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Abstract. Computing the similarity between data elements is a basic functional-
ity in flexible query answering systems. In the case of complex data definitions,
for instance in terms of an ontology, computing the similarity between data ele-
ments becomes a non-trivial problem. In this paper, we propose a similarity mea-
sure for data described in terms of the DL-lite ontology language. In this measure,
we take implicit information contained in the definition of classes and relations
into account. In contrast to many other proposals for similarity measures, our pro-
posal does not rely on structural criteria of the definitions involved but is solely
based on the logical consequences that can be drawn.

1 Introduction

Similarity plays a central role in information management, especially in the context of
environments like the semantic web where data may originate from different sources
and has to be combined and integrated in a flexible way. Being able to compute mean-
ingful measures of similarity between data and data models helps to perform a number
of central tasks such as retrieval of structured data based on partial specification, data
and schema integration based on the similarity of definitions in different sources, and
similarity based query answering on the integrated model.

Defining similarity measures for semantic web data has to take into account that
this data is often described based on ontological knowledge that defines implicit infor-
mation about the data. In order to define a meaningful similarity measure for such data
the similarity measure also has to consider this implicit information. In our work, we
investigate such a semantic similarity measure for data that has been described using
DL-lite, an efficient subset of the web ontology language OWL. In defining the similar-
ity measure we benefit from the fact that DL-lite allows to compile implicit knowledge
into explicit data statements. This allows us to first use logical reasoning for compil-
ing the implicit data into explicit statements and then determining the similarity of the
models based on the explicit statements.

More specifically, in this paper, we define a semantic similarity measure for DL-
lite knowledge bases. This similarity measure provides a theoretical basis for different
kinds of more practical problems such as the computation of similarity between concept
definitions or similarity-based query answering.

The paper is organized as follows. We first provide a brief introduction to the DL-
lite language and introduce an example ontology that is used throughout the paper, we
then define a similarity measure on data models without considering the ontology and



stepwise extend this definition to include positive and negative implications from the
ontology into the measure. We conclude with a brief discussion of the formal properties
of the measure in terms of axiomatization and computational complexity.

2 DL-Lite

The DL-lite family of logics [2] has been developed as an alternative language for
encoding ontologies for data management that is better suited for large data sets than
traditional description logics such as the logics SHIF and SHOIQ that form the basis
for the language standards OWL-lite and OWL-DL. DL-lite restricts the use of logical
operators in axioms in such a way that the resulting theories can be verified and queried
efficiently using techniques known from the database area. In the following, we briefly
introduce the different dialects of the DL-lite language and define a small ontology we
will use as a running example throughout the paper.

Syntax We begin with defining the language of the DL-lite family. These languages
define four kinds of constructs: A basic concept B is either a concept name A or an
expression of the form ∃R where R is a basic role as defined below. A general Concept
C is either a basic concept as defined above or the negation of a basic concept denoted
as ¬B. A basic role R is either a role name P or the inverse of a role name denoted
as P−. A general role E is either a basic role as defined above or the negation of a
basic role denoted as ¬R. Based on these constructs the different languages allow the
construction of different kinds of axioms that are defined in the following: All languages
allow inclusion axioms of the form B v C where B is a basic concept and C is a general
concept. Note that the languages also allows to have disjunctions of basic concepts
on the left-hand and conjunctions of general concepts on the right hand side of the
inclusion. This, however, does not extend the expressiveness of the language as the
same effect can be achieved by using multiple inclusion statements without conjunction
and disjunction.

All languages allow the definition of membership assertions that are either of the
form A(a) where A is a concept name and a is an object name or P (a, b) where P
is a role name and a and b are object names. The Language DL-lite(R) further allows
role inclusion axioms of the form R v E where R is a basic role and E is a general
role. The language DL-lite(F) allows to state that a basic role is functional denoted as
(functR). A DL-lite knowledge base KB = (T ,A) consists of a T-Box T and an
A-box A. The T-box contains a finite number of inclusion axioms and depending on
the language might also contain Role inclusion or functional role definitions. The A-
box contains a finite number of membership assertions that use concept and role names
occurring in the respective T-Box.

