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Abstract

Information systems play a crucial role in most of today’s business operations.

High availability and reliability of services and hardware, and, in the case of

outages, short response times are essential. Thus, a high amount of tool support

and automation in risk management is desirable to decrease downtime.

We propose a new approach for calculating the root cause for an observed

failure in an IT infrastructure. Our approach is based on abduction in Markov

Logic Networks. Abduction aims to find an explanation for a given observation

in the light of some background knowledge. In failure diagnosis, the explanation

corresponds to the root cause, the observation to the failure of a component,

and the background knowledge to the dependency graph extended by potential

risks. We apply a method to extend a Markov Logic Network in order to conduct

abductive reasoning, which is not naturally supported in this formalism.

Our approach exhibits a high amount of reusability and facilitates modeling
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by using ontologies as background knowledge. This enables users without spe-

cific knowledge of a concrete infrastructure to gain viable insights in the case of

an incident. We implemented the method in a tool and illustrate its suitabil-

ity for root cause analysis by applying it to a sample scenario and testing its

scalability on randomly generated infrastructures.

Keywords: Root Cause Analysis, IT Infrastructure Management, Markov

Logic Network, Ontology, Abductive Reasoning

1. Introduction

Root cause analysis (RCA) plays an important part in processes for problem

solving in many different settings. Its purpose is to find the underlying source of

the observed symptoms of a problem. IT plays an important role in processes

in a wide area of business, thus a high availability and short response times

to failures (e.g., failing e-mail deliveries, inaccessible websites, or unresponsive

accounting systems) are crucial [2]. Today’s IT infrastructures are getting in-

creasingly complex with diverse direct and transitive dependencies. This makes

root cause analysis a time intensive task as the cause for a problem might be un-

clear or the most probable cause might not be the most obvious one. Therefore,

automating the process of root cause analysis and helping an IT administrator

to identify the source of a failure or outage as fast as possible is important to

achieve a high service level [3].

In this paper we present our approach to root cause analysis that uses

Markov Logic Networks (MLN) and abductive reasoning to enable an engi-

neer to drill down fast on the source of a problem. Markov Logic Networks

provide a formalism that combines logical formulas (to describe dependencies)

and probabilities (to express various possible risks) in a single representation.

We focus on abductive reasoning in MLNs and show how it can be used for the

purpose of root cause analysis. To our knowledge, the proposed approach is

a novel method to root cause analysis that combines probabilistic and logical

aspects in a well-founded framework.
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Throughout the paper, we illustrate our approach on a small case study. The

IT infrastructure in our settings is comprised of a multifunction office printer

that offers – amongst others – printing and scanning services via a network.

These services use a mail and indirectly an LDAP service. Everything is depen-

dent on the network and the power supply. This small case study already has

dependencies that cross several different levels of infrastructure (services, server

hardware, network hardware, power supply). We will expand this setting with

possible causes for failure and probabilities for their occurrence. Theses risks are

described in the ”IT-Grundschutz Catalogue” by the German ”Bundesamt für

Sicherheit in der Informationstechnik” (Federal Office for Information Security)

which is based on the ISO 27001 certification1. Furthermore, we evaluate the

scalability of the approach on infrastructures generated randomly based on the

structure observed in real-world environments.

Within our framework, the IT infrastructure is represented as a logical de-

pendency network that includes various threats to its components. When a

problem occurs, available observations are entered into the system which then

generates the Markov Logic Network from the available observations, the given

dependency network, and the general background knowledge related to the com-

ponents of the infrastructure. Some of these observations might be specified

manually, while other observations can be entered into the system automati-

cally, e.g. via constantly running monitoring software. These observations are

typically incomplete in the sense that not all relevant components are monitored,

or not all problems are recognized. Thus, taking the given observations into ac-

count, there might still be a set of several explanations for the problem that

occurred. Under the assumption that the modeled dependency network cap-

tures all relations present in the infrastructure and all threats are adequately

taken into account, the correct explanation will always be contained in that set.

We calculate, via abduction, the most probable cause for the current prob-

lem, which is then presented to the user, e.g., the administrator of the IT infras-

1https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html
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tructure. The user can then investigate if it is indeed the source of the problem.

This might require to manually check the availability of some component or

to analyze a log file. If the proposed explanation is correct, counter-measures

can be introduced immediately. If the additional observations revealed that the

calculated explanation is wrong, those new observations are entered into the

system as additional evidence and a better explanation is computed. This iter-

ative, dialog-based process is a practicable approach to quickly narrow down on

a root cause.

In our approach, we represent the given infrastructure and the possible risks

as ontology. This allows us to automatically infer that certain threats are rele-

vant for certain infrastructure components, or add logical constraints ensuring

consistency. Relevant background knowledge can easily be maintained and used

to generate the Markov Logic Network. Moreover, our approach can take into

account known probabilities of risks and failures. These probabilities are de-

rived from expert judgment or statistical data. Instead of computing multiple

candidate explanations, which is possible in purely logic based approaches, we

are able to generate the most probable explanation with our approach, while

still leveraging the full power of an expressive, declarative framework.

This paper is structured as follows. First, we present the theoretical under-

pinnings of our approach. In Section 2, we give a brief description to Markov

Logic, introduce the general notion of abduction, and explain how abduction can

be realized in the context of Markov Logic Networks. Furthermore, we give a

short introduction to ontologies and their benefit in modeling IT infrastructures.

In Section 3, we first present a typical scenario for root cause analysis. Then,

we show how to model this scenario in our framework and describe how to apply

abductive reasoning to find the most probable root cause. We present a work-

flow that illustrates how our approach is used in the context of a dialog-based

process in Section 4. Furthermore, we conduct the evaluation of the scalability

of the approach in Section 5. A tool we implemented to support the user in

modeling the infrastructure and running a root cause analysis is presented in

Section 6. In Section 7, we show how our approach is related to other works.
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Finally, we discuss the drawbacks and benefits of our approach, and point out

directions for future work in Section 8.

2. Theoretical Background

This section first describes First-Order Logic and Markov Logic Networks.

Then, we explain abduction and its concrete implementation in the context of

Markov Logic Networks.

2.1. First-Order Logic

First-order logic (FOL) is used do describe and reason in a domain of

discourse. Syntactically, it consists of: constants C = {c1, ..., c|C|}, variables

V = {v1, ..., v|V|}, predicates R = {r1, ..., r|R|}, functions F = {f1, ..., f|F|}, and

logical operators (∀,∃,∧,∨,→,↔,¬, (, ),≡). A term t can either be a variable v,

a constant c, or a function of terms f(ti, ..., tj). An atomic formula (or simply

atom) is a formula that contains no logical connective, i.e. it consists of a single

predicate. A general formula is created by connecting multiple atoms. If an

atom contains no variables we call it a ground atom; if a formula contains no

free variables (i.e. only constants and variables bound by ∀ or ∃), we call it a

ground formula.

The semantics of a first-order logic is given by an interpretation. Intuitively,

an interpretation assigns real-world objects present in the domain to the syn-

tactic constructs described above. This way, every term is also assigned a truth

value, e.g. an atomic formula is true if a relation as identified by the predicate

exists (or can exist) between the specified constants and variables.

A small example FOL model is the following simple description of relations

between persons and their hobbies:

person(Alice) person(Bob) person(Eve)

friends(Alice,Bob)

hasHobby(Alice,Football)

friends(x, y) ∧ hasHobby(x, z)→ hasHobby(y, z)

(1)
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The model contains the constants Alice, Bob and Eve, variables x, y and z, the

predicates friends and hasHobby and the logical operators ∧ and →. It states

that Alice and Bob are both persons and friends, Eve is a person, Alice has

Football as a hobby, and that individuals who are friends have the same hobbies.

From this model it can be inferred that Bob also has the hobby Football.

