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ABSTRACT
We present an approach and mobile application for the
interactive exploration and search of geo-located social
media entities from different, distributed data providers
on the web. When querying the providers, the returned
results typically have some overlap. In addition, one has
no guarantee that the providers reply within a given time
interval. Thus, in order to provide users with geo-located
entities in their vicinity in a timely manner, we need
to take the asynchronous nature of the data providers’
replies into account. Our novel on-the-fly entity resolu-
tion engine starts the entity resolution once it retrieves
the first responses. It incrementally extends the entity
resolution model when more responses arrive. Entities
are propagated to the client once the resolution engine
has processed them for the first time. Resolution results
produced at a later point in time are sent as updates to
the client and improve earlier, incomplete results. Our
experiments show a matching precision of 95% and scala-
bility of the on-the-fly entity resolution w.r.t. the number
of resources being simultaneously processed.

CCS Concepts
•Information systems → Entity resolution;

Author Keywords
Entity resolution; mobile exploration; social media

INTRODUCTION
There exist a multitude of providers for spatio-temporal
data such as public places and organizations as well as
events like DBpedia1, Eventful2, Qype3, OpenPOI4, and
1http://dbpedia.org, accessed: 8/21/15
2http://event-ful.com, accessed: 8/21/15
3http://qype.com, accessed: 8/21/15
4http://open-pois.net, accessed: 8/21/15
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GeoNames5. The data that can be retrieved from these
providers usually have overlaps amongst one another,
while at the same time information may not always be
complete. Thus, when querying multiple data providers
for information about the same subject or location, it is
quite common to find redundancy in the overall result.
For example, multiple providers may have complemen-
tary information about the same entity or even (exact)
duplicates [3, 5, 1]. This is further complicated by varia-
tions between retrieved entities such as different spellings
(possibly mistakes) or missing information [1]. Another
problem is that the provision of data is heterogeneous
concerning access methods and data structures. Entity
resolution in these databases is often considered too ex-
pensive. This is further complicated by the rapid growth
of the amount of data in the databases [3]. Thus, when
querying databases like the providers mentioned above,
one has to deal with unclean, incomplete, and duplicate
results. Assuming that we retrieve information from an
arbitrary number of providers in the form of records, i. e.,
a composition of information about an entity, users will
prefer a consolidated resource representing an entity in-
stead of multiple resources describing the same entity. In
addition, the users expect results in a matter of seconds
as our earlier user evaluation shows [12].
The process of eliminating duplicates and merging them
into one resource is called entity resolution. In this paper,
we present a novel approach for entity resolution using
on-the-fly matching, deduplication, and integration of
entities such as locations and events from multiple data
providers. We use techniques such as fuzzy matching and
threading as well as precondition heuristics that reduce
the number of comparisons to be carried out. The entity
resolution process starts once first responses from the
data providers are received. The entity resolution model
is incrementally extended while more and more responses
arrive. The key difference to existing work is that we
do not need to have all records processed before sending
out the first results to the mobile users. The entities are
already propagated to the mobile client once they have
been processed in the resolution engine for the first time.
These initially incomplete results are improved later by
continuously sending updates from the resolution engine

5http://geonames.org, accessed: 8/21/15
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to the client. Thus, the results gradually become more
complete. Our extensive experiments confirm the appli-
cability of the approach: Already after one second of
issuing a query already 20% of the entities are returned
and 50% resolved. In addition, the resolution engine
scales with the total number of resources being concur-
rently processed on the server. Finally, the quality of the
matching is about 95%.
Below we first discuss related work and introduce mobEx6

as showcase for an incremental matching of distributed
social media resources. Subsequently, we provide a gener-
alized introduction of the matching problem and describe
in detail our incremental entity resolution approach. The
novel entity resolution engine is evaluated along different
criteria like quality and performance, before we conclude.

RELATED WORK
Different approaches for entity resolution have been inves-
tigated in the past such as semi-automatic and interactive
matching [10, 4, 9], (fuzzy) logic systems [2, 13, 19], as
well as machine learning approaches [28, 21, 7, 15]. Any
non-automatic approach is infeasible for an on-the-fly en-
tity resolution like it is required in our case where a-priori
unknown user queries need to be instantly answered. On
the contrary, the automated approaches for entity resolu-
tion and existing frameworks Silk [25] and LIMES [18]
do not support sending out incremental updates of the
entity resolution process to a consumer like in our case
the mobile client. Thus, even efficient techniques for
entity resolution are not prepared for a setting where
the first, even still incomplete resolution results need to
be send to the users in very short time where the data
providers’ responsiveness depends on the web and may
be slow. In addition, LIMES requires that all resources
to be available before starting the resolution. This makes
it practically infeasible to apply such a framework as we
would need to wait for a complete result from all providers
before starting the resolution process and sending our
results to the mobile client. In fact, we observed response
times of up to 2.5 minutes by some providers.
In order to address this challenge, our incremental entity
resolution engine already propagates matching results
to the mobile mobEx application after the entities are
processed the first time in the matching process. The
initially incomplete results are continuously improved
by sending out updates to the mobile client once they
become available. In order to provide such an on-the-fly
entity resolution, we make use of known techniques for
entity matching such as forests [20] and pairwise matching
and merging [1]. In addition, we use buckets where pairs
of resources are only considered in the matching process,
if they are of the same type, i. e., belong to the same
buckets [21]. In our case, we use events, locations, persons,
and organizations as buckets. While optimal buckets
can also be automatically learned from the data [21],
this is not applicable in our case as we never have a
6Available from Google Play: https://play.google.com/store/
apps/details?id=de.unima.mobex.client, accessed: 8/21/15

