
Scaling Up Description Logic Reasoning by
Distributed Resolution

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von
Anne Schlicht
aus München

Mannheim, Januar 2012

Dekan: Professor Dr. Heinz Jürgen Müller, Universität Mannheim
Referent: Professor Dr. Heiner Stuckenschmidt, Universität Mannheim
Korreferent: Professor Dr. Christoph Weidenbach, Max-Planck-Institut für Informatik, Saarbrücken

Tag der mündlichen Prüfung: 29. März 2012

3

Abstract

Benefits from structured knowledge representation have motivated the cre-
ation of large description logic ontologies. For accessing implicit information
and avoiding errors in ontologies, reasoning services are necessary. However,
the available reasoning methods suffer from scalability problems as the size
of ontologies keeps growing.

This thesis investigates a distributed reasoning method that improves
scalability by splitting a reasoning process into a set of largely independent
subprocesses. In contrast to most description logic reasoners, the proposed
approach is based on resolution calculi. We prove that the method is sound
and complete for first order logic and different description logic subsets.
Evaluation of the implementation shows a heavy decrease of runtime com-
pared to reasoning on a single machine. Hence, the increased computation
power pays off the overhead caused by distribution. Dependencies between
subprocesses can be kept low enough to allow efficient distribution.

Furthermore, we investigate and compare different algorithms for com-
puting the distribution of axioms and provide an optimization of the dis-
tributed reasoning method that improves workload balance in a dynamic
setting.

4

Contents

I Introduction 13

1 Motivation 15
1.1 Scalability Problem . 16
1.2 Goal . 16
1.3 Research Questions . 17
1.4 Overview . 19

2 Preliminaries 21
2.1 RDFS and OWL . 21
2.2 Description Logic . 22
2.3 Normalization . 23
2.4 Clausification . 24
2.5 Resolution . 25
2.6 Term Ordering . 26
2.7 Redundancy . 28

3 Related Work 31
3.1 Typology of Distributed Reasoning Methods 31

3.1.1 Reasoning . 31
3.1.2 Distribution Principles 32

3.2 Distributed RDF Reasoning 33
3.3 Modular DL Reasoning . 33
3.4 Resolution Methods . 34
3.5 Parallel Computation . 35

3.5.1 MapReduce . 36
3.5.2 Actor Model . 39

3.6 Conclusion . 39

II Distributed Resolution 41

4 Distributed Resolution 43
4.1 Reasoning Method . 43
4.2 Allocation . 44

5

6 CONTENTS

4.3 Distributed Algorithm . 47

4.4 Distributed Calculus . 49

4.5 Soundness, Completeness, Termination 50

5 Distributed FOL Resolution 53

5.1 Calculus . 54

5.2 Distribution . 57

5.3 Implementation . 60

5.4 Experiments . 63

5.4.1 FMA . 63

5.4.2 NCI . 65

6 Transitive Properties 67

6.1 Calculus . 68

6.1.1 Soundness, Completeness, Termination 70

6.2 Distribution . 70

6.2.1 Soundness, Completeness and Termination 73

6.3 Experiments . 74

7 Equalities 77

7.1 Calculus . 77

7.2 Allocation Method . 81

7.3 Restricted Inferences . 85

7.4 Completeness and Termination 86

7.5 Implementation . 88

7.6 Experiments . 89

III Allocation 93

8 Partitioning 95

8.1 Related Work . 95

8.2 Graph-based Ontology Partitioning 96

8.2.1 Step 1: Create Dependency Graph 96

8.2.2 Step 2: Graph Partitioning 97

8.2.3 Step 3: Partition Realization 97

8.3 Dependency Graph . 97

8.3.1 Based on DL Axioms 97

8.3.2 Based on Clauses . 98

8.3.3 Based on Derivation 99

8.4 Graph Partitioning . 99

8.4.1 Greedy Balance . 99

8.4.2 Balanced Edge Cut . 99

8.4.3 Islands Algorithm . 100

CONTENTS 7

8.5 Partition Realization . 101
8.6 Experiments . 102

9 Dynamic Allocation 107
9.1 Reallocation . 108

9.1.1 Completeness of Distributed Calculus 109
9.2 Dynamic Allocation Algorithm 109

9.2.1 Propagation . 109
9.2.2 Completeness of Algorithm 110

9.3 Subtask Coordination . 112
9.4 Deciding About Reallocation 115

9.4.1 Choose Reasoners . 116
9.4.2 Choose Symbols . 117

9.5 Experiments . 119

IV Conclusion 123

10 Future Work 125
10.1 Subdivided Symbols . 125
10.2 Expressivity . 126
10.3 Performance . 129
10.4 Generalization . 130

11 Summary 131

8 CONTENTS

List of Tables

2.1 Translation of simple DL axioms to first order clauses. 25

5.1 ALCHI clause types. 56
5.2 ALCHI inference types. 57

6.1 Runtimes of Yago saturation. 74

7.1 The 8 types of ALCHIQ closures. 81

8.1 Comparison of partitioning methods. 103

9.1 Partial order of subtasks for simple reallocation. 113
9.2 Partial order of subtasks for efficient reallocation. 114
9.3 Evaluation of NCI saturation for different dynamic settings. . 120

9

10 LIST OF TABLES

List of Figures

4.1 Example of propositional ordered refutation. 44
4.2 Distributed propositional refutation. 46

5.1 Description Logic example of two ontologies and a mapping. . 60
5.2 Distributed ordered resolution example. 61
5.3 Runtimes for saturation of the FMA ontology. 63
5.4 Number of propagated clauses for saturation of the FMA on-

tology. 64
5.5 Runtime and propagation for saturation of the NCI ontology. 65
5.6 Balance of NCI saturation. 66

7.1 Description logic example. 83
7.2 Distributed resolution example with equalities. 84
7.3 Runtimes for saturation of the SWEET ontology. 89
7.4 Balance of SWEET saturation. 90
7.5 Number of derivations and propagation for saturation of SWEET

ontology. 91

8.1 Derivation graphs of NCI saturation. 104

9.1 The process of reallocating a set of symbols. 115
9.2 Clock reallocation. 119

10.1 Saturating two worked-off clause sets with shared a-symbol. . 126

11

Acknowledgement

Many thanks to Heiner Stuckenschmidt for his advice, his support and his
patience and impatience. My special thanks to Christoph Weidenbach for
his valuable feedback and for the Spass he contributed. Also, I would like
to thank my friends and family for sympathy and cheering up.

Part I

Introduction

13

Chapter 1

Motivation

The idea of describing the world in a formal way was first advertised by
ancient Greek philosophers. Their motivation for creating ontologies was to
get a better understanding of basic principles that induce the perceivable
laws of nature [28]. Formal axiomatization has been especially popular in
mathematics, where the prospect of designing a machine that would auto-
matically find a proof or counterexample for every given conjecture thrilled
mathematicians [44]. With Gödels proofs on the limits of computability [23]
some expectations where disappointed but anyway, automatic deduction has
gained increased attention with the invention of computers.

While first provers where limited to rather simple theories, available compu-
tation resources have reached a speed now that allows building systems that
are relatively close to the vision of artificial intelligent machines. Expert
knowledge is being formalized for making it easier accessible. For example,
in areas like biology and medicine, ontologies are used to provide people with
the knowledge covered by racks of textbooks and publications. Enterprises
start exploiting the benefits from maintaining structured description of their
expert knowledge. Like collections of tables in text files were replaced by
database systems, knowledge management is shifting from text documents
and even undocumented knowledge to ontological representations that are
easily accessible.

Accessible representation of knowledge is already a big step towards artificial
intelligence. But, without automatic deduction, benefits are limited. With
increasing size and complexity of the representation, automatic deduction
is essential to check correctness and to access implicit knowledge. Recently,
the development of deduction methods is further boosted and challenged by
the growth of the world wide web. The enhancement of information pre-
sented for human readers with machine readable semantic markup, initiated
the creation of large ontologies. Ontologies for common knowledge and do-
main specific knowledge are the basis for translating and relating different
semantic markup vocabulary used on the web.

15

16 CHAPTER 1. MOTIVATION

1.1 Scalability Problem

Available deduction methods are not designed for very large ontologies, they
face serious scalability problems considering runtime of query answering
procedures.

In general there are three approaches to solving a scalability problem. The
first solution approach is to reduce the complexity of the problem, i.e. to solve
a less complex approximation of the problem. This is the first consideration
when a large ontology is created: Computational complexity of the applied
language should be as low as possible. The second approach is to reduce
the complexity of the solution algorithm, i.e. compute not the exact solution
but give an approximation of the solution. Large ontology projects [33, 43]
usually use reasoners specifically designed for these ontologies that do not
consider all possible implications. If the complexity of problem and solution
cannot be reduced any more and the problem still remains intractable, the
remaining last option is to simply use more computation power.

Unfortunately, there are hard limits to the amount of instructions per second
that can be computed for a single process imposed by physical laws. Less
hard but more relevant are the restrictions imposed by economical laws. A
single supercomputer is considerable more expensive than a set of smaller
machines that would provide the same total amount of computation speed.
For some large ontologies currently in use we cannot provide a single process
with enough computation resources for checking consistency. Hence, we aim
at distributing the computation to a set of processes.

The decisive factor for a successful distribution to multiple processes are de-
pendencies that require halting subprocesses and the amount of inter-process
communication necessary for solving the task. Amdahl’s law [2] states each
program has a sequential component that cannot be parallelized and limits
the speedup gained from adding processors. Avoiding dependencies corre-
sponds to reducing the sequential part of a program.