2.2. Markov Logic Networks

Markov Logic Networks (MLN) generalize first-order logic and probabilis-

tic graphical models by allowing hard and soft first-order formulas [4]. Hard

formulas are regular first-order formulas, which have to be fulfilled by every

interpretation. An interpretation is also referred to as a possible world. Soft

formulas have weights that support (in case of positive weights) or penalize (in

case of negative weights) worlds in which they are satisfied. The probability

of a possible world, one that satisfies all hard formulas, is proportional to the

exponential sum of the weights of the soft formulas that are satisfied in that

world. This corresponds to the common understanding of Markov Networks as

log-linear probabilistic models [4].

MLNs are a template for constructing Markov Networks. A formula is called

a grounded formula if all variables have been replaced by constants. Given a

set of constants, a Markov Network can be generated from the MLN by com-

puting all possible groundings of the given formulas. Due to the closed world

assumption, the domain of interest consists of only those entities that are de-

fined by specifying the set of constants. An atom is a formula that consists of a

single predicate. A possible world corresponds to a set of ground atoms, which

is usually a small subset of all possible groundings.

Furthermore, in some implementations for inference predicates can be de-

fined as being either observed or hidden (unobserved) and get assigned some

type. For an observed predicate, only explicitly stated groundings are allowed

and considered to be true, whereas for hidden predicates, any grounding with

the given constants can be generated. Typing allows to restrict the possible con-

stants for grounding a predicate to subset. Both techniques are used to restrict
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the number of possible groundings and thus the effort needed for inference.

Revisiting the previous example about persons and hobbies, if all predicates

were untyped and hidden the following is an excerpt of a possible world:

person(Alice) person(Bob)

person(Eve) person(Football)

friends(Alice,Alice) friends(Alice,Bob)

friends(Alice,Eve) friends(Alice,Football)

. . .

hasHobby(Alice,Football) hasHobby(Alice,Bob)

. . .

(2)

With no further restrictions, Alice, Bob, Eve and Football would all be per-

sons, friends and have each other as hobby. Some of those groundings, like

hasFriend(Alice, Football), do obviously not make sense. By restricting person

and friends to be observed and typed to only persons, and hasHobby to be typed

to person and the newly introduced predicate hobby, the same possible world is

reduced to this:

person(Alice) person(Bob)

person(Eve) hobby(Football)

friends(Alice,Bob) hasHobby(Alice,Football)

hasHobby(Bob,Football) hasHobby(Eve,Football)

(3)

Eve still has the hobby Football despite having no friends, but the overall number

of groundings is greatly reduced. By making friends(x, y) ∧ hasHobby(x, z) →

hasHobby(y, z) a soft rule with positive weight and adding the rule hasHobby(x, y)

with a negative weight we can also discourage worlds with additional hasHobby

groundings.

Formally, an MLN L is a set of pairs 〈Fi, wi〉, where Fi is a first-order logic

formula and wi is a real numbered weight [4]. The MLN L, combined with a

finite set of constants C = {c1, c2, . . . , c|C|}, defines a ground Markov Network

ML,C as follows [4, p. 113]:
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1. ML,C has one binary node for each possible grounding of each

predicate in L. The value of the node is 1 if the grounded atom

is true and 0 otherwise.

2. ML,C contains one feature for each possible grounding of each

formula Fi in L. The value of this feature is 1 if the formula

is true, and 0 otherwise. The weight of the feature is the wi

associated with Fi in L.

Generally, a feature can be any real-valued function of the variables of the

network. In this paper we use binary features, essentially making the value of

the function equal to the truth value of the grounded atom.

The description as a log-linear model leads to the following definition for the

probability distribution over possible worlds x for the Markov Network ML,C :

P (X = x) =
1

Z
exp

(∑
i

wini(x)

)
(4)

where Z is a normalization constant and ni(x) is the number of true groundings

of Fi in x.

When describing the MLN we use the format 〈first-order formula,weight〉.

Hard formulas have infinite weights. If the weight is +∞ the formula must

always be true, if the weight is −∞ it must always be false. A soft formula with

weight 0 has equal probabilities for being satisfied in a world or not.

There are two types of inference with Markov Logic: maximum a posteriori

(MAP) inference and marginal inference. MAP inference finds the most prob-

able world given some evidence. It does not compute probabilities of variables

but the world with the highest overall probability for its variable assignment.

Marginal inference computes the a posteriori probability distribution over the

values of all variables given some evidence. In other words, it calculates the sum

of the probabilities of all the worlds in which a given variable is true. Note that

the single most probable event does not have to be included in the overall most

probable world. We are interested in MAP inference, as we want to determine

the world with the most probable explanation for a failure.
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The following example shows a small, simple MLN with some constants and

how MAP inference is conducted. First we define all predicates with their types

(i.e. predicate(type)) – observed predicates are prefixed with an asterisk (*).

*person(person) *hobby(hobby)

*friends(person, person)

hasHobby(person, hobby)

(5)

The MLN consists of the following (soft) rules that were introduced before:

〈friends(x, y) ∧ hasHobby(x, z)→ hasHobby(y, z), 1〉 (6)

〈hasHobby(x, y),−0.1〉 (7)

We provide the network with these facts about persons, hobbies and the known

relationships between those:

person(Alice) person(Bob)

person(Eve) hobby(Football)

friends(Alice,Bob)

hasHobby(Alice,Football)

(8)

In the grounding step all possible combinations of constants are assigned to

the hidden predicates (in this case only hasHobby) and it is checked whether

the grounding satisfies all hard formulas. Note that not using any constant is

also a valid grounding, resulting in an empty world. Those combinations of

constants and assignments to hidden predicates that fulfill all hard formulas are

the possible worlds. The weight of a possible world is calculated by counting

how often a soft formula is fulfilled therein and multiplying the count with

the formulas weight. Assignments that where already present are usually not

counted (they would however be present in every possible world and thus only

add a constant value to each). The four possible worlds and their weights are
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shown below:

hasHobby(Bob,Football)

hasHobby(Eve,Football)

 ∑
wi = 0.8 (9)

hasHobby(Bob,Football)
∑
wi = 0.9 (10)

hasHobby(Eve,Football)
∑
wi = −0.1 (11)

—
∑
wi = 0 (12)

For example the first world (Formula 9) has a weight of 0.8, as it fulfills Formula

6 once and Formula 7 twice. The second world (Formula 10) fulfills the Formulas

6 and 7 once, resulting in a weight of 0.9. Formula 10 is also the result of MAP

inference, as it has the heights weight of all possible worlds.

2.3. Abduction in Markov Logic Networks

Abductive reasoning – or simply abduction – is inference to the best expla-

nation. It is applicable to a wide array of fields in which explanations need to

be found for given observations, for example plan or intent recognition, medical

diagnosis, criminology, or, as in our approach, root cause analysis. According

to [5], abduction is usually defined as follows [6]:

Given: Background knowledge B and a set of observations O, both formulated

in first-order logic with O being restricted to ground formulae.

Find: A hypothesis H, also a set of logical formulae, such that B ∪H is con-

sistent and B ∪H ` O.

In other words, find a set of assumptions (a hypothesis) that is consistent with

the background knowledge and, combined with it, explains the observation. It

is the opposite of deductive reasoning which infers effects from cause.

The relation between root cause analysis and abductive reasoning is rather

straightforward. In our approach, the background knowledge is the dependency
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network, respectively the Markov Logic Network to which we transform it. The

dependency graph and Markov Logic Networks both are based on first-order

logic as a formalism and thus conveniently are already in the desired logical

representation. The observations, i.e., information about components being

available or unavailable, are not part of the model but rather are directly pro-

vided as evidence to the MLN. We then try to prove through abduction that a

specific threat – the most plausible cause – has occurred.

