposed

by Breimann [17]. A random forest classifier is constructed in

the following way:

Let D = {(x1, y1), · · · , (xn, yn)} be a learning problem

with feature vectors xi and results yi. In a first step a number

of samples S1, · · · , Sm are drawn from D using sampling with

replacement. For each sample Si, a decision tree classifier

fi is trained using a variation of the classical decision tree

learning algorithm that uses feature bagging. This means that

for each branching decision in the decision tree construction

only a randomly selected subset of feature vectors is taken

into account. This is necessary to ensure that the different

generated decision trees are uncorrelated [18]. In this context,

the decision tree considers the information gain of each feature

to determine the importance during the construction.

The resulting set of uncorrelated decision trees can now be

used to determine the outcome for an unseen feature vector

x′ based on the principle of bagging. In particular, the result

is determined by averaging over the predicted results of all

individual decision trees as follows:

f̂(x′) =
1

n

n∑

i=1

fi(x
′)

For the case of a classification problem, the combined clas-

sifier essentially performs a majority vote over the outcomes

of the individual decision trees. It has been shown that bagging

prevents the overfitting problem as the combination of multiple

classifiers has a significantly lower variance than an individual

classifier. Due to this advantage, we focus on the random forest

classifier for position but also activity recognition.

C. Position Detection

We treat position detection as a multi-class classification

problem with target classes being head, upper arm, forearm,

chest, waist, thigh, and shin that correspond to the relevant

position according to Vahdatpour and others [2].

In initial experiments, we observed a major problem when

trying to distinguish between different device positions while

considering all performed activities. More precisely, data of

the activities lying, standing, and sitting frequently leads to

misclassification of device positions. This is caused by the fact

that in context of these three activities the human body only

has a slight acceleration so that the computed feature vectors

are not easily distinguishable. To address this problem, we dis-

tinguish between static (standing, sitting, lying) and dynamic

(climbing up/down, jumping, running, walking) activities and

consider these two groups in the following as two types of

activity-levels. This enables to consider different features sets.

Hence, we train a classifier that distinguishes between static

and dynamic activities that is used as a first step in the position

detection process. A similar distinction has been made in [19]

to improve the accuracy of activity recognition.

We trained both classifiers using stratified sampling com-

bined with 10-fold cross validation to ensure that all folds

cover the same ratio of classes. Further, to make the result

more stable, we performed 10 runs where each time the

data set was randomized and the 10-folds were recreated.

The classifiers were trained and evaluated for each subject

individually. Thus, we did not consider several subjects at once

because of the individual behavior and the differences which

result from different ages.

D. Activity Recognition

In the activity recognition phase, we aim to detect the ac-

tivities climbing stairs up and down, jumping, lying, running,

sitting, standing, and walking. In this context, we evaluate

the impact of the information of the device position. For

this purpose, we construct position-independent and position–

aware activity classifiers and compare their performance on

our data set.

The position-independent activity recognition approach sim-

ply consists of a single classifier per subject that is trained on

all data independent of the device position. We expect this

recognition approach to perform sub-optimal as the motion

information from the sensors can be assumed to be very

different in the different positions for the same activity.

The position-aware activity recognition approach consists

of a set of individual classifiers for each device position and

each subject. The classifier to be used is determined in a

position recognition step that is executed before the actual

activity recognition. Figure 4 provides an overview of the

detection process: first the unlabeled record is classified as

a dynamic or a static activity. As mentioned above, this step

is necessary as we can more reliably detect the device position



Fig. 4. Activity Recognition. The nodes illustrate the target class and the
edges the applied classifier. The current window is classified as “dynamic”
(climbing, jumping, running, walking) or “static” (standing, sitting, lying).
Then the device position is recognized and a position specific classifier applied
to derive the current activity.

if we know whether the current activity is a static or a dynamic

activity. Then, the position of the device is recognized with

an activity-level depended classifier that uses a feature set that

has been optimized for the type of activity. Finally, the current

activity is recognized by selecting and applying the classifier

for the detected device position. Obviously, the performance

of the position-aware activity recognition approach relies on

the correct identification of the device position. Therefore,

to test the feasibility of this approach, we use the results

of the activity-level dependent position detection experiments

- including all mistakes made - as input for the activity

recognition experiments.