1.2 Goal

Within this thesis, we aim at splitting up a reasoning task into a set of widely
independent subproblems, such that the subproblems can be solved in par-
allel and combination of the sub-solutions to a solution of the original task is
easy. We address applications that strictly require expressive ontologies and
sound and complete reasoning, i.e. lossy translation to a more tractable lan-
guage is not an option and reasoning results have to be reliable. Considering
the expressivity supported by our distributed reasoning approach, we focus
on the standard languages used for knowledge description on the Web. The
most important standards are the Resource Description Framework (RDF)
and the different dialects of the Web Ontology Language (OWL) [4]. The

1.3. RESEARCH QUESTIONS 17

most popular OWL dialect OWL-DL is based on description logic [29], a
decidable subset of first order logic. Deciding consistency of an OWL-DL
ontology is NP-complete. For answering queries to these kind of ontologies
in realistic scenarios, special optimizations are necessary. Reasoning tasks
for OWL-DL ontologies include queries like “Is the ontology consistent?”,
“What are the instances of concept C?”, “Is C a subconcept of D?”, “What
is the concept hierarchy of the ontology?”.
All of these query are reduced to satisfiability checks. For example, sub-
sumption queries (“Is C a subconcept of D?”) are executed by introducing a
new instance x and adding to the ontology that x is an instance of C and an
instance of the complement of D. If the obtained ontology is unsatisfiable,
the subsumption is implied by the original ontology. Since other reasoning
tasks are reduced to a satisfiability check, we focus on this basic reasoning
task in this thesis.
We consider a simplified setting, where the available machines all have the
same characteristics in terms of memory and computation speed. Optimiz-
ing the distribution of a reasoning task for machines with different charac-
teristics is left to future work.
There are different strategies for distributed reasoning. Apart from the per-
formance of a distributed reasoning task, also the maintenance requirements
of a large ontology affect our choice of distribution strategy. Large ontolo-
gies are usually structured in modules for simplifying development. Hence,
using a distribution strategy that is based on distributing the axioms of the
ontology has advantages for maintenance. The distributed representation of
the ontology can be used for both reasoning and maintenance.
To sum up, the goal is to create a distributed reasoning method that

• checks satisfiability of OWL-DL ontologies,

• is sound and complete and terminates,

• allows distributing the task to a number of processes that can be exe-
cuted in parallel,

• uses a distribution strategy that is based on distributing the axioms
of the ontology,

• achieves runtimes of about t/n for a number n of applied reasoners
where t is the runtime on a single processor.

A reasoning method with these properties would improve scalability and
help developing large expressive ontologies without inconsistencies.

1.3 Research Questions

In this work, we present a method that largely complies with the require-
ments stated above. We investigate preconditions, properties and capabili-

18 CHAPTER 1. MOTIVATION

ties of distributed reasoning for description logic ontologies. In particular,
we answer the following research questions.

Q1 Which reasoning method is a good basis for distributed reasoning on
description logic ontologies?

Many reasoning methods have been developed for different purposes. We do
not develop a completely new method from scratch, but base our distributed
method on existing work.

Q2 Is it possible to preserve soundness, completeness and termination
of this reasoning method when distributing computation to a set of
parallel processes?

Of course, we have to start with a sound complete and terminating rea-
soning method. But, it is not clear if these properties can be preserved by
distribution. The main contribution of this work is the proof of a positive
answer to this question.

Q3 Is the distribution efficient, i.e. is the runtime decreased by distribut-
ing a reasoning task?

Assume we can find a reasoning method and distribution strategy with the
desired theoretical properties. The next question is, whether the benefits
from using multiple processors pays off for the overhead generated by dis-
tribution.

Q4 Does the distributed reasoning method scale?

Our distributed reasoning method is developed for large ontologies. Hence
an important question is the behavior of the method when the size of the in-
put is increased. It would be perfect if we could decrease runtime arbitrarily
by applying more reasoners. But, we expect that the number of reasoners
that can successfully contribute to a reasoning task is limited and depends
on the size and complexity of the ontology.

Q5 What is the expressivity that can be supported by distributed reason-
ing?

The goal is to give full support for reasoning on OWL-DL ontologies. How-
ever, there are important subsets of this language, that allow specialized
reasoning methods and hence require adaption of the distributed method.

Q6 What is the best method for computing a distribution of input axioms?

1.4. OVERVIEW 19

The performance of distributed reasoning depends on the method we choose
for distributing the axioms. We describe different methods and compare
the performance on distributed reasoning to a random distribution. The
investigation shows if additional overhead for computing a good distribution
is paid off by reduced runtime of the reasoning task.

Q7 Is it possible to change the distribution of axioms at runtime?

In a dynamic setting, the number of available compute nodes may change at
runtime. For making full use of all available computation power, adapting
the distribution to a increased or decreased number of compute nodes may
be necessary.

Q8 What optimizations of the method are necessary and/or possible?

After a prototype for distributed reasoning on description logic ontologies
is presented, the next step is to analyze which optimizations should be con-
sidered for a future industrial application of the method.

1.4 Overview

This work is structured into four parts. Part I is the introduction, where
we motivate distributed reasoning and specify the goals and research ques-
tions that will be addressed. The preliminaries are explained in Chapter 2,
including the basics of resolution reasoning and description logic. Chap-
ter 3 starts with a typology of distributed reasoning methods and gives an
overview of related work on distributed reasoning and resolution. Here, Q1
is addressed and we explain why we base our distributed reasoning approach
on resolution reasoning.
The second part is the main part of this thesis. First, the idea of our ap-
proach is explained in Chapter 4 using examples from propositional logic.
We prove soundness, completeness and termination of the distributed ap-
proach and thereby answer Q2 in Chapter 5. In the remaining chapters of
Part II the approach is extended to a calculus for transitive properties and a
calculus for equalities. The limits of applying distributed resolution on full
first order logic are discussed for answering Q5. For every calculus, efficiency
of distribution is investigated in experiments with real world ontologies. The
results are an answer to Q3. They show runtime of a saturation can be re-
duced considerably. Furthermore, the scalability of the approach questioned
in Q4 is investigated.
Part III addresses the allocation of input clauses and derived clauses to rea-
soners. Chapter 8 proposes different methods for computing the allocation.
Q6 is answered by a comparison of saturation processes using different al-
location algorithms. Chapter 9 addresses the distributed reasoning setting

20 CHAPTER 1. MOTIVATION

where the number of compute nodes changes during saturation and answers
Q7. The investigation shows that the allocation can be changed at runtime
for adapting to a dynamic environment.
Finally, Part IV concludes with plans for future work and the summary.
Chapter 10 discusses extensions and modifications of the distributed reso-
lution approach and answers Q8. Chapter 11 summarizes the contributions
and results of this thesis.

Chapter 2

Preliminaries

Before we explain the idea and details of our distributed reasoning approach,
we summarize the required background on OWL, description logic, reso-
lution and the representation of description logic ontologies in first order
clauses. Additionally, an ordering of literals is defined that is relevant for
efficient resolution reasoning.

2.1 RDFS and OWL

The most important standardardized languages for knowledge representa-
tion on the web are the Resource Description Framework Schema (RDFS)
and the different dialects of the Web Ontology Language (OWL). OWL-DL
is based on the description logic SHOIN (D), a decidable subset of first
order logic. The subset of RDFS that is relevant for the described content
is ρdf, it is closely related to a restricted subset of the description logic
ALH. The main conceptual difference between RDFS and OWL languages
is satisfiability. In OWL many queries are answered using an indirect proof
based on refutation. In contrast, RDFS is designed for direct derivation of
all implications and has no negation. Consequently, errors are not indicated
by contradictions in a set of RDFS axioms. Instead, special queries can
be designed for detecting unintended consequences. The different design of
OWL that requires indirect proofs of implications calls for very different
reasoning methods. Since OWL languages are much more expressive than
RDFS, the focus of this work is on the description logics that are the basis
for OWL-DL. We do not address the most expressive OWL language (OWL-
full) because due to its computational complexity and difficult semantics it
is rarely used. OWL-full is undecidable and the benefits from additional
expressivity compared to OWL-DL are too small to play a relevant role in
the OWL language area. Concequently, the new OWL standard OWL 2
is based on OWL-DL and adds contructs like cardinality restrictions and
syntactic suger.

21

22 CHAPTER 2. PRELIMINARIES

2.2 Description Logic

The most basic description logic addressed in this work is ALC[7]. An ALC
ontology is a set O of axioms α build from concepts C according to the
syntax given by the following grammar:

α ::=C v C|C ≡ C|C(a)|R(a, a)

C ::=>| ⊥ |A|¬C|C u C|C t C|∃R.C|∀R.C
A ::=concept name

R ::=property name

a ::=individual name

The signature Sig(O) of an ontology O is the disjoint union of concept
names NC , property names NR and individual names NI .
The grammar is extended to SHOIQ by adding transitivity axioms (S de-
notes ALC plus T), property hierarchy (H), inverse properties (I), nominals
(O) and qualified cardinality restrictions (Q).

α ::=Trans(R) (T)

α ::=R v R (H)

α ::=R v R− (I)

C ::={a, ..., a} (O)

C ::=∃≤nR.C|∃≥nR.C (Q)

The semantics of DL are defined model theoretically based on the notion of
an interpretation (∆, I) where ∆ is the interpretation domain and I is a
function that maps every individual name to an element of ∆, every concept
name to a subset of ∆ and every property name to a subset of ∆ × ∆. A
set of DL axioms is consistent, if there is an interpretation that satisfies all
axioms in the set. Such an interpretation is called a model of the axioms.
An interpretation satisfies an axiom if it satisfies the following requirements:

• I(C) ⊆ I(D) for an axiom C v D

• I(C) = I(D) for an axiom C ≡ D

• I(a) ∈ I(C) for an axiom C(a)

• (I(a), I(b)) ∈ I(R) for an axiom R(a, b)

• I(R) ⊆ I(S) for an axiom R v S

• For an axiom Trans(R) and all a, b, c ∈ ∆:
If (a, b) ∈ I(R) and (b, c) ∈ I(R) then (a, c) ∈ I(R)

2.3. NORMALIZATION 23

• ∀a ∈ NI : I(a) ∈ ∆

• ∀A ∈ NC : I(A) ⊆ ∆

• ∀R ∈ NR : I(R) ⊆ ∆×∆

• I(>) = ∆

• I(⊥) = {}

• I(¬C) = ∆ \ I(C)

• I(C tD) = I(C) ∪ I(D)

• I(C uD) = I(C) ∩ I(D)

• I(∃R.C) = {x ∈ ∆ | ∃y ∈ I(C) : (x, y) ∈ I(R)}

• I(∀R.C) = I(¬(∃R.¬C))

• I(R−) = {(a, b) ∈ (∆×∆) | (b, a) ∈ I(R)}

• I({a1, ..., an}) =
⋃
i I{ai}

• I(∃≥nR.C) = {x ∈ ∆ | #({y ∈ ∆ | (x, y) ∈ I(R), y ∈ I(C)}) ≥ n}

• I(∃≤nR.C) = I(¬∃≥n+1R.C)

Alternatively, the semantics of SHOIQ can be defined by mapping the
axioms to first order logic (FOL). For example, the ALC axiom Car v
∃part.Engine translates to ∀x : Car(x)→ ∃y : part(x, y) ∧ Engine(y). The
translation of a description logic ontology to FOL is the conjunction of the
translated axioms. Note that concept names correspond to unary predicates
and property names correspond to binary predicates. The normalization
presented in the next section greatly simplifies the translation to first order
clauses, therefore we give the simplified mapping after describing normal-
ization.