The inference mechanism in Markov Logic Networks is by default deductive,

not abductive. Deductive reasoning draws new, logically sound conclusions from

given statements. Kate et al. and Singla et al. [5, 7] proposed methods – Pair-

wise Constraint (PC) and Hidden Cause (HC) model – that adapt Markov Logic

Networks to automatically perform probabilistic abductive reasoning through its

standard deductive reasoning mechanism. Their method augments the clauses

of the MLN to support abductive reasoning as defined above. In general, the

methods first introduce a reverse implication for every logical implication al-

ready present in the network. For example, if there are formulas p1 → q, . . .,

pn → q in the MLN, the formula q → p1 ∨ . . . ∨ pn is added to the MLN.

In a second step the model is extended with mutual exclusivity constraints

that bias the inference against choosing multiple explanations. The reverse

implications and the mutual exclusivity clauses are modeled as soft rules and

may occasionally be violated, for example, if multiple explanations provide a

better proof for the hypothetical root cause than a single explanation. We

follow this basic idea, however, we argue that the mutual exclusivity constraints

are not required in the application that we are interested in.

Revisiting the example above, we have to add the following reverse implica-

tion to conduct abductive reasoning:

hasHobby(y, z)→ friends(x, y) ∧ hasHobby(x, z) (13)

This implications ensures that any additional grounding from hasHobby(y, z )

has some corresponding atoms friends(x, y) and hasHobby(x, z ) or is forbidden

otherwise.
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2.4. Knowledge Representation with Ontologies

An ontology can be understood as a logical representation of a domain model.

The advantages of such domain models include enabling the sharing of knowl-

edge, the re-use of knowledge, and the better engineering of knowledge-based

systems with respect to acquisition, verification and maintenance [8]. Especially

for large IT infrastructures all of these task are highly relevant, because an IT

infrastructure is often not designed from scratch but has evolved in a dynamic

way from legacy IT systems or has been iteratively extended to satisfy growing

requirements. Moreover, the knowledge about the whole infrastructure is often

distributed across several departments and employees.

There are several logical languages that can be used to define ontologies.

One of the most important formalisms is the family of description logics [9]

(DL), which is based on a well-defined model-theoretic semantics. The core rea-

soning problems for DL languages are (usually) decidable, and efficient decision

procedures have been designed. A logical formalization that is built on top of

a well-defined semantics has several advantages. One of these advantages is the

possibility to exploit reasoning capabilities. Reasoning can be used to detect

inconsistencies in the model of the IT infrastructure. This helps both the task

of acquisition and maintenance by automatically detecting potential mistakes.

As shown in [10] it is possible to automatically convert an ontological represen-

tation of a basic DL dialect into a set of (weighted) first-order formulas that

form the building blocks of a Markov Logic formalization. We will use a similar

approach to create a Markov Logic Network from an ontological representation

of an IT infrastructure.

The idea to use ontologies for modeling IT infrastructures has been proposed

for several reasons. Vom Brocke at el. [11] propose the use of ontologies to model

the relationship between IT resources and business processes for the purpose of

measuring the business value of IT. Ekelhart et al. [12] provide a security on-

tology to support small and medium sized businesses IT-security risk analysis.

Within our work we are distinguishing between acquisition, verification and

maintenance on top of an ontological representation, and the probabilistic rea-
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soning using Markov Logic Networks. This means that our work is compatible

with the previously mentioned proposals, while we are able to conduct proba-

bilistic reasoning required for root cause analysis. Thus, we can leverage the

task-specific benefits of both formalisms.

3. Root Cause Analysis with Markov Logic Networks

Root cause analysis is the task of finding the underlying cause of an event. It

is often applied to analyze system failures. System failures are commonly caused

by a cascade of events. The goal of a root cause analysis is finding the original

reason for the failure, so that a sustainable solution can be provided [13]. Root

cause analysis typically comprises two phases: the detection of an event and the

diagnosis of the event. In our work, we are concerned with the second phase

and assume that a failure has already been detected.

In this section, we first illustrate the infrastructure of our case study. Then

we show how to model dependencies and risks as a set of first-order formulas.

While this model is the core component for computing the MAP state, which

corresponds to the root cause, we also leverage an ontological model to describe

and maintain the infrastructure, which is then used to automatically construct

some of the relevant dependency and risk assertions as first-order formulas.

Then, we explain how we implemented abduction in our Markov Logic Network

and show special properties of our settings which simplify the general approach

of abductive reasoning. Finally, we explain how the method is integrated in an

iterative process.

3.1. Scenario Setting

In the subsequent sections, we discuss our approach with the help of an

infrastructure shown partially in Figure 1. This small sample revolving around

an office multifunction printer consists of the following components:

• The basic dependency for all components is the Power Supply. The only

risk that can affect it is a general outage.

13



• The Network Switch connects the other components. It only depends on

the power supply; it has multiple risks, e.g. congestion, overheating, or

denial-of-service attack, not explicitly depicted Figure 1.

• The two servers mail.uni-ma and cas.uni-ma each offer one service, i.e.

the Mail Service and an LDAP authentication service. The Mail Service

uses the LDAP service to authenticate users. Both servers are subject

to various threats, e.g. malicious software, DOS attacks, overloading, or

compromise of the system.

• The Office Printer offers three services: Copying, Printing, and Scanning.

It also has various problem sources, e.g. lack of resources or a technical

malfunction.

Copying

Printing

Scanning

Office Printer mail.uni-ma

LDAP

cas.uni-ma

Mail 
Service

Network SwitchPower Supply
Device FailureDevice FailureDevice Failure

Device FailureDevice FailureDevice Failure

Device FailureDevice FailureDevice Failure

Device FailureDevice FailureDevice Failure

Device FailureDevice FailureDevice Failure

Legend

Service

Component

Device FailureDevice FailureThreats

Figure 1: Case Study: Office multifunction printer with multiple risks/threats attached (for

brevity risks are grouped as Device Failure). In this small example we do not consider redun-

dant components, i.e. all edges represent specificallyDependsOn relations.

The threats we are using in our example are defined in the IT-Grundschutz

Catalogues [14, p. 417ff.]:

• Disruption of power supply : Short disruption of the power supply, more

than 10 ms, or voltage spikes can damage IT devices or produce failures

in its operation.
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• Failure of Devices or Systems: No equipment runs infinitely and a hard-

ware failure in an IT device will happen if it runs long enough. Beyond

the damage of the device, the downtime has an effect on the processes

that depend on the device or can even damage other devices, e.g. in the

case of a cooling system.

• Systematic trying-out of passwords: An attacker can gain access to a sys-

tem by discovering the password of the system through systematic trial-

and-error.

• Lack of Resources: If the given resources (for example bandwidth, disk

space or personnel) in an area of the operation are smaller than the current

demand, a bottleneck occurs. This results in congestion and failure of

operation.

• Malicious software: Malicious software tries to execute a process that is

unwanted or damaging for the owner of the device that runs the software.

This includes viruses, worms and Trojan horses.

• Misuse of spanning tree: An attacker can use Bridge Protocol Data Units

(BPDUs) to initialize the recalculation of the switch topology. This can

be used to disrupt the availability of the network.

The IT-Grundschutz Catalogues are a comprehensive collection of threats and

safeguards for various parts of an IT infrastructure2. They are created and

maintained by the German Federal Office for Information Security3, and com-

patible to the ISO 27001 certification4.

3.2. Modeling Dependencies and Risks

The foundation of our root cause analysis is the dependency model. It uses

first-order logic to describe various aspects of the IT infrastructure. Our basic

2https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html
3Bundesamt für Sicherheit in der Informationstechnik (BSI)
4http://www.iso.org/iso/home/standards/management-standards/iso27001.htm
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model uses five predicates:

• specificallyDependsOn(x,y) specifies that component x is specifically

dependent on component y, e.g. the mail service that runs on the mail

server. This predicate does not allow for any redundancy of y.

• genericallyDependsOn(x,y) specifies that component x depends on y.

y may be replaced by some other redundant component. An example is

a server running on the normal power supply vs. some uninterruptible

power source (UPS).

• redundancy(x,y) states that x and y are redundant, i.e. they offer the

same services and can replace each other in the case of failure.