V. RESULTS

In the following, we present our results and outline the

conducted experiments to show the effect of the proposed

device localization approach but also the influence of the

derived location in context of activity recognition. The in-

troduced methods were evaluated for each individual subject.

Due to lack of space, we only present the aggregated results

of all subjects. However, the individual results of each subject

and classifier are available8. Unless otherwise specified, the

provided results are based on the random forest classifier

which turned out to consistently perform better than other

classification techniques.

A. Position Detection

For the first experiment, we evaluated an activity-independ-

ent approach to create a baseline. Thus, we trained for each

subject a single classifier on the data of all performed activities

and each position. Table II shows the result and illustrates

that the device position can be recognized with an F-measure

of 81%. In this context, the shin (P4) has the highest (88%)

and the forearm (P2) and upper arm (P6) the lowest (79%
/ 78%) recognition rate. The latter highlights the problem

regarding the flexibility of the arm during each activity and

8A complete overview of all results can be found here: http://sensor.
informatik.uni-mannheim.de#results

TABLE II
ACTIVITY-INDEPENDENT POSITION RECOGNITION RATES FOR DIFFERENT

ON-BODY LOCATIONS

Class Precision Recall FP Rate F-Measure
P1 0.79 0.82 0.04 0.80

P2 0.79 0.78 0.03 0.79

P3 0.79 0.82 0.04 0.80

P4 0.90 0.86 0.02 0.88

P5 0.83 0.80 0.03 0.82

P6 0.79 0.78 0.03 0.78

P7 0.79 0.81 0.04 0.80

avg. 0.81 0.81 0.03 0.81

TABLE III
ACTIVITY-LEVEL DEPENDENT POSITION RECOGNITION RATES SHOWING

THAT THE RECOGNITION PERFORMANCE IS PROBLEMATIC FOR STATIC

ACTIVITIES

Activities Precision Recall FP Rate F-Measure
static 0.72 0.72 0.05 0.72

dynamic 0.89 0.89 0.02 0.89

both 0.81 0.81 0.03 0.81

also indicates that these two positions are the most problematic

device locations. Examining the confusion matrix, shows that

the individual positions are not mixed up. Indeed, the false-

positives and the false-negatives are almost evenly distributed.

Further investigations point to the fact that the recognition

rate of the correct device location is higher if the related

activity is characterized by stronger acceleration. Hence, the

separation between static and dynamic activities results in a

significantly different recognition rates for these two kinds

of activity groups (72% / 89%). As we can see in Table

III the recognition rate is consistently lower for static activi-

ties (−9%).

We examined the feature set and figured out that the gravity

of the device provides useful information. However, attention

should be paid to the fact that our experiments also showed

that the gravity vector and derived features (roll and pitch) lead

to overfitting. Hence, if a classifier was trained for a specific

position then the position recognition rate dropped after the

device was reattached for this position. This is mainly because

the orientation of the device was slightly changed by the user.

Thus, the orientation seems not to be a reliable indicator of the

current device position. However, investigations have shown

that static activities and the device orientation are correlated.

Thus, the orientation enables to separate implicit between the

static activities which results in less misclassifications of the

device position across these activities. In this context, we only

considered the introduced discretized orientation. Table IV

summarizes the results and shows that the recognition rate of

the device localization in context of static activities increases

by 16%.

Certainly, the usage of different feature sets for these two

kinds of activity groups require the ability to separation



TABLE IV
POSITION RECOGNITION RATE FOR STATIC ACTIVITIES AND DIFFERENT

FEATURE SETS SHOWING THAT ORIENTATION AND TIME-BASED FEATURES

ARE NEEDED TO ACCURATE RECOGNITION

Features Precision Recall FP Rate F-Measure
time-based features 0.72 0.72 0.05 0.72

with orientation 0.88 0.88 0.02 0.88

only orientation 0.54 0.53 0.08 0.54

TABLE V
RECOGNITION RATE FOR CLASSIFIER THAT DISTINGUISHES BETWEEN

STATIC AND DYNAMIC ACTIVITIES

Class Precision Recall FP Rate F-Measure
dynamic 0.98 0.96 0.02 0.97

static 0.94 0.98 0.04 0.96

avg. 0.97 0.97 0.03 0.97

TABLE VI
DETAILED RESULTS FOR THE PROPOSED POSITION RECOGNITION

METHOD.