2.3 Normalization

The resolution calculus we apply requires first order clauses as input, hence
the first order formulas obtained from an ontology are translated to clauses.
To guarantee termination of the applied resolution calculus, the ontology
has to be normalized prior to clausification. This ensures that only certain
types of axioms and corresponding clauses occur in the reasoning procedure.
For simplicity, we assume the ontology contains only subsumption axioms
A v C where A is not a complex concept and no equivalence axioms. I.e.
equivalences are replaced by two subsumptions and complex subsumptions

24 CHAPTER 2. PRELIMINARIES

C v D are replaced by > v ¬C tD.
The definitorial form normalization we use replaces complex concepts C in
the right hand side of an axiom by a new concept name Q and adds the
axiom Q v C to the ontology. Thus, it splits up nested axioms into simple
ones by introducing new concepts. For describing the replacement formally
we first define the term position.

Definition 1 (Position).
A position p is a sequence of integers used to specify the subterm E|p of a
given expression E at position p. For the root position p = ε, the subterm is
the whole expression: E|ε = E. For other positions the subterm E|p of an
expression E = f(t0, ..., tn) is defined recursively: E|i.p = ti|p.
The term obtained from E by replacing E|p with the term F is denoted by
E[F]p.

Applied to concept expressions, description logic operators correspond to
functions. For example, the subterm E|2.1 of the expression E = A u
((∃R.B) t C) is the first subterm of the second subterm of E, i.e. E|2.1 =
∃R.B. The example expression with replaced subterm is E[F]2.1 = Au (F t
C).

Definition 2 (Definitorial Form).
For simple subsumptions A v D with atomic concept A, and concept D in
negation normal form, the Definitorial Form is defined by

Def(A v D) :=


{A v D} if all subterms of D are literal concepts

{Q v D|p} ∪Def(A v D[Q]p)
if D|p is not a literal concept

where a literal concept is either a concept name or a negated concept name
and Q is a new concept name.

For example, the axiom Car v V ehicle u ∃hasPart.Engine is replaced by
Car v V ehicle uQ and Q v ∃hasPart.Engine.

2.4 Clausification

After normalization, the ontology contains only simple axioms that are
translated to first order clauses as defined in Table 2.1. E.g. the axiom
A v B corresponds to the first order formula ∀x : A(x) → B(x) which is
equivalent to the clause ¬A(x)∨B(x). As usual, all variables are implicitly
∀-quantified, existential quantifiers are translated using skolem functions.
Literals ⊥ (...) and ¬>(...) are false (i.e. redundant literals), clauses con-
taining a literal >(...) or ¬ ⊥ (...) are tautologies (i.e. redundant clauses).

2.5. RESOLUTION 25

DL-axiom FOL clause

C(a) C(a)

R(a, b) R(a, b)

A v B ¬A(x) ∨B(x)

A v B u C ¬A(x) ∨B(x)

¬A(x) ∨ C(x)

A v B t C ¬A(x) ∨B(x) ∨ C(x)

A v ∃R.B ¬A(x) ∨R(x, f(x))

¬A(x) ∨B(f(x))

A v ∀R.B ¬A(x) ∨ ¬R(x, y) ∨B(y)

Trans(R) ¬R(x, y) ∨ ¬R(y, z) ∨R(x, z) (T)

R v S ¬R(x, y) ∨ S(x, y) (H)

A v {a1, ..., an} ¬A(x) ∨ x = a1 ∨ ... ∨ x = an (O)

A v ∃R.{a} ¬A(x) ∨R(x, a) (O)

R v S− ¬R(x, y) ∨ S(y, x) (I)

A v ∃≤nR.B ¬A(x) ∨
n+1∨
i=1

(¬R(x, yi) ∨ ¬B(yi) (Q)

∨
i−1∨
j=1

yi = yj)

A v ∃≥nR.B ¬A(x) ∨R(x, fi(x)) i = 1..n (Q)

¬A(x) ∨ fi(x) 6= fj(x) j = 1..i− 1

¬A(x) ∨B(fi(x))

Table 2.1: Translation of simple DL axioms to first order clauses.

2.5 Resolution

The simplest type of resolution is the variant for propositional logic. Our
distributed reasoning approach is designed for more expressive logics, but
for explaining the basic idea, we use propositional logic. Resolution is only
refutation complete but not implication complete, i.e. the calculus does not
derive every implied clause. But, if resolution is applied to a set of unsat-
isfiable clauses, it will eventually derive an empty clause and thereby prove
the contradiction. In this work, with “completess” we refer to refutation
completess.

26 CHAPTER 2. PRELIMINARIES

Definition 3 (Ordered Propositional Resolution).
Based on any total precedence >p on propositional literals with

• ¬b > b for every propositional variable b and

• there is no literal a such that for some variable b: ¬b > a > b

ordered propositional resolution is defined for propositional variable b and
clauses C,D by

b ∨ C ¬b ∨D
C ∨D

where b (respectively ¬b) is a maximal literal in the clause b ∨ C (¬b ∨D)
according to the precedence >p.

The literals b and ¬b are resolved. The clauses above the horizontal line are
the premises. The premise b ∨ C with positive resolved literal is the side
premise, the premise with negative literal is the main premise. Below the
line is the conclusion that is inferred from the premises.
An additional rule is necessary to remove duplicated literals in a clause.

Definition 4 (Ordered Propositional Factoring).
For a propositional variable b and clause C, propositional factoring is defined
by

b ∨ b ∨ C
b ∨ C

In propositional logic, the premise b ∨ b ∨ C is redundant after inferring
b ∨ C and can be deleted. Instead of first performing the inference and
than deleting the premise, the duplicate literal is deleted directly from the
premise.
Without the restriction to maximal literals, resolution is not efficient because
much more clauses than necessary are derived. For example, consider the
propositional clauses a∨b∨c, ¬a∨b, ¬b∨c, ¬c. With alphabetical ordering,
resolution derives only b ∨ c and c and then detects the contradiction with
¬c. a ∨ b ∨ c is not resolved with ¬b ∨ c because b is not maximal in the
first clause. But, without ordering, also a ∨ c, ¬a ∨ c, a ∨ b, b and ¬b can
be derived. To avoid redundant derivations, the propositional variables are
ordered according to some precedence and only the maximal variables are
resolved.

2.6 Term Ordering

When resolution is lifted to first order logic, the clauses consist of literals
instead of propositional variables. Hence, first order resolution requires an
ordering of literals. Different ordering variants are possible for first order res-
olution, we use lexicographic path orderings that are based on a precedence
of the function and predicate symbols.

2.6. TERM ORDERING 27

Definition 5 (Lexicographic Path Ordering).
A lexicographic path ordering (LPO) is a term ordering � induced by a well-
founded strict precedence > over function, predicate and logical symbols. For
terms s and t, s � t holds if and only if

1. t is a proper subterm of s or

2. s = f(s1, . . . , sm), t = g(t1, . . . , tn) and at least one of the following
holds

(i) f > g and s � ti for all i with 1 ≤ i ≤ n
(ii) f = g and for some j we have (s1, . . . , sj−1) = (t1, . . . , tj−1),

sj � tj and s � tk for all k with j < k ≤ n
(iii) sj � t for some j with 1 ≤ j ≤ m

LPOs have the subterm property, i.e. t � t′ for all terms t′ that are subterms
of term t. Furthermore, if > is total, the LPO induced by > is total on
ground terms.

Definition 6 (Admissible Ordering).
An ordering � is admissible if it is

• well-founded, stable under substitutions, and total on ground literals,

• ¬A � A for all ground atoms A

• B � A implies B � ¬A for all atoms A and B.

The ordering of equality literals is defined by the lexicographic comparison
of corresponding tuples (argmax, rel, argmin) where argmax and argmin are
the larger and smaller argument of the equality literal and rel is either ’≈’ or
’6≈’ (predicates are represented as equalities). The comparison of arguments
is defined by the term ordering, ’≈’ precedes ’6≈’.

For simplifying the definition of calculi and ordering of literals, predicate
literals are represented by equalities as follows: The literal P (t1, t2) is rep-
resented by the equality P ′(t1, t2) ≈ > where P ′ is the function that maps
(t1, t2) to > iff P (t1, t2) is true. Similar translations apply for unary pred-
icates. Hence we can assume that all literals are equalities without loss of
generality. We will still use the term ’predicate literal’ for literals of the
type P ′(t1, t2) ≈ > and the term ’equality literal’ or ’equality’ for equality
literals that do not correspond to predicate literals.

For example, consider the comparison of the literals P (f(x)) and Q(x).
Since both are predicate literals, the comparison of the corresponding tu-
ples (P (f(x)),≈,>) and (Q(x),≈,>) boils down to comparing P (f(x)) and
Q(x). From (1.) in Definition 5 we get f(x) � x because x is a proper

28 CHAPTER 2. PRELIMINARIES

subterm of f(x). Assuming alphabetical order of functions and predicates
(f > Q) we apply (i) to s = f(x), t = Q(x) and obtain f(x) � Q(x). Now
we use (iii) to conclude P (f(x)) � Q(x).

The ordering of literals is extended to an ordering of clauses by representing
clauses as sets of literals. A multiset is a set that may contain more than
one occurrence of each element. Multisets are represented by a mapping
from set elements to natural numbers denoting the number of occurrences
of each element.

Definition 7 (Multiset Extension of Ordering).
For multisets of literals A and B, A � B iff A 6= B and for each literal l1
with B(l1) > A(l1) there is a literal l2 such that l2 � l1 and A(l2) > B(l2).

2.7 Redundancy

Based on the ordering of clauses, ordered resolution derives smaller clauses
until the smallest derivable clause is reached. If the smallest clause is the
empty clause, the input clauses are unsatisfiable. Consequently, the order is
also relevant for the definition of redundancy:

Definition 8 (Redundant Clause).
In a set of clauses S, a clause c ∈ S is redundant if there are clauses
c1, ..., cn ∈ S such that c1, ..., cn ` c and c � ci.