Examples In order to illustrate the ability of DL-lite to represent simple ontologies and
conceptual models, we use a small example from the teaching domain. We start describ-
ing Professors and Students in terms of the relation between them. We define that
a Professor always works somewhere as the title of a professor is bound to a certain
position, further, we say that Professors are always mentoring someone and that the



hasMentor-Relation holds between Students and Professors The corresponding
DL-lite T-Box is the following:

Professor v Person (1)
Student v Person (2)

Professor v ∃worksAt (3)
Professor v ∃hasMentor− (4)
∃hasMentor v Student (5)
∃hasMentor− v Professor (6)

We continue with describing Teachers and Pupils by stating that Pupils are al-
ways in the hasTeacher relation and that this relation always holds between a Person
and a Teacher. We also say that the hasTeacher relation has an inverse relation
Teaches. Finally, we say that Pupils and Students are disjoint classes as everyone
has to finish school before becoming a Student. The corresponding DL-lite T-Box is
the following:

Teacher v Person (7)
Pupil v Person (8)
Pupil v ∃HasTeacher (9)

∃hasTeacher− v Teacher (10)
∃hasTeacher v Person (11)
hasTeacher− v Teaches (12)

Student v ¬Pupil (13)

We will use this situation as a running example for illustrating our approach for
defining similarity on a semantic level. For a formal definition of the semantics of DL-
lite, we refer to [2]

3 A-Box Similarity

We start our investigation of similarity in DL-lite by looking only at the A-Box. As
mentioned in section 2 an A-box is a set of membership statements of the following
form: C(a), P (a, b) where a,b are constants, C is a concept name and P is a prop-
erty name. Further, we extend the notion of an A-Box by also allowing membership
statements of the form ¬C(a) and ¬P (a, b) stating that object a is not a member of
Concept C and that the objects a and b are not in relation R, respectively. Note that
these additional statements do not change the logic used. The statement ¬C(a) can be
represented by a combination of the statements: D(a) and D v ¬C while ¬P (a, b) can
be represented in terms of Q(a, b) and Q v ¬P . For convenience, we denote the set
of constants in an A-box as const(A). In in the following we define a basic similarity



measure for comparing A-boxes extended in the way described that will later be used
as a basis for measuring similarity between concepts and complete knowledge bases.
We introduce the notion of A-Box similarity using the following example A-Boxes and
their corresponding graphs:

(a) Graph for A-Box A1 (b) Graph for A-Box A2

Fig. 1. A-boxes used as running example in the paper.

Example 1.

A1 = {hasMentor(a3, a1), worksAt(a2, a4), (14)
teaches(a1, a3), teaches(a2, a3), }

A2 = {hasTeacher(b2, b1), hasTeacher(b3, b1), hasTeacher(b3, b5),
worksAt(b1, b4), worksAt(b5, b6), Pupil(b3)} (15)

A-Boxes can be regarded as labeled directed multi-graphs, where object constants
are represented by nodes and binary relations between objects are represented by links
labeled with the name of the corresponding relation. This means that we can use existing
graph similarity measures for measuring the similarity of the graphs representing the A-
boxes. In particular, we adopt the similarity measure for labeled graphs proposed in [3]
and apply it to the case of A-Boxes as described below.

The basis for determining similarity of labeled graphs is a mapping between nodes
in the graphs to be compared. This mapping indicates possibly equivalent objects in
both structures. We adapt this idea of a mapping between nodes to the case of A-boxes
by defining a mapping to connect object constants that potentially represent the same
individual in a domain. This excludes object constants of incompatible types. In our
example A-boxes, for instance, the constant a1 can be mapped on b1 in the other models,
but if we take the definitions in the T-Box into account a2 should not be mapped on b3

because we defined that students cannot be pupils at the same time.
For the moment however, we do not take T-Box definitions into account and formal-

ize similarity of A-Boxes purely on the basis of explicit membership statements starting
with the notion of an A-Box mapping.



Definition 1 (A-Box Mapping). Let A1 and A2 be A-boxes, then an A-box mapping
of A1 and A2 is a one-to-one relation m : const(A1) × const(A2) such that none of
the following holds for any (a1, b1), (a2, b2) ∈ m:

– C(a1) ∈ A1 and ¬C(b1) ∈ A2

– ¬C(a1) ∈ A1 and C(b1) ∈ A2

– P (a1, a2) ∈ A1 and ¬P (b1, b2) ∈ A2

– ¬P (a1, a2) ∈ A1 and P (b1, b2) ∈ A2

This limitation of the mapping limits our ability of freely map objects onto each other.
Intuitively, mapping one object onto another can be seen as a hypothesis that they are
the same object. Of course, this only makes sense for objects that are not in disjoint
classes. In our example this means that we can map an object of type Professor onto an
object of type Teacher, but not an object of type Student onto an object of type Pupil.
We will discuss the impact of this restriction on the similarity of objects later.