• affectedByRisk(x,y) assigns the risk y to component x, i.e. y is a threat

that endangers the functionality of a component and it can affect x.

• unavailable(x) designates a component x as unavailable, e.g. offline or

not functioning properly.

The distinction between dependencies that allow for redundancy and those that

do not helps to improve reasoning performance. For specific dependencies, no

further checks for redundancies not to be performed in case of a failure and all

dependent components are directly set to be unavailable.

The shown predicates are only one way of modeling the infrastructure; other

predicates are possible. For example, a simple modification are additional types

of dependencies that distinguish between, e.g., power and network connections,

or technical and human errors. This allows for additional constraints to ensure

the consistency of the model, for example by requiring that each component

has at least one power and one network connection. This change can directly

be made and later checked in the ontology that specifies the dependency graph.

The subsequent translation to MLN does not need to be adapted. Another,

more complex example is to model relationships as individual nodes, which

enables the user to specify more details about it, e.g., the probability of a

16



broken network cable. This also requires changes in the rules of the MLN to

account for the additional relationship nodes. However this only needs to be

done once, when deciding to model the infrastructure in this way. It is possible

to mix both modeling approaches, for example to include detailed information

about relationships where available, and ease modeling for the user where it

is not. We chose the predicates as presented for reasons of brevity and easier

understanding.

Formulae 14a to 14f depict the basic MLN program built from those predi-

cates:

〈∀x, y (unavailable(y) ∧ specificallyDependsOn(x, y)

⇒ unavailable(x)),∞〉
(14a)

〈∀x, y (unavailable(y) ∧ genericallyDependsOn(x, y)

∧ ¬∃z (redundancy(y, z) ∧ ¬unavailable(z))

⇒ unavailable(x)),∞〉

(14b)

〈∀x, y (redundancy(x, y)⇒ redundancy(x, y)),∞〉 (14c)

〈∀x, y (redundancy(x, y) ∧ redundancy(y, z)

⇒ redundancy(x, z)),∞〉
(14d)

〈∀x, y (affectedByRisk(x, y)⇒ unavailable(x)),∞〉 (14e)

〈∀x, y ¬(specificallyDependsOn(x, y)

∧ genericallyDependsOn(x, y)),∞〉
(14f)

Formula 14a forbids any world where infrastructure component y is unavail-

able and infrastructure component x is available, if there is a specific dependency

from x to y. Formula 14b is similar to Formula 14a, but phrased for generic de-

pendencies with redundancies. Provided x is generically dependent on y and y

is unavailable, then x is unavailable only if there is no other component z that is

redundant to y and available. Thus, a component is only available if every spe-

cific dependency is available or if at least one redundant component is available

for each generic dependency, respectively. The symmetry and transitivity of re-

dundancy is modeled by Formulae 14c and 14d. By adding these two formulas,
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we ensure that it is not required to specify redundancy for all pairs in both direc-

tions. If we extend an infrastructure with an additional redundant component,

we only need to add a single statement instead of specifying the information

for all pairs in the group of redundant components. Formula 14e enforces that

a component x that is affected by the effects of a risk y becomes unavailable.

The predicates specificallyDependsOn(x, y) and genericallyDependsOn(x, y) are

mutually exclusive (Formula 14f).

The known dependencies, risks, and unavailabilities are modeled as evidence

as shown below. Note that these formulas are only two examples for all formulas

required to describe the infrastructure depicted in Figure 1.

〈specificallyDependsOn(MailService,mail.uni-ma),∞〉 (15a)

〈affectedByRisk(mail.uni-ma,MaliciousSoftware),−1.2〉 (15b)

〈affectedByRisk(mail.uni-ma,DDOS ),−3.2〉 (15c)

Formula 15a is a hard fact, which states that the MailService depends on the

server mail.uni-ma. The soft Formula 15b encodes that mail.uni-ma can be

affected by MaliciousSoftware. This formula has a negative weight, i.e. it trans-

lates to a low probability. mail.uni-ma also has DDOS as a second risk (For-

mula 15c). Generally, there is no upper limit to the number of risks that can

be attached to a component

As described before, the dependency relation must hold in every possible

world. The soft formula, however, is not fulfilled in most of the worlds due to

the negative weight. In fact, if only this evidence is given, the most probable

world does not include it, as it lowers the sum of the weights of all formulas.

Achieving high availability, defined as up to 5 minutes unavailability per

year, is a longstanding goal in the IT industry [15]. Continuous monitoring of

availability is part of IT service management best practices like the Information

Technology Infrastructure Library (ITIL) [16]. We define availability as the

probability that a system is reachable and working properly. The availability of
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a system can be determined as follows:

Availability =
Uptime

Uptime+Downtime
(16)

Unavailability is the inverse of availability:

Unavailability = 1−Availability (17)

The weights for new threats need to be estimated. We propose involving

a domain expert in the estimation of how much the availability of the directly

affected infrastructure component should be reduced. This allows us to learn a

weight for the new threat and to determine how the new threat indirectly affects

the availability of other components.

Determining the correct weight for the evidence is not trivial [17]. However,

there exist efficient learning algorithms for MLNs [4]. Those algorithms can

either work on collected data, for example from monitoring systems that provide

uptime and downtime statistics, or based on estimations from domain experts

or vendor specifications. Additionally, approximating the correct weights is

sufficient in our use case, as we are not interested in the absolute probability of

a specific root cause occurring, but just which root cause is most likely given

some evidence.

3.3. Infrastructure Components and Background Knowledge

Our basic dependency model contains relatively simple first-order rules. The

dependencies within this basic model are ignorant with respect to the types of

the entities that are linked. However, we know that an IT infrastructure is

typically a network built from different types of entities. In particular, the

dependencies between these entities are restricted with respect to their types.

We know, for example, that each server must depend on a power supply, while

it makes no sense to have an explicit dependency between a service and a power

supply. This dependency is indirectly modeled by the fact that a service must

run on a server that depends on a power supply. In our approach, we propose

the use of a Description Logics (DL) ontology to model the types of and the
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relationships between the components of the IT infrastructure. The formulas

of a DL ontology are divided into T-Box axioms and A-Box assertions (see also

[18]). The examples given above will be encoded as axioms of the T-Box. A

T-Box contains terminological axioms that describe the relations and types that

are used (later) in the A-Box to make concrete assertions.

With respect to the A-Box, we have developed a graphical user interface to

specify and visualize the concrete infrastructure. It is used to add components to

the model of the infrastructure that are typed in terms of the T-Box vocabulary.

The user interface, presented in more details in 6, is also used to specify the

observations and to compute a root cause whenever a root cause analysis is

required. In order to define the T-Box, we have used the ontology editor Protégé

to model the T-Box axioms [19]. Protege helps to abstract from the concrete

encoding of the axioms and supports views that are also common to users that

have only a limited experience in logical modeling.

We use the T-Box to distinguish between the different types of infrastruc-

ture components, e.g., Service, Server, Switch, or PowerSupply. For these

types we add axioms to specify both required and impossible dependencies. For

example, we enforce that each service depends (specifically or generically) on a

server, while we do not allow a direct dependency between service and power

supply. These constraints can be used to check the consistency of an A-Box

that uses these axioms. Our user interface can use these reasoning services on

the fly to check after each modification whether the resulting ontology is still

consistent. This helps to detect both errors and missing dependencies during

the knowledge engineering process.