For efficient resolution reasoning it is essential to remove redundant clauses
by the application of reduction rules. When a reduction rule is applied,
the premises are removed from the clauses set, in all other aspects it is
similar to inference rules. The most important reduction rule is subsumption
reduction.

Definition 9 (Subsumption Reduction).
For clauses C, and D where C contains all literals of D, subsumption re-
duction deletes C:

C D

D

We assume resolution rules are not applied to a set of premises, if the con-
clusion is redundant. Exhaustive application of resolution rules to a set of
clauses results in a saturated set of clauses.

Definition 10 (Saturation).
A set of clauses S is saturated by a calculus R, iff every clause c that can
be derived from S using rules of R is redundant in S.

For simplifying the notation, we adapt the notion of completeness for calculi:

2.7. REDUNDANCY 29

Definition 11 (Complete Calculus).
A calculus R is complete, if for every set S of clauses that is saturated by
R: If S is unsatisfiable, then S contains the empty clause.

Note that the empty clause is never redundant because it is the smallest
clause. All calculi used in this thesis are sound, i.e. if a set of clauses S is
satisfiable then no empty clause is derived.

30 CHAPTER 2. PRELIMINARIES

Chapter 3

Related Work

Before the summarizing work on reasoning that is related to our approach,
we give a typology of distributed reasoning methods. Subsequently, rea-
soning and distributed reasoning approaches for different languages are de-
scribed. We conclude the chapter with frameworks for implementing dis-
tributed computation.

3.1 Typology of Distributed Reasoning Methods

There are various options for distributing the process of logical reasoning.
Many of these options have been investigated in the field of automated
theorem proving for first-order logic [13, 12]. In the following we discuss
these options and their advantages and disadvantages with respect to the
requirements and goals defined in Chapter 1. In particular, we have to make
two choices:

1. We have to choose a reasoning method that is sound and complete for
description logics and permits distribution.

2. We have to choose a distribution principle that supports local reason-
ing and minimizes reasoning and communication costs.

3.1.1 Reasoning

Concerning the reasoning method [12] distinguishes between ordering-based,
subgoal reduction, and instance-based strategies. Instance-based strategies
are direct implementations of the Herbrand method that generate ground
instances of the theory and use propositional methods for testing satisfiabil-
ity. Subgoal reduction strategies build a single proof at a time by choosing
and resolving subgoals and leave the logical model unchanged. Typical ex-
amples of subgoal reduction strategies are logic programming methods and

31

32 CHAPTER 3. RELATED WORK

analytic tableaux. Ordering-based methods, finally are based on an in-
formed modification of a clause representation by deriving new clauses and
deleting redundant ones until the empty clause is derived or no new con-
clusions can be drawn. This way, ordering-based methods implicitly build
many proof attempts in parallel as it is not clear a priori, which derivations
finally contribute to the derivation of the empty clause. Typical examples
of ordering-based methods are resolution and basic superposition.

Analytic tableaux are the dominant method for implementing sound and
complete inference systems for description logics [20]. It has been shown,
however, that sound and complete resolution methods for expressive descrip-
tion logics can be defined [58, 36]. We exclude other existing methods such
as a reduction of DL reasoning to logic programming from our investiga-
tion because these approaches are not sound and complete for the languages
we are interested in. Because tableaux-based as well as resolution-based
methods meet our requirements with respect to language coverage and com-
pleteness, the decisive factor is their suitability for distributed reasoning.

3.1.2 Distribution Principles

The survey [12] discusses different strategies for parallelizing logical infer-
ence. In particular, the authors distinguish between parallelism at the term
level, the clause level and the search level. The idea of parallelism at the
term and the clause level is to speed up basic reasoning functions such as
matching, unification or single resolution steps by executing them in parallel
using a shared memory in order to improve performance. This approach is
not suitable for our purposes as it does not envision a distribution of the on-
tology axioms but just aims at parallel execution of basic reasoning methods.
Without shared memory this approach is not feasible because it requires to
much interaction between processes. Parallelism at the search level means
the parallel execution of the overall derivation process and can be further
distinguished into multi-search and distributed search approaches.

Multi-search In the first case, multiple search processes, often with differ-
ent heuristics or different starting points are run in parallel. This approach
requires the complete ontology to be available at all reasoners. It exploits
the fact that most reasoning tasks belong to tractable problem classes where
an efficient solution strategy is available. The task is hard because we do
not know in advance, to which simple class the problem belongs. Multi-
search replaces the expensive analysis and classification of the reasoning task
by applying different strategies in parallel, that are optimized for different
problem classes. Using this approach for description logic is not advisable
because description logics are a decidable subset of first-order logic for which

3.2. DISTRIBUTED RDF REASONING 33

efficient reasoning procedures are known. I.e., we already know which of the
strategies that we could run in parallel performs best.

Distributed search The second type of parallel search approaches assign
parts of the search space to individual reasoners and coordinate the overall
search process by exchanging intermediate results. The distributed search
paradigm naturally fits the distributed storage of parts of the ontology and
therefore represents a paradigm that complies to the goals of our research. It
allows to assign the part of the search space relevant for a specific ontology
module to a local reasoner instance that interacts with other local reasoners
if necessary.

The choice of the distributed search paradigm has consequences for the
choice of the reasoning method. In particular, it has been shown that dis-
tributed search can be used in combination with ordering-based methods
[15, 11] to support parallel execution of logical reasoning.

3.2 Distributed RDF Reasoning

Approaches that implement distributed reasoning on description logic on-
tologies are rare. Distribution of RDFS ontologies is more popular because
adapting the rule based inference mechanism of RDFS ontologies to a dis-
tributed setting is easier than distributing the tableau methods that are
usually used for description logic.

Marvin [40] is a platform for parallel and distributed processing of RDF data
on a network of loosely-coupled peers. Successful experiments are reported
for computation of the deductive closure of large RDFS ontologies. Although
there are no contradictions and proofs in RDFS, the process of computing
the deductive closure is similar to saturation of a set of clauses. Hence,
the method implemented by Marvin can be classified as distributed search
strategy.

3.3 Modular DL Reasoning

Current approaches to distributed reasoning on description logic mostly rely
on tableaux methods. Distribution by solving the different choices of nonde-
terministic tableaux rules in parallel is difficult as it hampers the application
of optimization and blocking strategies. Instead, most distributed tableaux
approaches try to identify all possible conflicts, i.e. all axioms that might
follow from another module and would cause a contradiction and send these
as queries to the other modules. So far, this is only done for links with
rather restricted expressiveness between the modules.

34 CHAPTER 3. RELATED WORK

The most prominent actually distributed terminology reasoning implementa-
tion for ontologies is Distributed Description Logic (DDL [14]), a distributed
search strategy. It supports only a special type of links (bridge rules) be-
tween ontologies. The local domains have to be disjoint, i.e. there is no real
subsumption between elements of different modules.

Like DDL, E-connections [17] treat local domains as disjoint and do not
support subsumption relations between modules. E-connections can be used
to link ontologies of different expressivity and the resulting network can be
translated to common description logics. The tableau reasoner pellet has
been extended to support E-connections but reasoning is performed by a
single pellet reasoner and not distributed.

[35] propose an approach to modular ontologies based on conservative exten-
sions. It is not a distributed reasoning method but a strategy for creating
ontology networks with self-contained ontologies such that reasoning on the
ontologies separately is complete. Roughly speaking, an ontology A is an
conservative extension of another ontology B, if there is no axiom implied
by A and not implied by B that uses only symbols from the local signature
of B. Hence, for reasoning in the combined ontology about symbols of B,
the ontology A can be safely ignored, it has no effect on the semantics of
B. The idea of the approach is, that reasoning is very simple, when the on-
tology network is a conservative extension of each of the ontologies. While
the actual reasoning is relatively easy in this approach, the complex task is
to create the ontologies in compliance to the strong conservative extension
requirements. A method for extracting this type of self-contained ontology
modules from a larger ontology is proposed in [16].

KAONp2p [24] is an infrastructure for query answering over distributed
ontologies based on the KAON2 system. The approach is focused on on-
tology management and knowledge selection for reasoning about assertions
(Aboxes). The relevant parts of the terminologies are copied to the peer
that answers the query.

3.4 Resolution Methods

Resolution is a very popular reasoning method for first-order logic (FOL)
provers. As description logics are a strict subset of first-order logic, reso-
lution can be applied to description logic ontologies as well [60]. For this
purpose the DL ontology is transformed into a set of first-order clauses as
defined in Section 2.4. This translation from DL axioms to clauses can be
done on a per axiom basis independently of other parts of the ontology.
[30] proposed a resolution variant that is sound and complete for clauses
obtained from ontologies in the DL ALCHIQ. This resolution method is
discussed in detail in the next chapters because our distributed approach is
based on it.

3.5. PARALLEL COMPUTATION 35

Approaches to distributed first-order reasoning are motivated by efficiency
considerations, performance is improved by using multiple processors in par-
allel. Roo[34], for example, is a parallelization of the widely (re)used first-
order reasoner Otter. While common resolution provers pick one so-called
given clause and resolve it with all possible partner clauses, Roo picks mul-
tiple given clauses in parallel and solves arising conflicts of the parallel pro-
cesses. In difference to the distributed methods mentioned so far, Roo uses
a shared memory and can be classified as parallelization at the clause level
according to [12].

Partition-Based Reasoning [3] is a distributed search strategy that requires
local reasoning to be complete for consequence finding. The strong complete-
ness requirement for local reasoning inevitably causes derivation of more
clauses than necessary for refutation. Nevertheless the distribution method
was shown to speed up some resolution strategies in a parallel setting with
shared memory. Note that the resolution calculi applied for our distributed
reasoning method are not complete for consequence finding, for efficiency
considerations they are designed to generate a relatively small number of
clauses.

An approach for distributed resolution reasoning on equational logic is pro-
posed in [11], it uses the ancestor-graph criterion for allocating clauses to
processes. Comparision to a random allocation of clauses shows the alloca-
tion based on heuristics performs better.

[1] propose a distributed reasoning method for propositional theories. The
authors automatically create sets of clausal theories connected by shared
variables and investigate the correlations between characteristics of the cre-
ated theory networks and queries (e.g. number and length of link clauses)
and characteristics of the query processing (e.g. depth of a query). The
query runtimes are investigated for different complexity of theory networks
and queries but not compared to centralized computation.