complete dataset at hand. In addition, the characteristics
of the retrieved social media data may depend on the geo-
spatial coverage of the data providers like countries and
continents. Thus, buckets that perform well for certain
locations may not elsewhere.
As we query multiple data providers, it may not seem
obvious why query-time entity resolution is chosen. Still,
there is a clear motivation for it. First of all, we do not
know the user’s query beforehand. Thus, it is infeasi-
ble to pre-compute all results and keep aggregations for
different selections of the data providers on our server.
In addition, the information about locations and events
may change on a daily basis. This puts another burden
on pre-computing the results. The approach by Bhat-
tacharya et al. [3] allows for a query-time entity resolution
by computing relational similarity and collective resolu-
tion in addition to attribute similarity. However, this
requires that certain links are available within the data
like co-authorship relations. Malhotra et al. [14] show
that references between records such as a driver’s licence
ID referred to in a passport record help in merging rela-
tional datasets coming from different, controlled sources.
However, such links are not present in the closed data
silos of the providers we consider. At least it cannot be
assumed that such links are always available.
Welch et al. [26] propose an incremental entity resolu-
tion approach with the goal to populate and curate a
knowledge base with information coming from different
professional data sources as well as facts extracted from
websites. Like in our work, the authors also explicitly
consider the possibility of having spam in the data, i. e.,
cases where a business owner adds several variations of
their information to have their listing shown multiple
times. While Welch et al. also consider merging from
sources of varying latencies, they do pre-compute all res-
olution results before adding them to the knowledge base
and making them available to the users. As said above,
in our case such a pre-computation is not feasible but
a resolution at users’ query time is needed. In addition,
Welch et al. assume that there are no true negative
records, i. e., for each record there has to be a match
with some other record [26]. This assumption cannot be
made in our case and a single record can constitute an
entity of its own. Whang and Garcia-Molina [27] present
an approach for adapting the matching logic when data
updates arrive. They investigated how to decide when
to base the entity resolution on a previous result versus
starting it from scratch. In addition, Gruenheid et al. [8]
compare two different graph-based clustering approaches
for an incremental entity resolution over evolving data.
Thus, the authors assume that the same entity may ar-
rive at a later point in time (i. e., when a database is
updated) containing different attribute values. These
approach have in common that the entity resolution re-
sults are pre-computed before they are available to the
users for search. Thus, they do not update the mobile (or
web) client with results of the entity resolution process
while data comes in from different sources in a highly
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asynchronous manner. In addition, the approaches re-
quire keeping (and maintaining) expensive indices of the
data on the server. In our case, the entity resolution
results are thrown away after each user query in order to
avoid expensive caching or storing of resolution results.
Rather, we solely rely on the data that is returned at
query time from the distributed data providers. Finally,
it is noteworthy that typically precision and recall is only
compared against some naive baselines [27, 26], while we
did manually check the quality of the matching results.
Another aspect of the matching process is how com-
parisons of resources take place. Fuzzy matching uses
string similarity metrics such as edit distances and was
proposed more than 15 years ago [17, 16]. Since then,
several matching methods using fuzzy string matching
were developed [1, 5, 15, 6]. Some of them are specifi-
cally designed for attributes describing organizations or
locations such as names, addresses, or phone numbers [1,
15, 6]. These works provide the foundation of our weight
assignments. More distinctive features receive a higher
weight, while less distinctive features are weighted such
that they may tip the scale if necessary.

MOBILE SOCIAL MEDIA EXPLORATION
The mobEx application serves as showcase for our in-
cremental entity resolution approach. It consists of a
mobile client application for Android mobile phones and
a server for carrying out the entity resolution process as
shown in Figure 1. The mobile application mobEx sends
a user request to the server and queries for events, orga-
nizations, persons, and places at a given location. The
mobEx server receives the user query and maps it to the
various data providers such as DBpedia, Eventful, Qype,
OpenPOI, and GeoNames mentioned in the introduction
as well as klickTel Open API7, Google Places8, LastFM9,
and Twitter10. At the server side, the returned social
media records are compared and merged in real-time
using our novel incremental entity resolution approach.
Thus, the entity resolution of the different resources re-
trieved from the data providers entirely takes place on
the mobEx server. A resource represents an entity that
is either an event, organization, person, or place. When
querying data providers, all retrieved records are mapped
into such a resource. Please note, at the moment the
alignment of the data providers’ schemata to the internal
schema of mobEx is hard coded. It may be extended by
some automatic approaches like [24] in the future.
The entity resolution results the mobEx client receives
from its server can be navigated through a facet struc-
ture as depicted in the screenshot in Figure 2 (left).
The faceted navigation has been extended from earlier
work [22, 11]. The screenshot next to it shows the map
view of the app. Details of an entity such as a website
and opening hours can be seen in the details view as
7http://openapi.klicktel.de/, accessed: 8/21/15
8https://developers.google.com/places/, accessed: 8/21/15
9http://www.last.fm/, accessed: 8/21/15

10https://twitter.com/, accessed: 8/21/15
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Figure 1: Client-server architecture of mobEx.
The server acts as mediator between the mobile
application and the distributed data providers.

shown in two the screenshots in Figure 2 (right). While
the first screenshot provides opening hours, the second is
a concert with the start time of the event.