Furthermore, we can use the T-Box to specify concrete subtypes for each of

the main types. An example might be the distinction between FlashMemory,

OpticalDisc, MagneticDisk, and MagneticTape as sub types of StorageCompo-

nent. FlashMemory can again be divided into FlashDrive, MemoryCard and

SolidStateDrive, for example. Note that such a fine-grained distinction is not

required by our approach. The basic dependency model and our tool for defin-

ing the infrastructure works already with very basic types. In the simplest case
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we specify only one type called Component. However, a fine-grained typology

has several advantages. We mentioned already the reasoning capabilities in the

paragraph above. Another advantage is the specification of type specific risks

and their generic probabilities. For example, we can add information about the

failure rate (in the form of a weight) of a specific hard drive model as background

knowledge as follows:

〈(SCSIHardDrive(x) v ∃affectedByRisk.HeadCrash), 0.0015〉 (18)

The hard drive model SCSIHardDrive is described as hard drive that has a

certain risk of a head crash. The probability attached to this formula might

have been derived from available failure rates. Note that we can specify directly

a probability that will be translated to the corresponding weight in Markov

Logic. If required, we can also use the ontology to add further types related to,

e.g., the manufacturer of the drive, since it might be known that drives produced

by a certain company have a lower failure rate. By defining a concrete drive as

instance of this type, it inherits all the properties of this type, i.e. the weighted

risk of a head crash. This helps the knowledge engineer to define the components

of an infrastructure without explicitly specifying each risk and its probability

explicitly.

The ontological representation is automatically translated to the first-order

Markov Logic formalization on the fly whenever a root cause analysis is com-

puted. Niepert et al. [10] have shown that such translation is possible in general.

For our purpose we have chosen a similar approach, however, type assertions

and T-Box axioms are not directly translated but are taken into account when

associating risks with their weights to concrete components of the infrastructure.

3.4. Computing Explanations

We now detail our approach and describe how the Markov Logic Network is

constructed and extended, and how we use abductive reasoning for root cause

analysis. The construction from background knowledge and extension for ab-

duction of the Markov Logic Network is only done once and does not have to be
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changed during the root cause analysis. According to the method proposed in

[5] we have to add one reverse implication for the Formulae 14a, 14b, and 14e:

∀x (unavailable(x)

⇒ (∃y (specificallyDependsOn(x, y) ∧ unavailable(y))) ∨

(∃y (genericallyDependsOn(x, y) ∧ unavailable(y)

∧ ¬∃z (redundancy(y, z) ∧ ¬unavailable(z)))) ∨

(∃y (affectedByRisk(x, y)))

(19)

Additionally, Kate et al.s’ method requires clauses for mutual exclusivity to

be added. The purpose of these clauses is to ”explain away” multiple causes

for an observation and prefer a single one [20]. The reverse implications as

well as the mutual exclusivity clauses are usually modeled as soft clauses. In

general, for each set of reverse implications Pi with the same left-hand side,

( |Pi|2+|Pi|
2 ) ∈ O(n2) mutual exclusivity clauses are added.

However, different from networks in that general method, our approach ex-

hibits a property that simplifies the additional rules needed for abduction: All

the weights in the evidence are negative – based on the reasonable assumption

that threats and risks only occur rarely, i.e. components are available more than

50% of the time. This property allows us to reduce the size of the Markov Logic

Network by leaving out the mutual exclusivity clauses completely: Due to the

reverse implication, the MLN solver has to chose one cause to make the clause

true. However, as all causes have negative weights and thus every cause set to

true is lowering the sum of the weights of a possible world, the solver is already

biased against choosing multiple explanations. This saves us from generating

the quadratic number of mutual exclusivity clauses.

After constructing and extending the Markov Logic Network, we can con-

duct the root cause analysis. The overall process flow of our approach is de-

picted in Figure 2. The analysis is a dialog-based and iterative process, with

interaction between our system and an administrative user. A fully automatic

workflow is desirable, however, not every information can be retrieved directly

and sometimes manual investigation of log files or on the status of components
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is necessary.

Figure 2: Process flow for our approach on root cause analysis. Rectangles denote automatic

action. Trapezoids require manual interaction by an administrative user. Clouds represents

observations made and entered by a user.

In its normal state, without any hard evidence about availabilities or unavail-

abilities, all components are assumed to be available. Thus, when calculating

the MAP state, it contains all components as available. When a problem occurs

the user is required to provide observations as evidence for the MLN (Fig. 2:

Step 1). These observations include any certain information about available

and unavailable components. At least one unavailability must be specified to

run the root cause analysis, however, providing more information is possible

and will increase the accuracy of the analysis. For example, the user can enter

that printing (over the network) is not possible, although the network is func-

tional as browsing the internet still works. This results in hard evidence for the

printing service being unavailable and network services and hardware required

for internet access being available. The presented model only supports hard

evidence about available and unavailable components. It is possible to extend

this to also allow soft evidence – e.g. when availabilities are checked automati-

cally and there is some probability for error – handled similarly to information

about threats. However, this will also have some impact on the performance of

the approach, as unavailabilities are not just promoted through the dependency

graph, but also influence the weights when calculating the MAP state.

Our approach extends the Markov Logic Network with the new evidence

(Fig. 2: Step 2) and uses an MLN solver to run MAP inference on it (Fig. 2:
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Step 3). The calculated MAP state contains the evidence provided by the user

(this must be always fulfilled), components being unavailable due to a direct or

indirect dependency on components observed as not available, and (at least) one

root cause that explains the unavailabilities. Components which are not affected

by specified observations or the calculated root cause are listed as available.

The root cause fulfills the following properties:

• It explains all unavailabilities in the evidence. This is the case due to the

additional reverse implications.

• It is not affecting any component stated as available in the evidence. Oth-

erwise a hard rule would be violated.

• It is the most probable cause for all the observations given as evidence

and the risk probabilities specified as weights.

We make the assumption that all causes are unlikely (they appear less than

50% of the time). Thus, their weights are negative. As the objective of the

MAP state is maximizing the sum of all weights, only the most likely cause that

explains all observations is included. A less likely cause has a higher negative

weight, causing the sum of the weights to be lower than optimal, and thus

getting rejected.

Note that due to the soft formulas used for abduction, our approach only

encourages to calculate a single root cause, but does not enforce it. It only

presents multiple possible root causes, if the sum of their weights is less than

the weight of a single possible cause. If there are two possible root causes with

the same weight, only one is presented at random.

The user then has to investigate the presented root cause (Fig. 2: Step 4).

If it is the source of the observed problem, the analysis is finished and the cause

can be fixed. Otherwise the process starts over from the start where the user

enters additional observations (Fig. 2: Step 5). Those new observations can

either be gathered while investigating the proposed root cause, or, for example,

the user can verify the state of components that should also be affected by this
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cause.

In contrast to an approach based for example on Bayesian networks the pro-

posed root cause of the MAP state does not have a probability, but rather a

probability is assigned to a state of the infrastructure (possible world). Subse-

quently, it is also not necessarily the cause with the highest overall probability,

but it is the one best explaining all observations. This case most often occurs

if an outage is caused by more than one root cause.

3.5. Limitations

Limiting factors for our approach is the expert knowledge required to build

the background knowledge, and the worst-case performance of inference. Model-

ing the background knowledge requires good domain knowledge and experience

in modeling ontologies. Furthermore, the model needs to be sufficiently com-

plete to gain valuable results from the root cause analysis, as the approach is

very fragile in the case of modeling errors. For example, if some critical, yet

subtle, dependency is missed, the analysis might never provide any meaningful

results. Many modeling errors can be checked with logical rules (e.g. every hard-

ware component must be connected to a power source), but paying attention

to capturing the infrastructure correctly and completely is of high importance.

This factor is less relevant in companies that already use semantic technologies

for IT infrastructure management, for example as presented in [21, 22]. This

data can directly be used, mostly likely with only minor adjustments.

Another limitation is the worst-case complexity of MAP inference, which is

NP-complete. However, there are efficient approximation algorithms for MAP

inference (cf. [23] for a survey on different approaches), and as shown in Sec-

tion 5 this is rarely an issue in realistic infrastructures.

4. Exemplary Scenarios

The following section describes the application of our approach to three

different scenarios. Those scenarios represent incidents that occurred in our in-

frastructure, which we then analyzed in hindsight with the presented approach.
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4.1. Scenario Analysis

The following three scenarios illustrate failures that occurred in our IT in-

frastructure. Together with our system administrators, we modeled our infras-

tructure, analyzed these scenarios in hindsight, and tested the usefulness of our

approach in retrospective. We used RockIt [24], a highly optimized and scalable

MLN solver, to compute the MAP state.