3.5 Parallel Computation

Apart from work on reasoning and distributed reasoning, methods for paral-
lel computation are relevant to our work. Recently, the MapReduce frame-
work developed by Google labs is popular for implementation of distributed
reasoning methods. However, it imposes some restrictions on the way data
is exchanged between compute nodes. The more flexible actor model was
proposed decades ago. It is still in use, a current project provides robust
implementation.

36 CHAPTER 3. RELATED WORK

3.5.1 MapReduce

The MapReduce framework[19] provides a simple interface for cluster com-
putation. An open source implementation is available1. Low effort for dis-
tributing a computation to multiple machines has motivated a number of dis-
tributed reasoning implementations that apply the MapReduce framework.
Core of the framework and interface for its application are two functions
that have to be implemented by the user to access the automatic distribu-
tion. Both functions are executed by a set of workers (i.e. machines) that
share the computation load. First, the map function assigns a key to each
input value (for reasoning applications the values are axioms) and outputs
(key, value) pairs. Then, the reduce function is called once for each key. It
processes all corresponding values and outputs a list of results. For reason-
ing, parallel execution of the map function is not essential. Only the keys
generated by the map function are required for distributing the work for the
reduce workers. A partition function assigns the keys of the map output to
reduce workers. Application of inference rules is implemented in the reduce
function, parallel execution of this function is the motivation for applying
MapReduce.
Originally, MapReduce was developed for generating indexes over web pages,
a computation that has a very large input and performs mainly a counting
function. Hence, the reduce function effectively reduced the number of val-
ues. In contrast, reasoning applications of MapReduce add new axioms
to the input axioms, i.e. the reduce function actually expands the input.
This can cause efficiency problems when a sequence of MapReduce jobs is
executed for distributed reasoning.

RDF Schema Materialization

One of the first applications of MapReduce in ontology reasoning is the
computation of the closure of a large RDFS graph described in [62]. RDF
Schema rules are implemented by MapReduce jobs. For example, the RDFS
subclass rule

s rdf:type x x rdf:subClassOf y

s rdf:type y

is implemented by a map function that maps potential premises to the shared
element x. I.e., the key for triples with predicate “rdf:type” is the object,
the key for triples with predicate “rdfs:subClassOf” is the subject of the
triple. The whole triple is returned as value of the map output pair. The
reduce function is called once for each key and derives new axioms according
to the subclass rule from all triples that share this key. Note that a single
call to this job performs all derivations of this rule. The work for deriving
all implied triples of type (s, rfd:type, o) is partitioned among the reduce

1e.g. Apache Hadoop http://hadoop.apache.org

http://hadoop.apache.org

3.5. PARALLEL COMPUTATION 37

workers based on the objects o that are the keys in the input to the reduce
function.
The other RDFS rules are implemented by MapReduce jobs in a similar
way. The complete materialization consists of a sequence of MapReduce
jobs, where the output of one job is the input of the next job. As shown
in [62], this method is quite efficient when the number of schema triples is
small enough to be stored in memory of each reducer node. With clever
ordering of the RDFS rules, the materialization is usually2 complete after
calling each job once. Hence, only a handful of MapReduce jobs is necessary
for materialization of the deductive closure.

OWL Horst Materialization

The RDFS materialization was extended to OWL Horst in [61]. OWL
Horst [59] is a fragment of the Web Ontology language OWL that can be
materialized using a set of rules that is an extension of the set of RDF
schema rules. The fragment is popular for triple stores that are focused on
scalability because of the relatively high expressivity and feasible reason-
ing methods. The additional rules add semantics for the OWL constructs
“owl:someValuesFrom”, “owl:allValuesFrom” and “owl:TransitiveProperty”.
The higher expressivity of OWL Horst compared to RDFS requires a couple
of optimizations to keep tractability. While for RDFS it is possible to have
a single ’stream’ of instance triples for each reduce worker, OWL Horst re-
quires joins over more than one instance triple. The number of necessary
expensive joins is reduced by storing the “owl:sameAs” triples only implicitly
and other optimizations for transitive properties and property restrictions.
With these optimizations, the authors were able to compute the closure
of 100 billion triples. However, some inefficiencies were detected: For OWL
Horst rules, there is no order that can avoid the need for iterating repeatedly
over all rules. As the authors report, this is problematic because the same
conclusions are derived again and again in every iteration.

EL+ Classification

EL+ [6] is a fragment of OWL that does not contain union operators or
universal restrictions on properties. Concepts in EL+ are built according to
the grammar

C ::= A|>|C uD|∃r.C,

where A is a concept name, r is a role name and C,D are concept names
or complex concepts. In addition to general concept inclusions C v D and
assertions, an EL+ ontology may contain role inclusions r1◦...◦rn v r where

2For certain cases (e.g. if subproperties of ’rdf:SubpropertyOf’ are defined) that are
very rare in real world ontologies, repeated application of the rule sequence is necessary
for completeness.

38 CHAPTER 3. RELATED WORK

r, r1, ..., rn are role names. The nice property of EL+ is the existence of a
simple set of derivation rules that allows classification of EL+ ontologies in
polynomial time. For example, the rule

X v A A v ∃r.B
X v ∃r.B

propagates a restriction on a class A to the subclass X of A. Motivated by
the materialization approaches mentioned before, [37] proposes a MapRe-
duce variant of the EL+ classification algorithm CEL. The derivation rules
of CEL are translated to MapReduce jobs. Before the translation, the rules
are slightly adapted, such that for every rule all premises share at least one
class or property name. The shared terms are used as key in the input of
the reduce function (output of the map function) similar to the RDFS ma-
terialization. For the above rule, axioms A v B are assigned the key B and
restrictions A v ∃r.B are assigned the key A. The reduce workers derive
new axioms from sets of axioms that share the same key. In contrast to the
previous approaches, only the input to the reduce function is considered as
premises and this set of potential premises is not changed while the reduce
worker runs. Recall that in the RDFS materialization, all applications of a
certain rule are executed in a single MapReduce job. In EL+ classification,
an axiom derived by a reduce worker can only be considered as premise in
the next job. Hence, the number of required MapReduce jobs is at least the
depth of the derivation graph. Another difference to previous approaches
is the maintenance of the axiom set. The authors propose to store the ax-
ioms in a database instead of the files that are used by, e.g., the Hadoop
implementation of MapReduce.
The approach suffers from an unsolved efficiency issue: Rules of the un-
derlying CEL algorithm are only applied, if the conclusion is not already
contained in the current axiom set. But, in the MapReduce variant of the
algorithm, the authors do not report how this preconditions are checked and
the preconditions are not mentioned in the adapted rules set. We assume,
that the database that is used for storing intermediate results deletes dupli-
cate axioms. But anyway, if already derived axioms are repeatedly derived
in every iteration, the method is inefficient, especially because the number
of iterations is very high as mentioned before.

The general problem with reasoning applications of the MapReduce frame-
work is iterative execution of MapReduce jobs. MapReduce has no built
in strategy for avoiding repetition in the computation. Originally, MapRe-
duce was designed for the creation of indexes where repetition is not an
issue, e.g., word counts are completed after a single run of a MapReduce
job. In contrast, reasoning applications require iterative application of in-
ference rules. But, when a MapReduce job is executed repeatedly, already
performed inferences are also repeated. This problem has a severe effect on

3.6. CONCLUSION 39

performance as the ’reduce’ of reasoning applications actually expands the
input by materializing implied axioms. In [50] we showed that repeating
inferences can be avoided by maintaining separate lists for axioms that are
already exhaustively used in derivation rules and axioms that require appli-
cation of rules. However, this implementation is not very efficient because
the complete axiom lists have to be written and parsed in every run of a job.
To sum up, the simplicity of the MapReduce interface implies restrictions
that are not desirable for distributed reasoning.

3.5.2 Actor Model

Frameworks that use message passing are more flexible regarding the in-
teraction between compute nodes. E.g., [27] proposed the actor model for
parallel computation, where a computational unit is an actor that communi-
cates with other actors via messages. Each actor has its own life cycle, local
state and local message queue. Besides sending and reacting on messages
actors have access to their own local memory. In difference to MapReduce,
this application of the message passing paradigm allows fast integration of
results from other reasoners into the local computation. It is not necessary
to split the computation into a sequence of jobs, where results from other
actors are only available in the next job. Consequently, the costly serializa-
tion and parsing of axioms between jobs is avoided.
Based on the distributed reasoning method developed for this thesis, [39]
provides an implementation that uses the Akka3 implementation of the
actor model. Experiments showed a considerable speedup achieved by dis-
tribution, but the basic implementation of the ordered resolution calculus is
relatively slow compared to state of the art theorem provers.

3.6 Conclusion

The distribution principle that is most suitable for our setting is distributed
search. The choice of the distributed search paradigm has consequences for
the choice of the reasoning method. In particular, it has been shown that
distributed search can be used in combination with ordering-based methods.
We build on top of these results by proposing distributed reasoning methods
based on the principles of resolution.

Our proposal extends beyond the state of the art in distributed theorem
proving as it addresses specific decidable subsets of first-order logic that
have not yet been investigated in the context of distributed theorem prov-
ing. Further, existing strategies for assigning inference steps to reasoners
such as the ancestor-graph criterion [11] or partition-based reasoning [3]
cannot avoid redundancy. Other approaches are limited to propositional

3http://akka.io/

http://akka.io/

40 CHAPTER 3. RELATED WORK

logic [1] or apply parallelism on the term and clause level that is not com-
patible with the requirement of distributed axioms. We propose a sound and
complete distributed reasoning method that uses an assignment of clauses
to reasoners without redundancy. Our method takes advantage of the re-
strictions imposed by description logics and can be used in combination with
different calculi.

Approaches for distributed RDFS reasoning are not applicable for our set-
ting, because they do not support the required expressivity. Extension to-
wards description logics is problematic because RDFS reasoning requires
materialization. In contrast, indirect proofs are usually preferred for de-
scription logic because complete materialization of implied axioms is not
efficient.
Existing approaches for modular DL reasoning are not designed for par-
allel computation but focused on the combination of different ontologies.
There are strong limits on the axioms that contain concepts from different
ontology modules. To the best of our knowledge, there is no distributed
reasoning approach for expressive description logic ontologies that achieved
a performance enhancement by distributing the computation. Distributed
EL+ classification [37] aimed in this direction, but the theory has serious
flaws and the method was not implemented.
For implementing distributed reasoning, the MapReduce framework is not
suitable because it imposes too strong restrictions on the communication
between reasoners. A better choice is the actor model proposed by [27].
Most promising is implementing distributed reasoning using a state of the
art theorem prover for local reasoning and the actor model for distributing
computation.