PROBLEM DESCRIPTION
When querying a data provider, one has no guarantee
that it will reply within a given time. When querying
multiple data providers, one cannot expect to receive
all results at the same time. In addition, providers may
sometimes not answer at all, e. g., due to a temporary
outage. These issues make it infeasible to wait for a
complete result of all providers before beginning with the
entity resolution. Thus, one problem our approach has
to handle is rooted in the nature of asynchronous replies
from the different data providers: The complete set of
all resources—which are thus candidates for entities—is
not known a-priori and resources arrive depending on
the latency of the providers’ APIs. Still, users will not
be willing to wait a long time for an answer from the
server [12]. Therefore, we face a trade-off of between run
time and effectiveness of the entity resolution: While the
process may not substantially increase the time until the
client receives at least some results, false merges should
be avoided at all costs (as they essentially render the
data useless) while a few remaining duplicates may be
acceptable. Thus, we prioritize precision over recall.
The data retrieved from the providers are called records.
Each record is specific to its provider, i. e., the record
structure and data labels are not consistent across
providers. While one provider API may call an attribute
name, other providers may call it label or title. However,
looking at the APIs’ documentation the semantics of
these attributes are identical. We manually harmonized
the schema information of the different data providers by
mapping the records into so-called resources. A resource
represents an object that is either an event, organization,
person, or place. When querying data providers, all re-
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Figure 2: Screenshots of mobEx as it is available from Google Play. From left to right: Facet view,
map view, details view with opening hours, details view with start time of an event.

trieved records can be mapped into such a resource for
our mobEx application. This allows for an easy compara-
bility of resources retrieved from different data providers.
Thus, we ensure that the mapping respects the semantics
of the properties, i. e., for any data source, the result
of the mapping to the resource structure has the same
meaning.
The set of resources retrieved from the different data
providers for a given user query is denoted with R =
{r1, ..., rn}. The set of entities that are obtained from
these resources after applying the matching process is
E = {e1, ...,em} with m ≤ n. At the beginning of the
matching process, we assume that each resource ri ∈R
resembles an entity ej ∈ E on its own. Thus, the entity
ej is represented by the values of ri’s attributes. In the
course of the matching process, the resource ri might
be identified to be merged with a resource rj , i , j. To
this end, we merge the attribute values of rj with ri.
Thus, after entity resolution some resources like ri contain
attribute values that previously belonged to one or even
several other resources. In addition, we need to store the
information which resources have been merged with each
other. Here, we use a forest of merge trees [20], where
each tree corresponds to a set of resources that have been
merged in the matching process. Consequently, there
is one tree for each entity. In addition, each resource
appears only in exactly one merge tree. Details of the
forest and how we use it in the matching process are
described below.

MATCHING PROCESS
Our matching process for resolving the identity of the
resources takes place in a highly parallel fashion. This is
required as there is no guarantee that the data providers
respond within a given time. Thus, one cannot assume
to receive all resources at the same time. Furthermore,
as our prior usability study shows [12], the users are

not willing to wait a long time before receiving the first
results on their mobile phones.
Below, we first present an (i) overview of our matching
process. Subsequently, we present the (ii) details of the
incremental entity resolution engine. This includes a
discussion of the (iii) preconditions and (iv) weighting
of attributes for comparing resources, (v) computing the
similarity of resources, and (vi) merging of duplicate
resources.

(i) Overview of the Matching Process
An overview of our matching process for an incremental
entity resolution is depicted in Figure 3. As mentioned
above, the entity resolution entirely takes place on the
server. Thus, we start the description of the matching
process with the server receiving a request from a mobile
client and finish with the delivery of the entities that
emerged from the retrieved resources to the mobile client.
In the following description, the numbers correspond to
the single steps of the matching process as shown in
Figure 3.
Once the server obtains a user query from the client, there
are two main steps in the matching process: First, query-
ing for the records from the distributed data sources,
which is shown in the upper half of Figure 3. Sec-
ond, carrying out the incremental entity resolution itself,
which is conducted by the steps depicted in the lower
half of Figure 3. Both steps are executed in multiple
threads, controlled by three central units, namely the
Main-Thread, Entity-Manager-Thread, and Entity-Resolver-
Thread. The Main-Thread is responsible for parallel query-
ing the records from different data providers like Geon-
ames and OpenPOI. The Entity-Resolver-Thread coordi-
nates the parallel execution of the entity resolution. The
Entity-Manager-Thread decouples these two steps such
that they do not have to wait for each other.