Class Precision Recall FP Rate F-Measure
P1 0.87 0.89 0.11 0.88

P2 0.87 0.85 0.15 0.86

P3 0.86 0.89 0.11 0.87

P4 0.95 0.92 0.08 0.94

P5 0.91 0.90 0.10 0.91

P6 0.85 0.84 0.16 0.85

P7 0.91 0.92 0.08 0.92

avg. 0.89 0.89 0.11 0.89

between them. Hence, we constructed a classifier that decides

to which activity group, the performed activity belongs. Ta-

ble V outlines the result and clearly shows that the allocation

performs very well (97%).

As a result, we evaluated the approach where we first decide

if a static or dynamic activity is performed and then apply

an activity-level specific position classifier. Compared to the

baseline, Table VI shows that this approach has an 8% higher

recognition rate. In this context, the shin is still the best (94%)

and the arm (forearm and upper arm) the worst (86% / 85%)

position. Looking at the confusion matrix still exposes an

evenly distribution of the false-negatives and false-positives

but certainly lower values. This indicates that the distinction

of the activity-levels, more precise, the individual handling of

the dimensions of the data lead to a better distinction of the

device positions. Hence, the experiments show that in most

of the cases it is possible to recognize the device position

correctly. Thus, in general the considered positions seem not

to be mixed up concerning the classification which confirms

that each position provides different information for the same

activity.

In summary, our position-recognition approach that makes

use of a random forest classifier and distinguishes between

TABLE VII
RESULTS OF THE BASELINE METHOD FOR ACTIVITY RECOGNITION

WITHOUT POSITION INFORMATION.

Class Precision Recall FP Rate F-Measure
A1 0.84 0.76 0.02 0.80

A2 0.77 0.81 0.04 0.79

A3 0.99 0.94 0.00 0.96

A4 0.83 0.83 0.03 0.83

A5 0.68 0.77 0.06 0.72

A6 0.70 0.64 0.05 0.67

A7 0.93 0.89 0.01 0.91

A8 0.85 0.87 0.03 0.86

avg. 0.80 0.80 0.03 0.80

TABLE VIII
CONFUSION MATRIX FOR THE BASELINE ACTIVITY RECOGNITION

METHOD WITHOUT POSITION INFORMATION.

Predicted
A1 A2 A3 A4 A5 A6 A7 A8

A1 4997 910 2 3 41 23 52 554

A2 514 6758 1 36 155 108 36 784

A3 5 2 1114 0 0 0 66 0

A4 14 94 0 7208 512 837 63 5

A5 20 108 0 370 6652 1231 224 12

A6 19 117 0 1000 1798 5622 150 15

A7 69 95 6 52 611 177 8712 22

A8 290 741 0 3 49 23 17 7677

different activity levels achieves an average performance of

89% across all positions.

B. Activity Recognition

The whole idea of our work is based on the idea that

knowledge about the device position improves activity recog-

nition. We therefore also have to show that the position-

aware activity recognition approach that uses the automatically

detected device position outperforms the baseline approach

that does not consider the device position. For this purpose, we

constructed and examined the introduced position-independent

activity classifier for each subject which was trained on all

data of all positions. Table VII illustrates the performance

of this approach and shows that the correct activity is rec-

ognized with an F-measure of 80%. However, considering

the individual activities, it shows that the recognition rate is

unequally distributed. Thus, sitting (A6) has a significantly

worse (67%) and jumping (A3) a much better (96%) recog-

nition rate. Additionally, the activities climbing down (A1)

and standing (A5) are often confused with other activities.

In this context, the related confusion matrix (see Table VIII)

emphasizes that the recognized activity is often wrong if

a performed activity is similar to another, i.e., lying (A4),

standing (A5), and sitting (A6) but also climbing up (A1),

down (A2), and walking (A8) are often mixed up.

In contrast, the introduced position-aware approach achieves

a 4% higher F-measure. Table IX shows that in case of each



TABLE IX
RESULTS OF THE PROPOSED ACTIVITY RECOGNITION METHOD THAT USES

AUTOMATICALLY DETECTED DEVICE POSITIONS.