The method for distributed reasoning on description logic ontologies pro-
posed in this thesis is based on resolution methods for description logic
proposed by [58, 36, 30].

Part II

Distributed Resolution

41

Chapter 4

Distributed Resolution

In this chapter we describe the basic idea of distributed resolution using
propositional logic. By restricting the expressivity we focus on the explana-
tion of the basic idea and avoid a couple of difficulties introduced by more
expressive axioms.

The idea of distributed resolution is to partition the input clauses into sep-
arate sets and run a reasoner on every part of the input. In particular, the
inferences are distributed across different reasoners, thereby increasing the
available computation resources:

• Every reasoner separately saturates the clause set assigned to it.

• Newly derived clauses are propagated to other reasoners if necessary.

In contrast to the centralized case, a reasoner that has saturated the local
clause set may have to continue reasoning once a new clause is received
from another reasoner. The whole system of connected reasoners stops if
the empty clause (�) is derived by one of the reasoners or all reasoners are
locally saturated.

4.1 Reasoning Method

We aim at distributing different resolution methods for checking satisfiability
of a set of clauses. Resolution methods use rules for deriving new clauses
that are added to the input clause set until either a contradiction is found
or no new clause can be derived.

Definition 12 (Resolution Rule).
A resolution calculus for a class of clauses C consists of a set R of resolution
rules. Each rule is a function r that maps each list p1, ..., pn of premises
with pi ∈ C to a set r(p1, ..., pn) ⊆ C of conclusions. If the set of conclusions
r(p1, ..., pn) is non-empty, the rule r is applicable to the premises P . A

43

44 CHAPTER 4. DISTRIBUTED RESOLUTION

a ∨ ¬c ¬a ∨ d
¬c ∨ d c ∨ d

d

b ∨ c ¬b ∨ ¬d
c ∨ ¬d ¬c ∨ ¬d

¬d
�

Figure 4.1: Example of propositional ordered refutation.

set of clauses C is saturated iff every conclusion c ∈ r(p1, ..., pn) with r ∈
R, pi ∈ C is redundant with respect to C.

Mostly, resolution rules have only a single conclusion. Reduction rules are
resolution rules where the premises are always redundant after the conclu-
sions have been added. Hence, the premises are deleted on application of
reduction rules.
We write C `R c to denote that the conclusion c is derived from the set of
clauses C by repeated application of resolution rules from the calculus R.
Additionally, C `R c holds for c ∈ C.
To keep the presentation simple, we first use propositional ordered resolution
as defined in Section 2.5. An example refutation with six input clauses and
five inferences is depicted in Figure 4.1. The clause ¬c ∨ d is inferred from
the two input clauses a ∨ ¬c and ¬a ∨ d and then resolved with the third
input clause c∨ d to obtain the conclusion d. In a similar way, ¬d is derived
from three other input clauses. Finally, resolving d with ¬d results in an
empty clause, i.e. a contradiction is found because the input clauses are
unsatisfiable.

4.2 Allocation

In theory, every inference (depicted by a horizontal line in Figure 4.1) can be
performed by a different reasoner. But, the premises of each inference must
be propagated to the reasoner that performs the inference. If reasoner 1
derives ¬c ∨ d and reasoner 2 is supposed to derive d, the clause ¬c ∨ d has
to be propagated from reasoner 1 to reasoner 2. In general, a conclusion
c has to be send to every reasoner that performs an inference were c is a
premise.

Definition 13 (Inference Allocation).
Inferences are identified by tuples (r, p1, ..., pn) where r ∈ R is the inference
rule applied to the premises p1, ..., pn. The inference allocation function
ia : R× Cn →M maps each applicable inference to a reasoner m ∈M .

E.g., allocation of the first inference of Figure 4.1 to reasoner 1 is stated
by ia(propositionalOrderedResolution, a ∨ ¬c,¬a ∨ d) = 1. For enabling a
derivation, the premises have to be allocated to the reasoner that performs
an inference.

4.2. ALLOCATION 45

Definition 14 (Clause Allocation).
A clause allocation is a relation ca ∈ (C ×M) that maps clauses c ∈ C to
reasoners m ∈M such that

∀c ∈ C : ∃m ∈M : ca(c,m)

The set of modules a clause c is allocated to by the allocation ca is

ca(c) := {m ∈M | ca(c,m)}

If the allocation relation is functional we may omit the parenthesis and write
ca(c) = m instead of ca(c) = {m}. We say a reasoner m is responsible for
an inference or clause x iff x is allocated to m.

Obviously, distributing inference steps randomly to reasoners is not a good
idea, because we would not know to which reasoners a clause has to be
propagated. Nevertheless, we have to make sure the clause allocation is
complete, otherwise possible inferences may be skipped, the method would
be incomplete.

Definition 15 (Complete Clause Allocation).
A clause allocation ca is complete for a calculus R, iff for every applicable
inference (r, p1, ..., pn) with r ∈ R every premise pi is allocated to the same
reasoner: ∃m ∈M,∀i : ca(pi,m)

For inferences (r, p) with a single premise, this condition is trivially true. In
practice, ca is defined in a way that ensures completeness for rules with more
than one premises. Then, inferences with a single premise p are allocated
to the reasoner that derived the clause p or to the reasoner ca(p).

The challenge is to find an inference allocation and corresponding clause
allocation that is complete, efficiently computable and does not require too
many propagations of clauses. Only a complete clause allocation can guaran-
tee that the distributed reasoning method is complete. Furthermore, moving
clauses between reasoners is costly, hence we prefer allocations where clauses
are often allocated to the reasoner that derived them. Ideally, the clause
allocation is functional, i.e. each clause is allocated to exactly one reasoner.
Allocating a clause to multiple reasoners potentially causes duplicated in-
ferences and additional computation that should be avoided.

Essential is the availability of a simple algorithm for computing the alloca-
tion of a clause. It is not possible to analyze the possible partner clauses
in other reasoners because communication would consume the benefits of
parallel computation.

We solve this problem by defining an allocation of inferences, that allows
deciding the allocation of a clause independently of the other clauses. The
idea is to find an allocation of inferences, that induces a partition of clauses

46 CHAPTER 4. DISTRIBUTED RESOLUTION

reasoner 1 (predicates a, d) reasoner 2 (predicates b, c)

a ∨ ¬c ¬a ∨ d
¬c ∨ d→

d← ¬d←
�

b ∨ c ¬b ∨ ¬d
c ∨ ¬d ¬c ∨ ¬d

← ¬d

→ ¬c ∨ d c ∨ d
← d

Figure 4.2: Distributed propositional refutation.

into disjoint sets and each clause is resolved only with clauses from the same
part.

For example, for propositional resolution, we partition the inferences ac-
cording to the resolved literals. In any propositional resolution inference,
the two premises share a predicate p that occurs positive in one premise and
negative in the other premise. Hence, we can allocate the inferences based
on an allocation of symbols.

Definition 16 (Symbol Allocation).
A symbol allocation for a set of clauses C is a function sa : Sig(C) → M
that maps each symbol of the signature of C to a reasoner m ∈M . For a set
of symbols S, sa(S) denotes the set {sa(s) | s ∈ S}.

Each reasoner m is responsible for the inferences that involve resolving lit-
erals p or ¬p where sa(p) = m. In our example, one reasoner is responsible
for the predicates a, d and another reasoner is responsible for b, c. Of the
input clauses a ∨ ¬c, ¬a ∨ d, b ∨ c, ¬b ∨ ¬d, ¬c ∨ ¬d, ¬c ∨ ¬d the first two
are allocated to reasoner 1 and the others to reasoner 2. The corresponding
distributed refutation is depicted in Figure 4.2. Arrows depict propagation
between reasoners. Reasoner 2 derives c ∨ ¬d and then ¬d which is send to
reasoner 1. At the same time reasoner 1 derives the clause ¬c∨ d and sends
it to reasoner 2. From ¬c∨ d and the local input clause c∨ d, reasoner 2 de-
rives and sends d. Finally, reasoner 1 detects the contradiction by deriving
an empty clause.

For unrestricted propositional resolution, we have to allocate a clause c to
every reasoner that is responsible for one of the predicates contained in c.
But, without restrictions, propositional resolution is not efficient anyway. If
we add the restrictions for ordered propositional resolution, the calculus is
not only much more efficient, it also enables an efficient allocation of clauses:
Ordered resolution uses a total precedence >p of predicate symbols. The
resolution rule is restricted to pairs of premises, where the matched literals

4.3. DISTRIBUTED ALGORITHM 47

Algorithm 1 Distributed Resolution

isSatisfiable(KB)

1: [Us0,Us1, ...,Usn−1]← partition(KB,n, ca) // partition knowledge base
according to allocation relation into array of n sets of clauses

2: for all i in {0, ..., n− 1} do
3: // loops are executed in parallel by n reasoners
4: if isSatisfiable(Us[i], ∅, i) == FALSE then
5: return FALSE
6: end if
7: end for
8: return TRUE

p and ¬p are maximal, i.e. no premise contains a predicate q with q >p p.
Hence, we allocate each clause c to the reasoner that is responsible for the
largest predicate of c. Without loss of generality we assume each predicate
occurs at most once in each clause. Duplicated literals are removed by
factoring, clauses that contain literals p and ¬p are tautologies, and can be
deleted.

Like for propositional resolution, the distribution of other resolution calculi
is based on an allocation of symbols. In general, a function that selects rel-
evant symbols from a clause for allocation extends the allocation of symbols
to an allocation of clauses.

Definition 17 (Clause Allocation Based on Allocation Symbols).
The allocation ca(c) of a clause c is based on an allocation as of the signature
symbols and a function a-symbol that maps each clause c to a subset of
Sig(c).

ca(c) = {m ∈M | ∃S ∈ a-symbol(c) : sa(S) = m}

In the case of propositional resolution, a-symbol(c) is the largest predicate
of c. More expressive logics require more complex definitions of a-symbol.

Next, we explain how a resolution prover is turned into a distributed reso-
lution prover using the appropriate clause allocation function.