When the Main-Thread receives a request from a mobile
client (1), it starts and controls for each data provider a
distinct Data-Provider-Thread (2). These Data-Provider-
Threads retrieve the records such as restaurants, hospi-
tals, and parks and parse them into the common schema,
namely our resources. The Entity-Manager-Thread (3)
administrates a container for the queried and processed
resources. It listens to all Data-Provider-Threads and for-
wards their results to the Entity-Resolver-Thread (4). As
mentioned above, the Entity-Resolver-Thread handles the
entity resolution. To this end, it tries to identify dupli-
cate records such as “Cafe Vienna” and “Vienna Cafe”.
All resources newly arriving from the data providers to
the Entity-Resolver-Thread are compared to the already
received resources. This is conducted by the so-called
Entity-Resolver-Worker threads (5), which actually carry
out the comparisons of the records and merge the infor-
mation from the duplicate records. The results of the
Entity-Resolver-Worker threads are returned to the Entity-
Manager-Thread (6), which in turn returns the resolved
resources and the entities formed from these resources to
the Main-Thread (7). In reply to the client request, the
resolved entities are delivered by the Main-Thread to the
mobile client (8) as soon as they become available, i. e.,
we do not wait until all records have arrived from all the
different data providers. Therefore, an entity that has
already been delivered to the mobile client is updated
or even rectified in a later step of the incremental entity
resolution process.

Main-Thread

(Central Unit)

Data Provider Thread

Data Provider Thread

Data Provider Thread

Entity-Manager-Thread

(Central Unit)

Entity-Resolver-Thread

(Central Unit)

Entity Resolver Worker

Entity Resolver Worker

Entity Resolver Worker

client sends request
store queried data

forward processed data

start entity resolution

with new data

1 2

2

2

3 3 3

4
5

5

5

6 6 6

7

8
Querying Data

Entity Resolution

Figure 3: Data flow of processing a client re-
quest (1), incrementally matching the data (2-
7), and sending the resulting entities back to the
client (8). The numbers in brackets denote the
execution order.

(ii) Incremental Entity Resolution Engine
After obtaining the data from the providers in the first
step of the matching process, the actual entity resolution
is conducted in the second step. As said above, the entity
resolution is multi-threaded and thus carried out in a
parallel fashion. Each time a data provider delivers a
batch of resources, the Entity-Resolver-Thread starts a

new Entity-Resolver-Worker thread. The Entity-Resolver-
Worker threads actually carry out the entity resolution.
Here, the newly arrived resources are mapped with each
other as well as with all previously received resources
(from other providers) for the same mobile client’s query.
This multi-threaded data processing brings up several
challenges: First, duplicate comparisons have to be
avoided to safe computation time. Second, once a data
provider delivers its batch of resources, their processing
needs to be seamlessly integrated with the entity resolu-
tion over the already delivered and partially processed
resources. In addition, given two resources r1 and r2,
where r1 is the older resource (i. e., it has been deliv-
ered to the entity resolution earlier) and r2 is the newer
resource. When r1 and r2 are identified to represent
the same entity, then the attribute values of the newer
resource r2 are merged into those of r1. Let us further
assume that another resource r3 occurs that should be
merged with r2. The problem now is that r2 is no longer
valid as merge target as it has previously been merged
with r1. Instead, r3 now has to be merged into r1. These
challenges are addressed by keeping track of the merge
process in a graph, more precisely a forest. A forest is a
set of merge trees. Naturally, each merge tree represents
an entity shown to the user of the mobile mobEx client. A
tree is defined as directed acyclic graph G = (V,E) where
each node v ∈ V represents a resource. Two resource
nodes r1 and r2 are connected (i. e., it exists the edge
(r1, r2) ∈ E), if the entity resolution process recognizes
them as identical and thus merges them (see Figure 4,
left). The problem of updates and deletions is handled
in so far that the mobile client receives corrections to
earlier results through updated edges in the forest. Such
corrections are eventual updates or deletions of duplicate
entities delivered in an earlier step of the resolution.

r1

r2 r3

r4

r5

r6

r7

r8

Figure 4: An example of a forest as result from
matching over the resources r1 to r8. The current
state of the forest is: The resources r2 and r3 have
been merged into r1. The resource r6 has been
merged into r5, which in turn has been merged
into r4. The resources r7 and r8 are not merged
(yet). Each tree in the forest represents an entity.

A further challenge is that all resources should actually
have the chance to be compared with one another, unless
one of the preconditions rules out a match between them.