Based on the notion of an A-Box mapping, we can define a degree of overlap be-
tween the two A-Boxes by counting the number of statements they have in common
when assuming that mapped object constants represent the same real world object. For
this purpose, we count the number of objects mapped onto each other that belong to
the same concept in both A-Boxes as well as the pairs of objects mapped onto each
other that are in the same relation to each other. Formally, the overlap of two A-Boxes
is defined as follows:

Definition 2 (A-Box Overlap). Let A1 and A2 be A-boxes, m an A-Box mapping for
A1 and A2 then the overlap between A1 and A2 with respect to m is defined as:

overlap(A1,A2, m) =def |{C(a)|C(a) ∈ Ai ∧ C(m(a)) ∈ Aj , i 6= j ∈ {1, 2}} ∪
{R(a, b)|R(a, b) ∈ Ai ∧R(m(a), m(b)) ∈ Aj , i 6= j ∈ {1, 2}}|

Based on the amount of overlap, we can now proceed to define the similarity of
two A-boxes in terms of the relative overlap of the models compared to the maximal
possible overlap in the case of identical models. Formally, the similarity is defined as
follows:

Definition 3 (A-Box Similarity). Let A1 and A2 be A-boxes and m is an A-Box map-
ping for A1 and A2, then the similarity of A1 and A2 is defined as:

Sim(A1,A2) =def maxm
overlap(A1,A2, m)

|A1 ] A2|

where A1 ] A2 denotes the disjoint union of role and concept membership state-
ments in A1 and A2.

In the following example, we illustrate the use of this similarity measure on our
example A-Boxes. We also argue that this measure already carries some semantic in-
formation in terms of the condition that a mapping can only exist between compatible
object (compare definition 1).



Example 2. We first have to compute the overlap between the two A-boxes. The A-Box
mapping that maximizes this overlap is the one that contains m(a2, b5) and m(a4, b6)
as this creates an overlap with respect to the worksAt relation between the mapped
constants. This means that the overlap between the two models is 2. As the size of
the disjoint union of the slot membership statements in both models is 10, we get the
following similarity:

Sim(A1,A2) =
2
10

= 0.2

4 Similarity of DL-lite Knowledge Bases

So far, we have only considered similarity of A-Boxes without taking the definitions of
the T-Box into account. A truly semantic similarity measure, however, also has to take
implicit information into account that can be derived from the T-Box [5]. In this section,
we show that the measure introduced above can be extended to take these definitions
into account. Different from existing approaches for computing similarity of descrip-
tion logic expressions, we do not specify the similarity for T-Box operators, we rather
extend the A-Box of a knowledge base with implicit information. This extension uses
the concept of a chase [8] that has also been identified as a suitable basis for testing the
satisfiability of DL-lite Knowledge bases. We first investigate the inclusion of positive
information into the A-box based on the chase algorithms described in [2]. We then ex-
tend this algorithm to also support the inclusion of negative information into the model.
This second part is crucial as the inclusion of negative information has an impact on
the possible A-box mappings and therefore carries semantic information by excluding
mappings between incompatible objects from the overlap of the A-Boxes involved.

4.1 Positive inclusion statements

Positive inclusion statements are inclusion statements that do not have a negation on the
right-hand side of the statement. The effect of these kinds of statements can completely
be determined in terms of derivable A-box statements. Given a Knowledge base KB =
(T ,A), such derivable statements can be computed by iterative applying the expansion
rules from table 1.

Applying these rules until new information is generated results in a new A-Box
posT (A) that explicitly contains all implicit positive information encoded in the T-Box
of KB.