4.3 Distributed Algorithm

The distributed saturation process is controlled by Algorithm 1. It dis-
tributes the input clauses to the reasoners according to the given allocation
ca of clauses. Each reasoner is started on the local clause set, and derives
new clauses by applying resolution rules (i.e. it runs Algorithm 2 locally).
If an empty clause is derived by one of the reasoners, it returns FALSE,
otherwise all reasoners continue until they are saturated and return TRUE.

48 CHAPTER 4. DISTRIBUTED RESOLUTION

Algorithm 2 Distributed Resolution Prover

isSatisfiable(Us,Wo, localID)

1: while TRUE do
2: Given ← choosegiven(Us)
3: Us ← Us \ {Given}
4: New ← resolve(Given,Wo)
5: Wo←Wo ∪ {Given}
6: if � ∈ New then
7: return FALSE
8: end if
9: reduce(Given,Wo,Us,New)

10: Us← Us ∪ {clause ∈ New | localID ∈ ca(clause)}
11: for clause in New do
12: for reasonerID in ca(clause) do
13: if reasonerID 6= localID then
14: sendto(clause,reasonerID)
15: end if
16: end for
17: end for
18: if Us == ∅ then
19: Us← receive()
20: end if
21: if receivedShutdownSignal then
22: return TRUE
23: end if
24: end while

4.4. DISTRIBUTED CALCULUS 49

Algorithm 2 controls the local application of resolution rules on a set of
input clauses. The algorithm is an adapted version of the resolution prover
specified in [63]. For recording which clauses have already been resolved
with each other, the clause set is split into two sets, the usable (Us) set
of clauses that have to be resolved and the worked off (Wo) set. Clauses
in the Wo set are saturated, i.e. every clause that could be derived from
Wo is either already contained in Wo or contained in Us or redundant.
The algorithm is started with isSatisfiable(KB, ∅, localID) to test satis-
fiability of the knowledge base KB. If a part Wo ⊂ KB of the knowledge
base is already known to be consistent, the algorithm could be started with
isSatisfiable(KB \Wo,Wo, localID) to speed up the procedure. Until the
whole set of clause is saturated or an empty clause is found, the algorithm
repeatedly picks a clause (the Given clause) from the Us set and moves it to
the Wo set (lines 2 to 5). Resolution rules are applied to the Given clause
and each clause from the Wo set that can be resolved with Given (e.g. con-
tains a literal that can be unified with a negated literal of the given clause) to
obtain new clauses. Reduction is performed in line 9, the ”reduce”-function
includes deletion of redundant Given clauses (forward reduction) and redun-
dant Wo clauses (backward reduction). Without distribution, lines 11-17
would be replaced by Us ← Us ∪New . But, instead of directly adding the
new clauses to the local Us set, some of the new clauses may be added to
the Us sets of other reasoners and new clauses received from other reasoners
may be added to the local Us set. Note that the algorithm contains an
endless loop (line 1). If no contradiction is found and the local Us set is
empty, the algorithm gets stuck in line 19 until the reasoner is shut down or
new clauses are received.

The extension to description logic consists in replacing the ’resolve’ and
’reduce’ function and the clause allocation ca.

4.4 Distributed Calculus

On the logical level, distributing resolution is a modification of the applied
calculus. The physically separated clause sets are reflected in the modified
calculus by restricting resolution to premises that are allocated to the same
reasoner.

Definition 18 (Distributed Resolution Calculus).
A distributed resolution calculus R(ca) is a resolution calculus R augmented
with an allocation relation ca ∈ (C ×M), where M is the set of available
reasoners. Each rule r ∈ R(ca) is restricted to premises P ⊂ C with

∃m ∈M : ∀c ∈ P : ca(c,m)

This additional restriction is called allocation restriction.

50 CHAPTER 4. DISTRIBUTED RESOLUTION

A distributed calculus can be obtained from any resolution calculus by defin-
ing an allocation relation and adding the allocation restriction to each rule
of the calculus. Logically, the difference between a resolution calculus and a
distributed resolution calculus is similar to the difference between standard
resolution and ordered resolution. A relation is added, and the rules are
restricted to premises that comply to additional requirements based on that
relation.
For guaranteeing completeness of a distributed calculus, we have to define
an appropriate complete clause allocation ca.
It is easy to define an allocation that is complete for any allocation of infer-
ences: If each clause is allocated to every reasoner, no inference is skipped
compared to the original calculus. But obviously, this method is not effi-
cient. The challenge in distributed resolution is to allocate a clause to as
few reasoners as possible and still guarantee complete reasoning.

4.5 Soundness, Completeness, Termination

Distributing a calculus only restricts the applicability of the rules by the
allocation restriction. Consequently, no inference is added and the possi-
ble inferences are equivalent to inferences of the original calculus. Hence,
soundness is preserved by distribution.

Corollary 1 (distributed resolution soundness). If a resolution calculus R
is sound, the distributed resolution calculus R(ca) is sound for every clause
allocation ca.

Assuming duplicate literals are deleted in each clause, propositional resolu-
tion terminates for any finite input because the set of clauses that can be
constructed from a finite set of predicates is finite. Since any clause is only
derived once, the number of possible inferences is finite. Like soundness,
termination is preserved by the distributed calculus, because no new clauses
are added. In distributed resolution, the set of clauses that may be created
is still finite. Inferences that derive redundant clauses may be added e.g.
because a duplicate clause exists at another reasoner. But, the number of
duplicates is limited by the number of reasoners. Hence, termination is still
preserved.

Corollary 2 (distributed resolution termination). If exhaustive application
of a resolution calculus R terminates, exhaustive application of the dis-
tributed resolution calculus R(ca) terminates for every clause allocation ca.

In contrast to soundness and termination, the completeness of a distributed
resolution calculus depends on the applied allocation of clauses. The allo-
cation of inferences is defined by the allocation of clauses, we only have to
make sure the clause allocation is complete.

4.5. SOUNDNESS, COMPLETENESS, TERMINATION 51

Theorem 1 (distributed resolution completeness). If a resolution calcu-
lus R is complete and the clause allocation ca is complete for R, then the
distributed resolution calculus R(ca) is complete.

Proof. Assume in contrary, there is an unsatisfiable set of clauses C and
saturating C by R(ca) does not derive an empty clause. Since R is complete
and terminates, saturating C by R results in a set that contains an empty
clause. Hence, there is at least one inference that is applicable in R but
not applicable in R(ca). We consider the first inference of R that is not
applicable in R(ca), i.e. an inference with premises p1, p2 with

• C `R pi and C `R(ca) pi for i = 1, 2

• r(p1, p2) = c for some rule r ∈ R but

• C 6`R(ca) c

The maximal literals of the premises p1 and p2 contain the same predicate p.
Hence, both premises are allocated to the reasoner responsible for p. But,
the rule r with allocation restriction ∃m ∈ M : ac(p1,m), ac(p2,m) is then
also applicable to premises p1, p2 and derives the conclusion c. Consequently
C `R(ca) c holds.

In other words, the allocation restriction is always true in R(ca), when the
other restrictions are true. Hence, distribution does not restrict the appli-
cability of ordered resolution rules.

From the algorithmic point of view, Theorem 1 implies that if the resolve
function implements a complete calculus and reduction deletes only redun-
dant clauses, then completeness is preserved by distribution. Every reasoner
creates a locally saturated set of clauses. According to the proof of Theo-
rem 1, the union of the locally saturated clause sets is also a saturated set
of clauses, i.e. the resolve function would not derive any new clause from
the union.
Note that the requirement on reduction is not trivial. There are reduction
rules that are not applicable in a distributed setting. For example, if a cer-
tain propositional variable p occurs only positive and never in a negative
literal, all clauses that contain the variable are redundant. But, this reduc-
tion rule makes a closed world assumption, it assumes all input clauses are
analysed. In distributed resolution, only the local clause set is taken into
account for reduction. E.g., ¬p could be contained in a clause that is allo-
cated to another reasoner. Consequently, we can only apply reduction rules
that comply with the open world assumption and do not require complete
information about all clauses.
The distributed propositional ordered resolution calculus is not only sound,
complete and terminates, also the distribution is compact. Since the alloca-
tion of clauses is functional, each clause is allocated to exactly one reasoner.

52 CHAPTER 4. DISTRIBUTED RESOLUTION

Duplicate clauses may occur when they are derived from different premises.
But, duplicates are always allocated to the same reasoner that takes care of
eliminating all duplicates.

Chapter 5

Distributed Resolution for
First Order Logic

As we have seen above, the ability to define a sound and complete distributed
reasoning method relies on two requirements: (1) the existence of a sound
and complete resolution calculus and (2) the ability to find a corresponding
allocation that satisfies the allocation restriction. In this section, we show
that there is a calculus and allocation for full first order logic that satisfy
both of these requirements leading to a sound and complete distributed
resolution method. For the case of ontologies defined in the description logic
ALCHI – a decidable subset of first order logic – the allocation relation is
functional, it allocates each clause to only one reasoner and duplication of
clauses and inferences is avoided.

The basic theory of this chapter was first published in [45] and [47] with
results from a simulated distributed resolution. A more comprehensive de-
scription of the approach and experiments on query performance are pub-
lished in [49].

We do not address reduction rules in this section because reduction is not
necessary to guarantee the theoretical properties of the proposed calculus.
However, for efficient reasoning, reduction is essential and hence the prac-
tical effects distribution has on reduction are discussed in the experimental
section.

While in propositional logic, we have only nullary predicates (i.e. proposi-
tional variables) and no functions, clauses obtained from description logic
ontologies contain unary and binary predicates corresponding to concepts
and properties of the ontology. Furthermore, there are nullary functions
(constants) corresponding to instances of the ontology and unary functions
introduced by skolemization of existential quantifiers. Without properties
and instances, an ontology is a concept hierarchy that can be represented
in propositional logic. The main difference between description logic and
propositional logic are the properties. ALC allows using property restric-

53

54 CHAPTER 5. DISTRIBUTED FOL RESOLUTION

tions in concept expressions, i.e. expressions ∃R.C (all instances are related
via R to an instance of C) and ∀R.C (via property R, all instances are
only related to instances of C). This chapter is focused on the description
logic ALCHI that additionally allows expressing property hierarchy (H)
and inverse properties (I).