Class Precision Recall FP Rate F-Measure
A1 0.84 0.77 0.02 0.81

A2 0.78 0.81 0.04 0.79

A3 0.99 0.95 0.00 0.97

A4 0.90 0.88 0.02 0.89

A5 0.74 0.81 0.05 0.77

A6 0.78 0.74 0.04 0.76

A7 0.94 0.91 0.01 0.92

A8 0.85 0.88 0.03 0.86

avg. 0.84 0.83 0.03 0.84

TABLE X
MEAN CONFUSION MATRIX: PROPOSED ACTIVITY RECOGNITION

METHOD USING AUTOMATICALLY DETECTED DEVICE POSITION.

Predicted
A1 A2 A3 A4 A5 A6 A7 A8

A1 5080 849 2 4 42 24 40 548

A2 526 6820 1 26 134 87 31 768

A3 7 5 1130 0 0 0 46 1

A4 18 94 0 7660 324 579 57 8

A5 19 99 0 217 7000 1020 244 15

A6 19 112 0 582 1380 6470 141 18

A7 70 96 11 38 535 142 8830 24

A8 287 709 1 3 50 24 14 7720

activity, the consideration of the device localization results

in a higher or equal recognition rate. Concerning the static

activities, we can observe that the F-measure values increased

notably. Indeed, the activities lying (+6%), standing (+5%),

and sitting (+9%) have improved the most. In this context,

the related confusion matrix (see Table X) makes clear that the

problem of misclassification is not completely solved but better

handled than before. For dynamic activities, the recognition

rate improved slightly.

Considering the activities and positions in detail (see Ta-

ble XI), it leads to the fact that there is no optimal device

position. The chest, waist, thigh, and shin perform on average

at best but they perform different depending on the activity.

Thus, the activity climbing stairs up is best handled by the

chest (up to 5% better) whereas the thigh recognizes the

activity standing the best (up to 14% better). This confirms a

statement of a previous work where they stated that the optimal

sensor placement depends on the activity [6]. Further, it points

out that most of the positions perform still bad regarding

the static activities. This indicates that even low acceleration

combined with the (predicted) device position makes it hard

to distinguish between such activities. Besides, there are also

activities where each position performs very well. Hence,

the activities running (≥ 91%) and jumping (≥ 95%) are

equally well recognized for all positions due to the high

acceleration of the devices. These show that the acceleration

TABLE XI
RESULTS OF THE PROPOSED ACTIVITY RECOGNITION METHOD WITH

KNOWN DEVICE POSITIONS.

Class P1 P2 P3 P4 P5 P6 P7

A1 0.86 0.75 0.76 0.83 0.81 0.80 0.82

A2 0.83 0.72 0.76 0.84 0.83 0.78 0.80

A3 0.97 0.97 0.97 0.95 0.95 0.98 0.97

A4 0.89 0.83 0.89 0.90 0.86 0.94 0.91

A5 0.72 0.73 0.71 0.86 0.84 0.75 0.81

A6 0.72 0.76 0.65 0.82 0.80 0.74 0.82

A7 0.92 0.91 0.91 0.93 0.94 0.92 0.93

A8 0.89 0.82 0.82 0.89 0.88 0.85 0.88

avg. 0.84 0.80 0.79 0.87 0.86 0.83 0.86

strength is decisive concerning the activity recognition rate

and that in case of low acceleration additional information of

the environment or context-related information are required.

Despite the fact that we recognized only in 89% of all

cases a correct device position and compared with the position-

independent approach (80%), these results indicate clearly that

the consideration of the device position results in a higher

activity recognition rate (84%). The results show clearly that

it does not depend on the activity but on the device position

if the information of the device position improves the activity

recognition rate. In this context, also the individual handling

of the different dimensions (e.g., device position and activity-

level) leads to a better distinction of the target classes, so to a

better recognition rate. Especially in the context of the static

activities, these two approaches lead to a significant better

recognition.

C. Comparison with other Classification Methods

In order to show the benefits of using the proposed random

forest classifier, we compared its performance to the one

of other common classification methods, in particular Arti-

ficial Neural Network (ANN), Decision Tree (DT), k-Nearest

Neighbors (kNN), Naive Bayes (NB), and Support Vector

Machine (SVM). All of these classifiers were used in previous

work on activity recognition and achieved good results.