Example 3. Applying the derivation rules described in table 1 to the A-Boxes from
example 1 with respect to the definitions in the T-Box described in section 2 leads to
the following extended A-boxes:

posT (A1) = {hasMentor(a3, a1), worksAt(a1, a5), teaches(a1, a3),
teaches(a2, a3), worksAt(a2, a4), P erson(a1), P erson(a3),
P rofessor(a1), Student(a3), }



if T contains A contains then add toA unless

A1 v A2 A1(a) A2(a) -
A v ∃P A(a) P (a, b) ∃b′ : P (a, b′) ∈ A
A v ∃P− A(a) P (b, a) ∃b′ : P (b′, a) ∈ A
∃P v A P (a, b) A(a) -

∃P− v A P (a, b) A(b) -
∃P1 v ∃P2 P1(a, b) P2(a, c) ∃c′ : P2(a, c′) ∈ A
∃P
−
1
v ∃P

−
2

P1(a, b) P2(c, b) ∃c′ : P2(c′, b) ∈ A

∃P1 v ∃P
−
2

P1(a, b) P2(c, a) ∃c′ : P2(c′, a) ∈ A

∃P
−
1
v ∃P2 P1(a, b) P2(b, c) ∃c′ : P2(b, c′) ∈ A

P1 v P2 P1(a, b) P2(a, b) -

P
−
1
v P
−
2

P1(a, b) P2(a, b) -

P
−
1
v P2 P1(a, b) P2(b, a) -

P1 v P
−
2

P1(a, b) P2(b, a) -

Table 1. Derivation Rules for positive information

posT (A2) = {hasTeacher(b3, b1), hasTeacher(b3, b5), hasTeacher(b2, b1),
teaches(b1, b2), teaches(b1, b3), teaches(b5, b3), worksAt(b5, b6),
worksAt(b1, b4), P erson(b1), P erson(b2), P erson(b3),
P erson(b5), Pupil(b3), T eacher(b5), T eacher(b1), } (16)

The extended A-boxes contain additional information about the types of object con-
stants as well as some new role membership statements, in particular Teaches(b1, b2),
Teaches(b1, b3) and Teaches(b5, b3) in posT (A2) which are drawn as dashed lines
in the figure as these new statements have a direct impact on the similarity of the two
A-Boxes.

We can use these expansion rules for taking into account positive T-Box informa-
tion when computing the similarity of two A-Boxes A1 and A2 by first computing
the extended A-Boxes posT (A1) and posT (A2) and then computing the similarity of
these extended A-Boxes rather than the similarity of the original ones. This gives us a
new similarity measure for A-boxes that is closer to our idea of a semantic similarity
measure than the previous definitions.

Definition 4 (Positive Semantic Similarity). Given a DL-lite T-Box T and two DL-
lite A-boxes A1 and A2, the positive semantic similarity of A1 and A2 with respect to
T is defined as follows:

posSimT (A1,A2) =def Sim(posT (A1), posT (A2))

This new definition of similarity better captures the actual similarity between the
models as it takes statements into account that logically follow from the explicit state-
ments and the definitions in the T-Box. We illustrate the impact on the similarity of
knowledge bases using our running example.

Example 4. In our running example, the application of the extension rules significantly
increases the overlap between the A-Boxes. Now the mapping with the maximal overlap
is the one that maps a3 on b3, a1 on b1, a2 on b5 as well as a5 on b4 and a4 on b6.
Using this mapping, the overlap between the two models contain not less than four



(a) Graph for A-Box A1

(b) Graph for A-Box A2

Fig. 2. A-boxes after adding derivable statements

elements, namely the two worksAt and two Teaches relations. As the overall number
of role inclusion statements in the disjoint union has increased as well and contains
statements 22, the new similarity is computed as follows:

posSimT (A1,A2) =
12
24

= 0.5

Note, that so far we have not made any use of the inferred concept membership
assertions as these are only relevant when negative information is available.