4.1.1. Scenario 1

The first scenario is the one depicted in Figure 1, revolving around the

malfunction of our office multifunction printer. The printer offers three services:

copying, printing via the network, and scanning to PDF which is then sent to an

email address. A user reported the printer being broken, as scanning to PDF no

longer worked. To check the proper functioning of the device, the administrator

sent a print job and did a photocopy. Both tests worked successfully. Sending

a test mail from his own account, the administrator also found the mail service

working correctly. Further investigation finally revealed that the root cause of

the scanning problem was a suspension of the account the printer used for the

LDAP authentication. However, this cause was only considered after several

discussions with two expert administrators involved.

We applied our approach to this scenario. The MLN was constructed au-

tomatically from the background knowledge that we maintained as a set of

first-order formulas. We enter the observations available(PrintService), avail-

able(CopyService), and ¬available(ScanService) and computed the most prob-

able root cause. The MAP state that was generated as solution contained

the root cause affectedByRisk(cas.uni-ma, Systematic trying-out of passwords).

While we could not definitely decide, in retrospective, if this risk was the under-

lying reason for the failure of the server cas.uni-ma, an authentication problem

related to cas.uni-ma was definitely the cause for the problem.
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4.1.2. Scenario 2

The second scenario is an outage of our internal Subversion server. It involves

more components than the previous scenario and benefits from the iterative ap-

proach. The Subversion server is hosted on a virtual machine that is running

on a blade server. Subversion was responding slowly and took long time for

many operations. Neither Subversion nor other processes on the virtual ma-

chine showed considerable resource utilization. Investigating resource usage on

the blade server first did not reveal any abnormality. Later, a user discovered

that our external website behaved similarly in performance as the SVN. This

observation was first attributed to a slow Internet connection in general, but we

then discovered that the web server, which was hosted in a different VM but

on the same blade server, produced very high network traffic, starving all other

services. A member of our group had released a data set of several gigabytes in

size, that was downloaded a few hundred times concurrently. That lead to con-

gestion on the network interface of the server. Moving the download to another

physical server resolved the problem and the behavior of the Subversion server

and our website went back to normal.

Analyzing this scenario with our approach, first, we only entered the ob-

servation of the unavailability of the SVN service: ¬available(Service SVN).

The computed MAP state proposed affectedByRisk(VM Subversion, Overload)

as root cause. After ruling out this cause by adding the observations avail-

able(VM Subversion) and ¬available(Service WebHosting), the result of the com-

putation was affectedByRisk(NetworkInterface BladeServer, Congestion) as root

cause. This risk has a high probability for that server which is running various

other virtual machines, all hosting services sensitive to a high network load. The

lack of other resources, e.g. CPU or RAM, is modeled as less probable, because

all those services are usually not very computational complex or requiring lots

of memory. For this scenario, our approach proposed reasonable root causes

which we retrospectively could verify as the reason for the outage. The manual

handling of the incident involved more guesswork by the system administrators
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and was long winded.

4.1.3. Scenario 3

The third scenario is the most complex of the presented. A very simplified

graph of the involved infrastructure is shown in Fig. 3. The infrastructure spans

Figure 3: Very simplified depiction of the third scenario. It involves four infrastructures in

different physical locations; three of those maintained by universities and one by an external

service provider. Arrows indicate some dependency between the components. The red-shaded

lightning marks the first observed error at the SVN server; the full-red lightning at the external

storage marks the actual root cause.

four physical locations. We will only describe the parts which are relevant for the

analyzed scenario at hand. The complete infrastructure is much more complex

than can be shown here.

At our chair we directly host some services like an internal Subversion server

(SVN) or a Wiki. They rely on a network file system (NFS) as storage, hosted

at the computing center of the University of Mannheim, and deployed as one of

many virtual machines in VMware. Most of the storage required by VMware

is provided in turn by a central storage system located at the University of

Heidelberg. Due to external cooperations, some of that central storage is also

provided and hosted by an external company. To VMware, the different storage

locations are presented as one homogeneous service.

In the analyzed scenario, the power at the external storage provider was

switched off due to a short, planned maintenance. Servers and other hardware
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critical for the services were running at backup power. The air conditioning

required for a sustainable operation of the servers does not have a backup. This

was known and should not have created problems during a short maintenance,

thus no outage of the service was expected and no warning for the possibility of

one given. However, maintenance on the power line took longer than expected

and subsequently resulted in the storage system shutting down because of over-

heating. This caused the first error observed at our chair: the Subversion server

being unresponsive.

The diagnosis of the root cause by our administrators was difficult for two

main reasons: First because of the overall infrastructure being large and complex

in general, and second because they were not aware of the additional storage

from the external provider.

The ad-hoc, manual search for the cause of the outage started just locally

at our chair. It roughly took the following course:

1. Checking whether the local network was up and the virtual machine of

the SVN server running.

In that course the administrators discovered that our web server was also

down; both servers due to their storage not being able to mount.

2. Checking the network connection to the computing center of the University

of Mannheim

3. Verifying that the NFS server was running.

From this point on, more people needed to be involved as it was unclear

why the storage could not be mounted albeit NFS running. Additionally,

it was unknown to the administrative staff in Mannheim, that there is

another external storage provider.

4. Checking the network connection to Heidelberg and inquiring about the

central storage system.

There it was uncovered that there is a problem with the external provider.

5. Investigating at the provider revealed the unforeseen maintenance prob-

lems as root cause of the outage.

In general a manual ad-hoc diagnosis involved a breadth-first-like search pattern,
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and involvement of multiple people in all locations was required to identify the

root cause. Without proper tool support that incorporates infrastructure and

dependencies, the search was lengthy and undirected.

After modeling the scenario in our approach and searching for a root cause

we found the following advantages over the ad-hoc search:

• Generally, our method favored to directly check services instead of hard-

ware. This is due to services having a slightly higher rate of failure than

hardware because of bugs, configuration errors, overload/denial of service,

etc.

This led to a slightly more directed search than the breadth-first pattern

before.

• The unified that the modeled ontology provided made it easier to collab-

orate between the different locations, and it also improved the search by

including information about known running services.

• When the maintenance was added as an additional threat, even with an

average probability, our method very quickly narrowed it down as a poten-

tial root cause, as it explains the various outages in all university locations

well. Note that still our local administrators need not have directly be

aware of that maintenance being ongoing. Having this information added

by staff in Heidelberg would be sufficient.

This scenario also shows well how our approach goes beyond the analysis of

network failures, and also covers dependencies between e.g. services.

5. Evaluation of Scalability

We evaluated the scalability of the approach by automatically generating

infrastructures of different sizes. The data generator was carefully modeled to

inherit properties observed in real-world scenarios. We then simulated differ-

ent numbers of root causes and observed offline components. We applied our

approach to compute the root causes and measured the runtime.
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5.1. Data Generation

As manually modeling infrastructures of various sizes to evaluate the scala-

bility of the presented approach is not feasible – due to data not being publicly

available and the effort required in modeling – we implemented a data generator

that can create random infrastructures of any size. To create models which are

close to real-world scenarios, we also discussed general properties of IT infras-

tructures with the experts when recording the scenarios described above, and

include this knowledge in the design of the generator. We made the following

observations which are reflected in the implementation:

The dependency graph of an IT infrastructure has usually a limited depth:

the basic layers of an infrastructure are power sources, network components,

server, and services. Power sources are located at the bottom layer without

any dependencies to other components. Network components could technically

be layered very deep, however instead of cascading several small switches and

routers to connect many devices, generally a bigger switch is used, e.g. resulting

in 16 million possible devices with a cascade of 64-port switches of depth 4. In

our model servers rely on power sources and switches. Each server can offer ser-

vices that depend on each other. Dependencies between services are naturally

the most complex of the whole infrastructure. They can be layered over multi-

ple services, e.g. starting from a low-level SAN service (storage area network)

providing storage, over a virtualization using the SAN, a virtual server offering

for example an LDAP service to the mail server using that for authentication.