Without parallel processing of the resources, this is easily
ensured. In our threaded approach, we assure this by
the Entity-Manager-Thread that receives the resources
from providers as disjoint sets, i. e., batches of records.
Thus, the Entity-Manager-Thread can start a separate
Entity-Resolver-Worker thread on each set of records. As
the Entity-Resolver-Worker threads share the forest in the
main memory, they can indeed check all (newly arrived)
resources against all other sets received earlier.
Please note, the (intermediate) results of the entity reso-
lution become indeterministic, as there is no guarantee
that resources will always be compared and merged in
the same order. The order highly depends on the re-
sponse time of the data provider APIs. As we do not
store any entity resolution results, this indeterminism is
a feature by design. It is more important that the mobile
client receives (potentially) incomplete results as soon
as possible rather than waiting for all data providers to
answer and then merging the resources in a deterministic
manner. This is best explained at an example of three re-
sources r1, r2, and r3 with the labels r1.label =“Example
1”, r2.label =“Example Two”, and r3.label =“Example
Three”. The indices of the resources represent their age,
i. e., r1 is the oldest resource. If we merge r1 and r2, the
client will receive an intermediate result with r1’s label
being “Example Two” as we keep the longer label when
merging. If instead, we first matched (and merged) r2
and r3, the intermediate result would contain r2 with
label “Example Three”. This example of indeterminism
also shows that the delivered results only represent the
data at a given point in time. Resolution results at a
later point in time may result in updates of the attribute
values of the corresponding entity. It is even possible that
an entity that is already delivered to the mobile client
has to be deleted from the list of entities. This is the case,
e. g., when initially an entity consists of a single resource
and that this resources is later merged with some other
entity and thus no longer represents an entity of its own.

(iii) Preconditions for Comparing Resources
When querying the different data providers, we may very
well receive a total of more than 1,000 records in major
cities. Naive entity resolution, i. e., comparing all pairs of
resources, is therefore out of the question since it would
result in

(n
2
)
and thus O(n2) comparisons. This requires

too much time for an on-the-fly matching. Instead, we
cut down the number of comparisons by applying pre-
condition heuristics which are based on the conditions
documented in the literature (for a detailed discussion of
the literature, we refer to the related work section). The
general conditions of the work by Benjelloun [1] are very
similar to the matching conditions in our approach. In
detail, these conditions are:
• Pairwise matching and merging: We only compare two
resources with each other and decide whether to merge
them or not. However, in our case this does not imply
that the results of a matching will not affect further

matching. Indeed, previous matches and merges may
influence the further process.

• No confidences: While there may be similarity com-
putations involved in the matching process itself, a
merge is always done with full confidence or not at all.
That is, the matching may use confidence values, but
a merge is an absolute decision after which the merged
resource has no confidence value assigned.

• No relationships: If a concert (as an event) takes places
at a stadium (as a place), there exists a (real world)
relationship between these two entities. While such re-
lationships frequently exist in the real world and using
these information thus might lead to better results in
the resolution process, they are not considered as this
makes resolution by far more complex.

In addition to these general conditions, some more
domain-specific conditions need to hold. In detail, we
use the following further precondition heuristics:
• Transitivity: Given two resources, e. g., r2 and r3 as
shown in Figure 4. If they already have a common
ancestor r1 in the merge tree, we will not carry out
a comparison of r2 with r3. The common ancestor r1
already represents that the resources r2 and r3 refer
to the same entity.

• Type: Only resources of the same type are compared,
i. e., we compare events with other events, but not with
locations, persons, or organizations. This precondition
is called “buckets” and is also motivated from Benjel-
loun et al. [1]. Buckets are created by selecting some
attribute as the bucket label and binning the resources
accordingly. Only pairs of resources that are in the
same bucket are compared in the matching process.

• Physical location: The longer the physical distance
between two resources, the less likely it is that they
describe the same entity [18]. We account for that by
calculating the distance between resources using the
Haversine formula [23]. We will only consider pairs of
resources for resolution if

a) they have a distance of at most 500m from one
another. We call this value the distance threshold.

or
b) their postal addresses are similar (to account for

wrong geo-coordinates from a data provider). We
define two postal addresses as similar, if the aver-
age of their Jaro-Winkler and Levenshtein similar-
ity is larger than 0.75.

The distance threshold of 500m was empirically deter-
mined (see Experiment 1 for details). The Haversine
formula is more appropriate than other distance mea-
sures such as the Euclidian distance since it is easy
and fast to calculate and works well for small distances
where other formulas show rounding errors [23].



Type Attribute W Description Example
String uuid * id used on the server
String type * type of resource event, organization, person, place
complex source * set of data provider names {lastfm, eventful}
Double latitude * latitude of the entity’s location 49.48429
Double longitude * longitude of the entity’s location 8.46301
complex address 2 addresses like birth place and death place (split into

country, city, postal code, street and street number)
Bismarckstr. 1, 68161 Mannheim (Germany)

String label 3 name of the entity University of Mannheim
String description * short description of the entity
Schedule schedule 2 start/end date, birthdays, opening hours Mon, Tue, Fri: 9:00-18:00; 11.03.1952, . . .
URL url 4 website with further information www.example.org
URL imageUrl 1 URL of a thumbnail/picture www.example.org/image.jpg
String phone 3 phone number phone number of a ticket hotline

Table 1: Properties of a resource for the entity resolution process. Complex types have an internal
structure which is not relevant for the resolution process. The column W shows the weights used in
the resolution process (* indicates that the weight is determined by a specific similarity function).