4.2 Negative inclusion statements

As we have seen, the inclusion of derivable information leads to a significant increase
of the similarity of the two knowledge bases. The high similarity can partially be ex-
plained by the fact that our definition is very liberal about matching constants onto each
other. In the definition 1 we claim that only compatible constants should be mapped
onto each other. So far, this restriction only applies in cases, where negated member-
ship statements are explicitly included in the A-box. In practice,negative information is
seldom directly included in an A-Box but is normally derived from negative inclusion
statements in the T-Box. In order for such implied negated statements to have an impact
on the similarity estimation, we need to make them explicit in the same way, we did for
implied positive statements. This can be done in a two-step process. In the first step, we



derive all implied negative inclusion statements that follow from the T-Box. In a second
step, we use these inclusion statements to extend the A-Box with negated membership
statements. The first step consists of computing the closure cln(T ) of negative inclu-
sion statements. This is done by initializing cln(T ) with the set of inclusion statements
that contain negation on the left hand side and successively applying the following set
of rules until no new statements can be derived.

if T contains and cln(T ) contains then add to cln(T )

B1 v B2 B2 v ¬B3 B1 v ¬B3
B1 v B2 B3 v ¬B2 B1 v ¬B3
R1 v R2 ∃R2 v ¬B ∃R1 v ¬B

R1 v R2 B v ¬∃R2 ∃R1 v ¬B

R1 v R2 ∃R
−
2
v ¬B ∃R

−
1
v ¬B

R1 v R2 B v ¬∃R
−
2

∃R
−
1
v ¬B

R1 v R2 R2 v ¬R3 R1 v ¬R3
R1 v R2 R3 v ¬R2 R1 v ¬R3
- ∃R v ¬∃R ∃R− v ¬∃R−

- ∃R− v ¬∃R− ∃R v ¬∃R

- ∃R v ¬∃R R v ¬R

- ∃R− v ¬∃R− R v ¬R

- R v ¬R ∃R− v ¬∃R−
- R v ¬R ∃R v ¬∃R

Table 2. Completion Rules for negative inclusion statements

Based on this notion of a closure of negative inclusion statements, we can now also
define additional rules for extending an A-Box with derivable negative statements.

if cln(T ) contains posT (A) contains then add to posT (A) for all

A v ¬B A(a) ¬B(a) -
A v ¬∃P A(a) ¬P (a, x) x ∈ const(A)
A v ¬∃P− A(a) ¬P (x, a) x ∈ const(A)
∃P v ¬B P (a, b) ¬B(a) -
∃P1 v ¬∃P2 P1(a, b) ¬P2(a, x) x ∈ const(A)

∃P1 v ¬∃P
−
2

P1(a, b) ¬P2(x, a) x ∈ const(A)

∃P− v ¬B P (a, b) ¬B(a) -

∃P
−
1
v ¬∃P2 P1(a, b) ¬P2(b, x) x ∈ const(A)

∃P
−
1
v ¬∃P

−
2

P1(a, b) ¬P2(x, b) x ∈ const(A)

P1 v ¬P2 P1(a, b) ¬P2(a, b) -

P1 v ¬P
−
2

P1(a, b) ¬P2(b, a) -

P
−
1
v ¬P2 P1(a, b) ¬P2(b, a) -

P
−
1
v ¬P

−
2

P1(a, b) ¬P2(a, b) -

Table 3. Derivation rules for negative membership statements

Applying these rules until new information is generated results in a new A-Box
extT (A) that explicitly contains all implicit positive and negative information encoded
in the T-Box of KB. This extended A-Box again provides us with a new version of the
similarity measure. In order to also take implicit negative information into account, we
define a third notion of similarity that is based on the overlap between the extended
A-Boxes.



Definition 5 (Semantic Similarity). Given a DL-lite T-Box T and two DL-lite A-boxes
A1 and A2, the extended semantic similarity of A1 and A2 with respect to T is defined
as follows:

extSimT (A1,A2) =def Sim(extT (A1), extT (A2))

We illustrate the use of this extended notion of semantic similarity using our running
example.

Example 5. In our example T-Box, we only have a single negative inclusion statement,
namely student v ¬pupil. There are no interactions with other axioms in the T-Box,
therefore closure cln(T ) only contains this single axiom. Applying the derivation rules
for negative membership statements from table 2 generates one new negative statement
in A-Box A1, namely ¬Student(b3). This means, that we cannot map a3 to b3 any
more according to definition 1. The possible mapping that maximizes the overlap is
now the one that maps a3 on b2 instead. The corresponding similarity induced by this
mapping is

extSimT (A1,A2) =
10
25

= 0.4

This similarity makes use of all the semantic information contained in the T-Box
and therefore supposedly is the most accurate estimation of the real similarity of the
models compared.