The dependency chain can become slightly longer by having another service

providing email notifications and probably one or to more services offering even

higher level operations, but in reality there is a limit to that depth. This com-

plex example has a depth of 13; to provide some room for even more complex

scenarios we imposed a limit of 16 to the maximum depth for the infrastructure

the generator can create.

Another observation that already becomes obvious in this small example,

is that there are some services that are very central, like the storage (SAN)

or authentication via LDAP which are used by almost all other services, and
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services that are used by few others, e.g. printing, which might only be used by

persons (which are not part of the model). We factored this into the generation

by drawing the possible dependencies from a normal distribution. For example,

following from the three-sigma rule of thumb that nearly all values are within

three standard deviations of the mean (Pr(µ− 3σ ≤ x ≤ µ+ 3σ) ≈ 0.9973), we

draw from a normal distribution with µ = 500 and σ = 500
3 for an infrastructure

of size 1000, or more general: for an infrastructure of size n we have µ = n
2 and

σ = n
6 ≡

µ
3 . Additionally, the following constraints must hold:

1. Every network component and server is connected to exactly one power

source.

2. Every network component and server is connected to one other network

component or the root network component (e.g. representing some central

switch or external internet connection).

3. Every service is running on exactly one server.

4. Every server is running some service (a server without offering a service

is of no use).

5. A switch has ≈ 32–64 connections.

6. A server offers ≈ 1–3 service.

7. A service directly depends on ≈ 1–3 other services.

8. Every component has ≈ 1–6 risks attached to it.

9. Risks have a probability 0 < p < 0.5, following a normal distribution with

µ = 0.1 and σ = 0.05.

Offline components were then defined by first choosing one or two root causes

and determining all of their dependent components. Then for different datasets

we picked one to five of those and marked them as offline in the model. This

way calculating the root cause is more similar to real-world scenarios, where the

component observed as offline is often not the real cause of the problem.

5.2. Scalability Results

We ran the approach 10 times for each size of the dataset and different

amounts of errors. The average runtime and its standard deviation are shown
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in Table 1. Having different numbers of root causes and observed offline compo-

nents had no significant impact in the runtime, thus we omitted those datapoints

and only report the numbers aggregated by size.

Dataset Size Avg (sec) StDev (sec)

1000 1.13 0.10

10 000 8.89 1.40

100 000 112.58 15.43

Table 1: Average runtimes on infrastructures of various sizes

The results for different sizes of infrastructures are not calculated in real-

time. However, two minutes for the largest dataset is still a reasonable amount

of time to wait for results.
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Figure 4: Runtimes on Infrastructures of various sizes

More importantly, the scalability of the approach is linear in the number

of components which is a very favorable result, given the complexity of the

calculation, as is apparent in Figure 4. This is mainly explained by the relatively

simple structure of dependency graphs for IT infrastructures which are mostly

tree-like, e.g. without circular dependencies, and do not exhibit the complex
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patterns for which MAP inference is NP-complete.

6. Tool Support

We implemented our approach in an open-source tool called RoCA. A screen-

shot of the user interface showing the clipping of a small dependency graph and

the observations provided by the user is presented in Figure 5. It shows a CMS

service that is running on two redundant Apache web servers, the Mail service

running on some New server, and a Printer. All of those depend on some not

shown network connection and power source. A user provided evidence about

the CMS not working (depicted in red), but the printer being functional (green)

– for the other components the status is unknown. The graphical user interface

vastly increases the usability of our method, as a user does not need knowledge

about logical first-order formulas, Markov Logic Networks, or ontologies for en-

tering evidence or running a root cause analysis. The tool and its source code

Figure 5: Screenshot of the visual representation of the dependency network and provided

evidence (green and red) about the availability of components.
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are freely available for download.5

6.1. Required Data

The required data to run a root cause analysis is the background knowl-

edge and the dependency graph with evidence about available and unavailable

components.

RoCA uses the ontological representation that we described above as back-

ground knowledge. Usually, the ontology is defined once and represents the

vocabulary used to describe the IT infrastructure. Modeling it is a one-time

effort and it requires only infrequent changes, e.g. when new types of compo-

nents, like solid-state drives in recent years, emerge . In its T-Box, the ontology

defines the available types of components and possible relations between those.

It also defines the association between types and icons shown in the user inter-

face of RoCA. Whenever a user adds a new component, he has to select one of

the types defined in the ontology. Thus, RoCA is highly customizable and not

tied to a predetermined vocabulary. This eases the integration with modeling

styles that are already in use within the organization, e.g., the terminology of

the configuration management databases. As described earlier, relations can be

constraint to be only allowed between certain types of components, to enforce

a consistent model. A very popular tool for designing and modeling ontologies

is Protégé [19]. It provides customizable user interface to design and model

ontologies. It also offers connections to reasoner for checking the consistency of

the built ontology.

The dependency graph can be stored in the A-Box of the ontology. If no

dependency graph is specified, the user is presented with an empty model and

can create a new graph there. Extending a graph loaded from the A-Box is also

possible.

5https://github.com/dwslab/RoCA
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6.2. User Interaction

User interaction with RoCA occurs in two different scenarios: when modeling

the infrastructure as dependency graph, and when conducting a root cause

analysis after an incident occurred.

When modeling the user can choose from components and relations specified

in the background knowledge. Components and relations between them can be

arrange by drag&drop or an automatic layout algorithm. The user can freely

assign names for each component and the a priori weight in a details dialog. A

first-order logic reasoner, e.g. Pellet [25] or HermiT [26] can check the finished

model for consistency. The model can be saved and also exported as graph.

When an incident occurs, the user can load the previously created model

and enter observations about available (marked as green) and unavailable (red)

components. There can be entered any number of observations. In our example

screenshot (Fig. 5) we have marked the components CMS as active (green) and

Printer as inactive (red), while we have not specified any information related to

the component Mailserver. If there is no information about some component,

it is simply left as unknown. Once these observations have been specified, the

user can run the root cause analysis directly from the interface and the most

probable root cause is presented. By inspecting the most probable root cause

and all assumptions that are entailed, the user might agree on the proposed root

cause or might specify additional observations as shown in the workflow shown

of Figure 2.

7. Related Work

Related work can roughly be divided into two parts: Approaches also con-

ducting root cause analysis, but using a different method; and approaches using

probabilistic frameworks for abductive reasoning, yet not in the context of root

cause analysis.
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7.1. Root Cause Analysis

In previous work, failure diagnosis is conducted using correlation measures.

A specific correlation measure for failure diagnosis is presented in [27]. The

approach uses anomalies in the timing of program calls to trace the real root

cause of an event. The anomalies are aggregated to give an anomaly score for

each component. The scores are correlated within their architectural level to

determine an anomaly ranking, which expresses the likelihood that a component

is the root cause of a failure. A method for failure diagnosis using decision trees

is proposed in [28]. The decision tree classifies the successful as well as failed

requests. A correlation of paths in the decision tree with occurred failures

indicates the node that represents the likely root cause.

In [29] an approach for requirements-driven root cause analysis for failures

in software systems is proposed, wherein a Markov Logic Network is used as

knowledge repository for diagnostic knowledge. The approach uses log data

as observation information, the Markov Logic Network is used to deal with

uncertainty stemming from incomplete log data. Their approach differs from

ours in several points: they first model the background knowledge as goal trees

and only convert it to first-order logic later; the evidence is solely generated

from log data; and most importantly they use marginal inference, different to

our approach which uses MAP inference. In [30] marginal inference was also

used for the purpose of estimating unavailabilities in an IT infrastructure, where

the authors referred to problems when marginal inference is applied to very

low probabilities usually attached to the occurrence of risks in an IT setting.