(iv) Attribute Weights for Comparing Resources
When comparing two resources for the purpose of merg-
ing, there are some attributes that are more important
in determining whether a mapping should exist between
two resources and there are less important attributes [15].
We account for these differences by assigning weights
to the attributes as shown in Table 1. A higher weight
represents that the feature is more distinctive or authori-
tative. The weights were assigned using information from
the literature [1, 15, 6]. While the related work did not
provide explicit numbers, there were hints which indi-
cate that certain properties are more important or more
distinctive. The actual weights used in our matching
process were then empirically determined and assigned to
the attributes. For example, it is legitimate to assign the
URL the greatest weight, as URLs are by their nature
a unique identifier. This means, if two resources of two
different data sources have the same URL, then the likeli-
hood that they are actually referring to the same entity is
very high. A similar argument applies for the label (i. .e.,
name) and phone number of a person, organization, or
place, which are designed to serve as an identifier. These
rules are not without exception. For example, a postal
address may not be distinctive, e. g., if there are multiple
organizations located in the same office building. Details
are discussed in our experiments below.

(v) Computing the Similarity of Resources
As stated above, we only compare pairs of resources for
which the preconditions apply. In addition, certain at-
tributes are more important than others when comparing
resources. Thus, when actually computing the similarity
of two resources (the so-called scoring), we account for
that by using the weights of the different attributes as
shown in Table 1. The scoring is then computed as follows:
Let r1 and r2 be two resources, C = {x1, . . . ,xn} the set
of resource attributes with non-negative weights and that
are present in both resources (i. e., they are not null or
empty). Furthermore, let compare(r1.x,r2.x) be a com-
paring function over the resource attribute x, except for
the label and parts of postal addresses. Then, compare
is simply defined as follows: compare(r1.x,r2.x) = 1 iff

r1.x = r2.x and 0 otherwise. For the label and postal
address, we define compare(r1.x,r2.x) as the average of
the Jaro-Winkler and Levenshtein similarity of r1.x and
r2.x. Thus, compare(x,y) is bounded by 0 (signifying
dissimilarity) and 1 (signifying identity). Based on this,
we compute the similarity of two resources r1 and r2 as:

score(r1, r2) =
n∑

i=1
wi · compare(r1.x1, r2.x1)

We consider r1 = r2, i. e., the two resources represent the
same entity, if score≥ t, where we call t the comparison
threshold. In this work, we use t = 0.7 (this value showed
a precision over 95% in our empirical studies). There
are two exceptions to this procedure that are mentioned
here because they further speed up the entity resolution
process: First, there can be duplicate resources that a
provider delivers (i. e., the provider’s id for two resources
are identical). Those resources are always considered to
be identical. Second, resources (from different providers)
with exactly the same label and description—given that
the properties are non-empty in both resources—are also
considered identical. This is determined by hashing and
comparing the attribute values.

(vi) Merging Attributes of Duplicate Resources
Resources are merged if the score is above the given
threshold. When merging two resources, in general the
attribute values from the older resource take precedence
over the newer resource. Thus, the older resource becomes
the merge target, while the newer resource is the merge
source (see also Figure 4). Exceptions to this are the
label and the description, respectively. Here, we make
the assumption that a longer text is better. A resource
is considered old(er) if it has already been merged into
some other resource. Thus, the oldest resource is the
root of the merge tree. We refer to the merge target as
rold and the merge source as rnew. When merging two
resources, only rold will be changed. The attribute values
of rnew remain untouched. An edge in the merge tree
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pointing from rnew to rold is added in order to indicate
the direction of the merge.
Thus, for merging the two resources r1 and r2, we have
to check whether one (or both) of them have already
been merged before. If r2 has already been merged into
another resource, we will find the root node of r2’s merge
tree and set it as rnew. Respectively, if r1 has already
been merged into another resource, rold will be set to
the root of r1’s merge tree. In the situation depicted
in Figure 4, if we were to merge r7 into r6, it would be
merged into r4 instead. If we were to merge r6 into r2, we
would instead merge r4 into r1. Note that the merge of
r4,r5, and r6 depicted in Figure 4 resulted from merging
r6 into r5 and subsequently merging r5 (or r6) into r4.

EXPERIMENTAL EVALUATION
To evaluate our matching approach for incremental en-
tity resolution, we conduct a series of different experi-
ments. Each experiment considers a different aspect of
our matching process. Below, we first briefly describe
the experiments, before we present the results and their
interpretations in the following sections. Please note that
we have also conducted a field study of mobEx [12], where
we collected qualitative feedback on the application’s us-
ability over a period of three weeks. Here, we focus on
evaluating the novel resolution engine.
First, we determine the effect of the preconditions on
the matching performance. We hypothesize that the
application of the distance condition massively reduces
the number of comparisons that have to be carried out.
We carry out matching on identical data with different
parameter settings and evaluate the influence on the
results. Goal of this experiment is to identify a good
value for the distance measure threshold.
Second, we evaluate the quality of the matchings. To this
end, we collect data from the five largest cities by popula-
tion in the United States and Germany. We run queries
to nine data providers that are currently implemented
in mobEx. The queries cover the area of the selected
cities. Subsequently, we apply the resolution process and
manually check the results for correct merges, i. e., the
merged resources represent the same entity (true posi-
tive), and incorrect merges, i. e., if the merged resources
represent different entities (false positive). In addition,
we conduct a qualitative analysis of recall by looking at
examples that should have been merged, i. e., pairs of
resources that were not merged although they represent
the same entity (false negatives). Based on the examples,
we identify general cases where our scoring function and
thus the matching did not recognize duplicates.
Third, mobile users will not be willing to wait a long time
until they receive results to their queries [12]. Thus, we
determine how long it takes to resolve a specific number
of resources. In particular, we are interested in analyzing
the relationship between the run time needed for process-
ing a resource and the total number of resources being
concurrently present in the entity resolution engine.