5 Formal Properties of the Measure

In this section, we take a brief look at the formal properties of the similarity measure
defined in this paper. In particular, we look at some axiomatic properties of the measure
and investigate the complexity of computing the measure. Taking a careful look at the
complexity is very important in the context of semantic similarity as taking ontological
knowledge into account can quickly lead to intractability.

5.1 Axiomatic Properties

Measures of similarity are normally assumed to have some axiomatic properties. In par-
ticular, for a similarity measure sim, it is normally assumed that the following axioms
hold:

1. 0 ≤ sim(x, y) ≤ 1
2. Sim(x, x) = 1
3. Sim(x, y) = Sim(y, x)
4. Sim(x, y) + Sim(y, z) ≥ Sim(x, z)

Testing our measure against these properties reveals that properties 1-3 hold for our
measure, whereas property 4 does not hold. Property 1 immediately follows from the
definition of measure. The overlap between two A-Boxes is at least 0 if there is no



overlap and two times the size of the smaller A-Box. In case that the two A-Boxes
have the same size it can happen that it has the same size as the disjoint union of
the two A-Boxes which leads to a maximal similarity of 1. In particular, this is the
case, if the two A-boxes are identical which establishes property 2. Property 3 also
immediately follows from the definition. As m is a one-to-one relation, a mapping that
holds in one direction can also be established in the other direction which means that
the similarity in the opposite direction is at least as high as the other one. If it would be
higher, it means that there is an additional pair of objects in m that increases the overlap,
this however means that this pair could also be added to the original direction also
increasing the similarity here. We can easily construct a counter-example for property
4 by choosing the A-boxes such that A1 = A2 and A3 = ∅. In this setting, we have
Sim(A1,A3) + Sim(A3,A2) = 0 whereas Sim(A1,A2) = 1.

5.2 Complexity

Computing semantic similarity as defined in this paper is polynomial in the size of the
knowledge base. In order to show this, we first have to investigate the basic version of
the measure without taking the T-box into account: As pointed out in [3] the number of
all possible mappings is exponential in the size of the A-Boxes. As we restrict ourselves
to one-to-one mappings, the number of mappings we have to consider is significantly
smaller, but it is still in O((n + 1)!) where n is the size of the larger A-box. When
moving to the semantic versions of the similarity measure, additional complexity is
added because the extended versions of the A-box can be significantly larger than the
original one. As stated in [2], however, the size of the expanded model is polynomial
in the size of the input knowledge-base. This means that computing the measure is in
O((n + 1)!) where n is polynomial in the size of the knowledge base.

6 Related Work

A number of approaches for computing the similarity of complex concept expressions
have been proposed. Borgida and other compared different principled ways of deter-
mining the similarity of concept expressions, in particular feature-based, network-based
and information-content based approaches and discuss the pros and cons of these dif-
ferent approaches [1]. They conclude that network-based methods suffer from the need
to combine different measures in a rather arbitrary way. According to the paper feature-
based methods work in principle, but suffer from the problem of defining the right set
of features. The authors conclude that measures based on information contents are most
promising, provided that we find ways to estimate the correct distribution of instances
in the real world. D’Amato and others propose to use the degree of overlap between the
instances of two concepts for determining the similarity of concepts [4] which meets
out intuitions of similarity.Hu and others define a similarity measure based solely on
the definition of the concepts involved and do not require any instance information. The
idea of the approach is to normalize concept descriptions into a sets of characteristic
signatures that roughly correspond to approximations of models for the corresponding



formula [6]. Based on this representation of concepts in terms of signatures, they ap-
ply standard information retrieval techniques for determining the similarity between the
signatures. In this step, however, much of the information contained in the concept ex-
pression is lost as the similarity is determined solely on the basis of concept and relation
names, not taking into account logical operators. Recently, the idea of reducing concept
similarity to instance similarity has also been proposed by [7].

7 Summary and Conclusions

We presented a semantic similarity measure for DL-lite that builds on top of a similarity
measure for A-Boxes that uses ideas [3]. We extend this measure to include T-Box infor-
mation in terms of positive and negative inclusion statements. We illustrated the use of
the similarity measure using a running example. The semantic nature of the measures
makes it an ideal basis for improving semantic matching methods for heterogeneous
ontologies and conceptual schemas. In future work, we will investigate the use of the
measure in such scenarios. Further, we will investigate, if the principles underlying our
similarity measure can also be applied to more expressive ontology languages.
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