These problems are based on the use of sampling algorithms for performing

marginal inference, as exact inference is infeasible Our approach is based on

solving an optimization problem, which is not affected negatively by very small

probabilities.

The Shrink tool [31] uses a Bayesian Network to model the diagnosis prob-

lem. It extends previous work on fault diagnosis with Bayesian Networks [32], by

proposing a greedy inference algorithm with polynomial running time. Further-

more, Shrink is able to handle noise and small inaccuracies in the observations.
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Heiden et al. [33] developed a system with a similar scope to ours. Their

implementation uses Prolog or answer set programming. It is inferior in two

points: it does not include any probabilities for threats, and it is unclear if it

performs well with more than a few dozen possible threats defined in the model,

or a too complex model overall.

Weidl et al. [34] present a methodology that uses object-oriented Bayesian

networks to determine root causes in complex industrial processes. Although

similar to our approach, its graphical model offers less reusability than the

ontology we use, and some relations (e.g. symmetry relations for redundancy)

are harder and cumbersome to model.

Liu et al. use a simple logical representation in the form of Petri nets [35].

Their method does not include uncertainty and it is unclear how well it scales

to large infrastructures.

7.2. A Detailed Comparison

We have tried to apply the approaches referred to in the previous section

to model and analyze the scenarios mentioned in Section 4. However, we had

to retract from this task for several reasons. In most of the cases the cited

literature described an approach with a focus on its theoretical foundations

without offering a tool that implements the approach. In other cases it is crucial

to understand that we would have to compare apples and oranges because the

proposed techniques cannot be applied to solve the task that we try to solve

with our tool. In the following we will describe these issues in detail.

As mentioned above Heiden et al. [33] propose an approach that is very close

to ours in the sense that it is also based on the idea of abductive reasoning. As

we already mentioned, the approach does not support probabilities for threats

nor does it support probabilities for any another aspect. This means that in each

situation where there are several possible root causes, the approach proposed by

Heiden et al. will not find the most probable cause, but only one of the possible

causes (or all of them). The probabilistic knowledge used in our approach cannot

be expressed within the approach of Heiden et al. While the approach also

38



supports the dependencies we expressed in Formulas 14a to 14f, risk probabilities

that we express in formulas as 15b and 15c, which can be derived from the

statistical data gathered by monitoring systems (see the end of Section 3.2) or

from background knowledge as described in Section 3.3), cannot be expressed

and will thus not influence the computation of the root cause. However, such

information is obviously crucial and will help to distinguish between several

possible reasons for a failure. While the approach of Liu et al. [35] is based on

a completely different formalism, it suffers from the same problems, namely its

incapability to model probabilistic knowledge.

This is different when we look at the systems that are based on Bayesian

Networks and their extensions. This comprises the works of Weidl et al. [34] as

well as the approach implemented in the Shrink tool [31]. The main differences

between our approach and theirs are based in the models used which correspond

to a relational representation for our approach, in contrast to a propositional

representation in Weidl’s et al. In a relational representation, we can easily

write down formulas like 14a to 14f, 18 or 19. These formulas are general

formulas that use variable. This makes it rather convenient to express general

dependencies. Even though the general formulas are finally grounded in order

to compute a most probable root cause, on the representation level we describe

an infrastructure and its dependencies with the help of relations and general

formulas. This is much more complicated in an approach that is based on a

propositional representation. Here we cannot write down a simple formula as

Formula 14. Instead we have to add an explicit edge in the Bayesian Network,

for each possible instantiation of the variables in the formula.

Another major difference is based in the directedness of Bayesian Networks.

When trying to model an IT infrastructure and its potential root causes, the

modeling approach in a directed graphical model will always be guided by po-

tential errors that cause a problem somewhere in the infrastructure. That means

that the development of the network will be guided by the attempt to model

causal relationships. This is not the case in an undirected model that is based

on the observations of correlations without making assumptions about causal
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dependencies. In such a model it is much easier to integrate probabilities that

are gathered by statistical observations.

7.3. Applications of Abductive Reasoning

In [7], Singla et al. extend the approach presented in [5] and use it in the

context of plan and intent recognition. Instead of adding reverse implication,

they introduce a hidden cause for all implications with the same left-hand side.

In general, this reduces the size of the MLN and subsequently increases per-

formance. However, as detailed above, for our approach the mutual exclusivity

clauses are not needed anyway. Nonetheless, if more probable events have to

be included in the evidence, their optimization can also be included in our ap-

proach.

Most other approaches to abductive reasoning either use first-order logic

to calculate a minimal set of assumptions sufficient to explain the hypothesis

[36, 37, 38, 39], or Bayesian Networks to compute the posterior probability of

alternative explanations given the observations [20]. The former approaches

are not able to estimate the likelihood of alternative explanations, as they do

not support uncertainty in the background knowledge or evidence. Bayesian

Networks, on the other hand, are designed to handle uncertainty. However,

as they are propositional in nature, they cannot handle structured knowledge

involving relations amongst multiple entities directly [5].

Bayesian Abductive Logic Programs (BALP) [40] are another approach that

combines first-order logic and probabilistic graphical models. The main dif-

ference to MLNs is that BALPs are based on Bayesian Networks, which are

directed. Undirected relations, like the symmetry of redundancy, are thus more

complex to model. In [41], Inoue et al. describe a system that uses integer

linear programming (ILP) for weighted abduction. They outperform a state-

of-the-art abductive engine (Mini-Tacitus [42]). The MLN solver we use also

transforms the problem internally to an ILP, which is one of the reasons for its

good runtime performance.
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8. Discussion and Conclusion

We presented our approach of applying abductive reasoning using Markov

Logic Networks to compute the most probable root cause for a failure in an

IT infrastructure. Our approach models the infrastructure with the help of on-

tologies. In particular, we formulated the dependencies of the network as hard

formulas. Moreover, we added weighted soft formulas to model the probability

of risks that might result in the failure of components and services. We defined

these risks in accordance to the taxonomy of the IT Grundschutz Catalogues.

Furthermore, we argued how the expressiveness of ontologies can be used to

model general, reusable knowledge concerning risks and IT components. Our

approach uses the same formalism for both knowledge presentation and abduc-

tive reasoning. Thus, all relevant information is readily available to compute the

most probable root cause once an incident occurs. To the best of our knowledge,

there exists no other approach that combines uncertainty and logical abductive

reasoning to solve the problem of root cause analysis. We implemented our

approach in RoCA, a tool providing a graphical user interface for modeling the

infrastructure and conducting the root cause analysis.

We conducted an evaluation of our approach by analyzing two failures that

happened in the infrastructure of our research group. In both cases we were able

to determine a root cause (respectively, a sequence of probable root causes) that

turned out to be helpful for a system administrator to resolve the problem. Our

approach is especially useful when the reasons for the failure are not obvious to

the administrator that is in charge of resolving the problem. Thus, our approach

will be more beneficial in IT infrastructures, where competences are scattered

over the members of different organizational units.

Furthermore, we analyzed the scalability of the approach for various sizes

of randomly generated infrastructures, modeled after properties observed in

real-world scenarios. The approach proofed to scale linearly in the size of the

infrastructure up to hundreds of thousands of individual components.

So far, we have not taken all risks of the Grundschutz Catalogues into ac-
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count. Instead, we have focused on a subset relevant for the infrastructure we

modeled. To apply our approach to an arbitrary IT infrastructure, we have to

create a complete translation of the catalogues to our logical representation.

Finally, we want to stress that the presented approach is not only suited for

technical hardware scenarios, but can almost effortlessly be transferred to other

settings. One example would be the search for an index case (patient zero)

during the outbreak of a disease [43]. Relation between person are modeled

similarly, however those will also have weights, representing the uncertainty

that people actually know each other or where in contact during a time period.

By noting when somebody showed the first symptoms and verifying that the

person with the earliest symptoms can have had contact (directly or indirectly

through others) with the other patients, the index case can be identified.
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