Fourth, we investigate how long it takes until entities
arrive at the mobile client once the resolution process
is started. Particularly, we are interested in the ratio
between the percentage of delivered entities and resolved
resources and its evolution over time.
For all experiments, we only regard the time needed
by our incremental entity resolution process. The time
required by the APIs of the data providers to return the
records is ignored. The motivation for this procedure is:
First, any application that uses one of the providers’ APIs
would face these latency times. Thus, it is not inherent
to the computational time needed by our incremental
entity resolution. Second, the response times of the APIs
differ quite a lot depending on various factors such as
the time of the day and the query complexity. For our
data providers, we found answering times as short as one
second but also up to 157 seconds, i. e., more than 2.5
minutes. Thus, a fair evaluation can only be conducted
by controlling the factor of varying API response times.

Experiment 1: Determining the Distance Treshold
We queried all nine data providers implemented in the
mobEx server in the five largest cities in the US and
Germany. These are New York (NY), Los Angeles (CA),
Chicago (IL), Houston (TX), and Philadelphia (PA) for
the Unites States and Berlin, Hamburg, Munich, Cologne,
and Frankfurt am Main for Germany. We query all data
providers in the center of each city with a radius of 3.1km.
Subsequently, we carry out our entity resolution on the
received resources and iteratively apply the following dis-
tance thresholds: 300m, 500m, 1,000m, 1,500m, 2,000m,
2,500m, 3,000m, and infinite distance. Table 2 shows the
results averaged over the then cities.

Distance Avg. Matches Avg. Savings (in %)
300 103.11 52.69
500 103.11 50.28

1,000 102.89 41.06
1,500 103.11 28.37
2,000 103.11 19.13
2,500 103.11 12.78
3,000 103.11 7.69
∞ 103.22 0

Table 2: Avg. number of matches and avg. saved
comparisons for different distance thresholds.

As the results show, the number of matches do not vary a
lot while there is an increase in the number of comparisons
that can be saved when considering a distance threshold
of 500m. If one wanted to speed up the matching process
even more, one could decrease the distance threshold to
values such as 100m or even less and evaluate the impact
on the outcome. One would expect that at some point,
the number of matches will decrease. Thus, the distance
threshold provides a means to trade-off the number of
matches for runtime, allowing for faster results at the
cost of (possibly) remaining duplicates.



Experiment 2: Evaluating the Quality of the Matching
Regarding the assessment of correctly merging the records
retrieved from the different data sources, we aggregate
the records over all cities. Applying the entity resolution
process, we obtain 9,834 entities. For computing those en-
tities, 1,122 merges took place. Out of the 1,122 merges,
we manually identified that 1,068 were correct, i. e. the
merged resources actually described the same entity. In
54 cases, we found incorrect merges. This gives us an
overall precision of 95.19% as shown in Table 3, which
is very high. However, some merges were actually fairly
easy as they were duplicates from a provider where re-
sources share the same identifier (short: id). We consider
a match “hard”, if it is not an obvious duplicate. Table 3
shows the distribution and precision of our approach for
three assumptions on what an “obvious” duplicate is and
what a “hard” duplicate is. These three cases are:
a) There are no obvious duplicates, i. e., all matches are

considered hard. Thus, all the matches that are based
on identical id (column ID in Table 3) or label and
description (column L&D) as well as all other matches
are all summed up as hard.

b) A duplicate is obvious, if two resources come from the
same provider and share the same id. These matches
are always considered correct and will not contribute to
the precision. Thus, we sum up label and description
(L&D) matches and non-ID matches as hard.

c) On top of b), we consider duplicates as obvious if
they share the same (non-empty) label and description.
Thus, only matches where neither the id nor labels and
descriptions were identical are considered hard.

M. TP FP ID L&D hard P
a) 1,122 1,068 54 1,122 95.19
b) 566 512 54 556 566 90.46
c) 251 197 54 871 251 78.49

Table 3: Results of the matching process ag-
gregated over ten major cities with in total
9,834 entities (after matching). Column labels:
M.=matches, TP=true positives, FP=false posi-
tives, ID=same provider and id, L&D=identical
label and description, hard=matches considered
“hard” for the given assumption, P=precision