Considering the activity-level depended position recognition

approach, the other classifier performed worse. Figure 5 illus-

trates the results and shows clearly that Random Forest (89%)

outperforms the other classifier. In this context, NB (39%)

performed the worst probably due to assumption that all fea-

tures are independent. In contrast, k-NN (75%), ANN (77%),

and SVM (78%) achieved reasonable results. We performed

parameter optimization and choose a radial basis function

regarding SVM. The DT (82%) performed second best but the

recognition rate is much worse (−7%) than that of the RF.

Besides, the training phase of the RF was one of the fastest

whereas ANN and SVM took the longest.

Concerning activity recognition, we evaluated the perfor-

mance of the classifier in context of position-aware activity

recognition based on the recognized device positions of the

random forest. Figure 6 shows that RF (84%) achieved the



highest activity recognition rate where NB (61%) performed

the worst. Further k-NN (70%) and SVM (71%) performed

almost equal but worse than ANN (75%) and DT (76%).

Besides, we also evaluated the performance of all classifier in

a position-independent scenario but it expose that independent

of the classifier the position-aware approach is always better.

These results show that the use of the random forest classi-

fier is not only the best classification method for determining

the device position, it also outperforms all other classifiers

with respect to determining the activity given a hypothesis

about the position of the device.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated the possibility to detect

the current on-body position of a wearable device in a real

world scenario with a single acceleration sensor in context of

several different common activities. Additionally, to evaluate

the impact of the position information, we performed position-

aware activity recognition where we considered the results of

the on-body position detection including all mistakes. For this

purpose, we created a large real world data set by recording

7 on-body positions of 15 subjects where they performed

8 different activities. Considering this data, our experiments

showed that the best results were achieved with the machine

learning technique random forest which detected the correct

on-body device position with an F-measure of 89%.

Subsequently, the activity recognition experiments were

conducted. Their results show that the position-aware approach

recognizes the correct device position with an F-measure

of 84%. Concerning the position information, the position-

aware performs 4% better then the position-unaware approach.

Hence, the results provide a strong evidence for the improve-

ment of the activity recognition rate in case that the on-body

position is known.

In previous work, researchers achieved lower or equivalent

recognition rates and considered less positions and activities.

Thus, Coskun et al. considered the hand, trousers (thigh),

and backpack and achieved a recognition rate of 85% [9].

Furthermore, Vahdatpour et al. considered the same on-body

positions as we did expect the chest and considered only

the activity walking but achieved an accuracy of 89% [2].

This indicates that the consideration of more positions and
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Fig. 5. Performance of the different classifier for position recognition in the activity-level dependent scenario.
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Fig. 6. Performance of the different classifier for position-aware activity recognition. The on-body device position was detected in a previous step by the
activity-level dependent approach (Random Forest).



activities lead to a lower recognition rate as we can see in the

results of our first experiments that did not distinguish between

static and dynamic activities. However, as presented, due to

the individual handling of different activity-level groups, our

approach performs significantly better in a real world scenario

where people change the orientation, device position, and

activity all the time.

Considering activity recognition, Coskun et al. stated that

the usefulness of the information of the device position de-

pends on the performed activity. Further, they also stated that

in general this information has a less effect on the recognition

rate [9]. In contrast, Martin et al. stated that the information

of the position leads to a significant improvement concerning

the activity recognition [1]. In view of the fact that we

considered all relevant on-body positions and several different

and common activities, our result provides strong evidence

concerning the positive influence of the position information.

As future work, we plan to investigate two aspects. The

first aspect focuses on improving the position and activity

recognition and to reduce the effort concerning the training-

phase. Several people already wear two devices (e.g. smart-

watch and smart-phone) which perhaps enable to compute

cross-position features that identify the performed activity with

higher accuracy. In this context, we want also evaluate if it is

possible to reduce to effort of constructing individual classifier

by considering groups of people. The second aspect, focus on

deriving more precise activities. For instance, which kind of

task is performed during sitting. Thus, we want to combine

the recognized activity with context-related information and

activity-dependent analyzing techniques to derive if a person

is eating or driving a car.
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