Several potential challenges emerged in the course of eval-
uating our matching approach: First, there is a general
problem when there is only little information available
about the resources. If some of these sparse attribute val-
ues vary, then matching is close to impossible. However,
as said in the introduction, we designed the incremental
entity resolution to favour precision over recall. Thus, the
remaining duplicate resources (i. e., resources that should
be merged but were missed) may be more acceptable than
potentially merging too many records (false positives).
Second, while an identical URL may be a strong indica-
tor of identity, this can also cause problems. A common

problem was that resources of supermarkets were merged,
because the URL, label, and phone number were iden-
tical, but only the address was different. This might
be a problem as it causes relevant merges getting lost.
Actually, the majority of false positives (around 35) are
caused by this error in the matching. We also found
duplicate resources in the results which were not merged
because of a different URL, often in addition to (slight)
variations in another attribute. However, there were only
a few cases where this actually resulted in missing some
duplicates (on average around 10 obvious duplicates per
city). This is of course not desirable but probably ac-
ceptable. Nevertheless, this presents a starting point for
future improvements of our approach.
Third, in some cases, it seems that obvious duplicates
exist. At a closer look, there are often slight variations
in the address and the phone number. This raises the
question whether the phone number is a good attribute
in the sense that it serves as a good identifier for a re-
source. This question cannot easily be answered as larger
businesses or organizations often have many phone num-
bers while small businesses such as restaurants often have
one phone number. Keeping in mind that the approach
should be generic, one must ask whether the introduction
of special cases will decrease the performance of the entity
resolution or even hinders its universal applicability.
Please note, we do not evaluate for recall on a quantitative
basis. This would include missing merges as well as
correct non-merges, i. e., resources that were not merged
and should not be merged as they represent different
entities (true negatives). In order to do so, one would
have to compare every resource with all other resources
which resulted in

(n
2
)
comparisons for n resources. This

becomes practically infeasible, even for small datasets.

Experiment 3: Runtime of the Entity Resolution
We carried out a run time analysis of our incremen-
tal matching approach by querying all of our nine data
providers in the ten cities listed above and averaging the
results. The analysis was carried out on a Debian Linux
64 bit machine with a 2.8GHz i5-2300 processor and 6GB
of RAM, out of which at most 5 were available to the
resolution server. Figure 5 shows the time required for
processing a resource in the entity resolution engine in
relation to the number of resources that existed in the
process at that time. It can be seen that the processing
time for each resource is higher when more resources
are present in the entity resolution process on the server.
Still, the resolution process is fairly quick for the amounts
of data we faced. At an average of 746.13 resources be-
ing present in the resolution process, it took on average
0.046s to resolve one resource against all other resources.
This corresponds to a processing speed of 204.67 resources
per second. Please note, all results have been computed
by averaging ten different runs.
The correlation coefficient r = 0.72 shows that there is a
strong correlation between the run time and the number
of resources. Around 72% of the increase in run time can
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Figure 5: Run time per resource on the server.
The red dotted line shows a linear regression
curve with a correlation coefficient r = 0.7208 (co-
efficient of determination r2 = 0.52).

be explained by the increase in the number of resources.
Other contributing factors may be that the resolution
process runs in parallel threads. Especially those threads
that resolve larger batches of resources may run longer
and thus have to share the processor with other threads.
In addition, the coefficient of determination r2 of the
linear regression in Figure 5 shows that 52% of the varia-
tions in the run time of our resolution approach can be
explained by the number of resources.

Experiment 4: # of Resources Delivered to Mobile Client
In this experiment, we report a measure that we call
resolved ratio (rr). The rr represents the number of
resources that the matching server has received and that
have undergone the resolution process in proportion to
the total number of resources the mobile client has already
received. This number should not be seen as exact figure,
but as lower-bound estimate. Furthermore, as said above,
we do not include the response times from the providers
in our calculations. They indirectly affect the resolution
process as resources that arrive at the server sooner than
others are started early to be processed by the entity
resolution. But there is no guarantee that threads finish
in the order they were started. It may very well happen
that a thread that is started later than another thread
finishes sooner as the batch of resources delivered from
the provider is smaller.
Analyzing the actual amount of resolved resources that
the client has received at a given time is difficult due
to our threaded approach. We can provide an estimate
though, which can be seen in Figure 6. It shows the av-
erage percentage of resources that the client has received
(out of all resources delivered to the matching server for
a specific user query) and the percentage of the received
resources that have undergone resolution so far. In these
tests, we retrieved on average a total of 959.2 resources
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Figure 6: Percentage of resources received (red)
vs. percentage of completely resolved resources
among the resources delivered to the client (blue).
The point in time when the client received 100%
of the resources in a resolved state is not shown
as it depends too strongly on the time when the
last data provider answers the query.

from the nine data providers (computed over the five
largest cities in the US and Germany). As can be seen
from Figure 6, after one second already almost 20% of
the resources could be delivered to the mobile client and
almost 50% of the resources are resolved. Subsequently,
the percentage of resolved resources goes down as more
resources from the data providers arrive at the entity
resolution server. But also more resources can be deliv-
ered to the mobile client. Within 5s almost 80% of all
resources are delivered to the client and thus are at least
partially resolved. At the same time, around 54% of the
received resources have been fully resolved.

CONCLUSION
We have presented the design and evaluation of an entity
resolution approach that is very precise while at the same
time does not impose a long response time to the mobile
users. To this end, our incremental entity resolution
engine processes data records as soon as the first data
provider respond to a user’s query. As we do not have all
resources at hand when the resolution process is started
but users expect results in a timely manner, we start prop-
agating partially resolved resources to the mobile client
and sending updates later on. Thus, while the resolution
process receives more and more data from the providers
as we go along, the entities shown on the user’s mobile
client gradually become more complete. The weights of
the scoring function are based on empirical observations
and results found in the literature. Automated techniques
may be used to learn an optimal weighting and replace
the current solution in the future.
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