5.1 Calculus

It has been shown that standard resolution methods can be adapted to
provide sound and complete reasoning for ALC [58, 36]. These methods that
provide the basis for our work rely on ordered resolution, which depends on
two parameters: An order of literals and a selection function that maps
every clause to a subset of its negative literals. These parameters are used
to restrict the applicability of inference rules, thus reducing the number of
derived clauses and avoiding redundant inferences. The selection function is
an ordering refinement. While the ordering is defined globally for all literals,
a literal may be selected in one clause and not selected in another clause.
Usually, selection is used to extend the global order of literals for clauses
that have more than one maximal literal. The ordered resolution calculus
consists of the two inference rules ordered resolution and factoring described
in Definition 19. The letters C and D refer to clauses, A and B are literals.

Definition 19 (Ordered Resolution).

Ordered resolution
C ∨A D ∨ ¬B

Cσ ∨Dσ
where

1. σ is the most general unifier of A and B

2. either ¬B is selected in D ∨ ¬B or else nothing is selected in D ∨ ¬B
and Bσ is maximal w.r.t. Dσ

3. Aσ is strictly maximal with respect to Cσ

4. nothing is selected in Cσ ∨Aσ

Positive factoring
C ∨A ∨B
Cσ ∨Aσ

where

1. σ is the most general unifier of A and B

2. Aσ is maximal with respect to Cσ ∨Bσ

3. nothing is selected in Cσ ∨Aσ ∨Bσ

5.1. CALCULUS 55

This calculus is well known to be sound and complete for first order clauses.
However, for guaranteeing termination on ALCHI a special parameteriza-
tion is necessary. In particular, [58] showed that using ordered resolution,
decidability on ALC can be preserved by transforming the ontology into
definitorial form (see Definition 2) before clausification and applying or-
dered resolution with appropriate selection and ordering. Extending the
proof to ALCHI is straight forward.

Definition 20 (ALCHI Resolution).
RA is the calculus

• consisting of the inference rules ordered resolution and factoring,

• with selection of exactly the negative binary literals, and

• literal ordering � with R(x, f(x)) � ¬C(x) and D(f(x)) � ¬C(x), for
all function symbols f , and predicates R,C, and D.

The ordering requirement is satisfied by every lexicographic path ordering
(LPO, Definition 5) based on a total precedence > on function, predicate and
logical symbols with f > P > ¬ for every function symbol f and predicate
symbol P .
For the simple types of literals occurring in clauses translated from ALC
axioms (Table 5.1 described below), a LPO ordering with precedence as
required by Definition 20 implies a simple set of ordering rules. Literals
that contain different variables are incomparable, for literals that share the
same variables,

1. Literals containing a function symbol precede literals that do not con-
tain a function symbol.

2. Literals containing a function symbol are ordered according to the
precedence of the function symbols.

3. Literals that do not contain a function symbol are ordered according
to the precedence of the predicate symbols.

In theory, any precedence that complies with the requirements of Defini-
tion 20 can be used. The standard method for defining a precedence is
based on the number of occurrence of each symbol in the input because a
maximal literal that contains rare symbols is probably resolved with less
partner clauses than a maximal literal that contains symbols with high fre-
quency. Therefore, symbols are usually ordered according to the number of
occurrences, rare symbols precede symbols that occur more frequently.
RA is sound and complete, because ordered resolution is sound and complete
for first order logic for any admissible ordering and any selection of negative
literals. For termination, the proof for termination of RA on clauses from
ALC [58] is extended straight forwardly to ALCHI.

56 CHAPTER 5. DISTRIBUTED FOL RESOLUTION

type # ALCHI clause type resolvable literal type

1 R(x, f(x)) ∨P(x) R(x, f(x))
2a P(x) (¬)P (x)
2b P1(f(x)) ∨P2(x) (¬)P (f(x))
3 ¬R(x, y) ∨P1(x) ∨P2(y) ¬R(x, y)
4 P(a) (¬)P (a)
5 (¬)R(a, b) (¬)R(a, b)
6 ¬R(x, y) ∨ S(x, y) ¬R(x, y)
7 ¬R(x, y) ∨ S(y, x) ¬R(x, y)
8 R(f(x), x) ∨P(x) R(f(x), x)

Table 5.1: Clause types resulting from the translation of an ALCHI on-
tology to first order clauses. P(t), where t is a term, denotes a possibly
empty disjunction of the form (¬)P1(t)∨ · · · ∨ (¬)Pn(t). P(f(x)) denotes a
disjunction of the form P1(f1(x)) ∨ · · · ∨ Pm(fm(x)). Each Pi(fi(x)) may
contain positive and negative literals.

Theorem 2 (RA decides ALCHI). For an ALCHI knowledge base KB,
saturating the clauses obtained from the definitorial form of KB by RA
decides satisfiability of KB.

Proof. The set of ALC clauses (i.e. clauses obtained from translation of an
ALC ontology) is closed under RA [58]. Also, the set of ALCHI clauses
depicted in Table 5.1 is closed under RA.
When an ALCHI ontology in definitorial form is translated to first order
clauses as described in Section 2.4, every clause is of one of the types listed
in Table 5.1. Further, applying ordered resolution to clauses of the listed
types results in a listed clause type. [58] proved that the clause types 1-5
are closed under RA. The additional inferences with clauses of type 6-8
are easy to check. The resolvable literals of all additional clause types are
binary predicate literals, Table 5.2 shows the possible types of premises and
conclusions. For example, the first line of the table states resolving a clause
of type 1 with a clause of type 3 results in a conclusion of type 2b. The type
of the conclusion does not matter, the point is that the conclusion is of one
of the listed types. Essential is the limited nesting depth of functions. For
ALCHI, functions are not nested at all, the argument is always a variable or
constant. Consequently, the number of literals that can be built using a finite
number of symbols is finite. Hence, if duplicated literals are deleted, the
saturation terminates because otherwise it would create a infinite number
of clauses from a finite number of literals.

Compared to ALC, the clause types 6 and 7 are added for property hierarchy
and inverse properties. Type 8 results from resolving a type 7 clause with
a clause of type 1. We adapted the notation of the ALC clauses from [36]
and extended it to ALCHI. Additionally, the resolvable literal (discussed

5.2. DISTRIBUTION 57

premise 1 premise 2 conclusion

1 3 2b
1 6 1
1 7 8
2a 2a 2a
2a 2b 2a/2b
2a 4 4
2b 2b 2a/2b
3 8 2b
5 6 5
5 7 5
6 8 8
7 8 1

Table 5.2: Types of premises and conclusion of RA inferences on ALCHI
clauses.

below) is depicted in Table 5.1.

In this section, we described a sound and complete resolution calculus for
first order logic that terminates for clauses obtained from an ALCHI ontol-
ogy. For turning it into a complete distributed resolution method, we have
to find a corresponding allocation function that preserves completeness of
the calculus.

5.2 Distribution

The idea for defining an allocation function is to restrict the inference options
such that there is a unique literal for every clause that may be resolved in a
subsequent inference step. Then, we can use this unique literal as a basis for
deciding the allocation of the clause and guarantee that clauses that can be
the premises of a resolution inference are always sent to the same reasoner.
Hence, every inference that occurs in the centralized resolution reasoner is
also possible in distributed resolution. The idea is stated precisely in the
following definitions and results.

Definition 21 (Resolvable Literal).
A literal L of a clause c is a resolvable literal in c iff

1. L is a selected literal or

2. no literal is selected in c and L is strictly maximal in c.

The resolvable literals of a clause c are denoted by resolvableLiteral(c).

58 CHAPTER 5. DISTRIBUTED FOL RESOLUTION

Again, we may omit parentheses, if resolvableLiteral(c) is a unit set.

Corollary 3 (Resolvable Literal). For every ordered resolution inference in
RA the literals A and B in Definition 19 are resolvable literals in (C ∨ A)
and (D ∨ ¬B) respectively.

The essential precondition for our distribution strategy is that for a given
clause, the literal that will be resolved in the next resolution inference does
not depend on the available other premise candidates, it can be determined
without considering other clauses.

Corollary 4 (Unique resolvable literal). Every ALCHI clause contains ex-
actly one resolvable literal.

Corollary 4 holds because ALCHI clauses contain at most one selected
literal and the ordering is total on ground literals and literals containing
the same variables. Thus, only clauses that contain more than one variable
may have multiple maximal literals, but then they are of type 3, 6 or 7 and
contain a selected literal.

For full first order logic, this property does not hold, here an arbitrary
number of resolvable literals is possible theoretically. However, an increased
number of resolvable literals usually decreases the efficiency of a calculus
also without distribution. As explained in Chapter 4, restrictions are added
to a calculus to reduce the number of inference options. Hence, for efficient
resolution calculi and decidable subsets of first order logic, the number of
resolvable literals is usually limited.

Relying on the resolvable literals, we can now define a suitable allocation for
FOL that is functional for ALCHI clauses. Like in propositional resolution,
the allocation is based on an allocation of the signature. In particular, an
allocation of the predicates is required. Then, ordered resolution inferences
are allocated to the reasoner responsible for the top predicate of the unified
literals.

Definition 22 (a-symbol for FOL).
The set of allocation symbols of a first order clause c is the set of all predi-
cates contained in a positive or negative resolvable literal of c:

a-symbolA(c) = {P | (¬)P (t1, ..., tn) ∈ resolvableLiteral(c)}

where P is a predicate symbol and t1, ..., tn are terms.

For ALCHI clauses c, a-symbolA(c) = {P} contains only a single symbol
because c has only one resolvable literal (Corollary 4). For unit sets we
omit brackets and write a-symbolA(c) = P . The clause allocation is defined
based on the allocation of predicates.

5.2. DISTRIBUTION 59

Definition 23 (Allocation for FOL).
The allocation of a clause c for the distributed calculus RA(caA) is

caA(c) := sa(a-symbolA(c))

Obviously, the clause allocation is functional for ALCHI clauses because
they have only one a-symbol.
Note that for interlinked ontologies, O is the union of all ontologies and the
symbol allocation sa(X) can be defined by the namespace of the concept or
property name X. For a single ontology, every partitioning of the ontology
terms induces an allocation of symbols via randomly allocating parts to
reasoners. Methods for computing an optimized allocation of symbols are
discussed in Chapter 8.

For determining where (and if) a derived clause is sent, we first pick the
resolvable literals of the clause, then the predicates of these literals and
finally the reasoners these predicates are allocated to. For ALCHI clauses,
the destination is always a single reasoner. The allocation is complete for
both ALCHI and full FOL.

Theorem 3. caA is a complete allocation for RA.

Proof. We have to show that the premises of each inference are allocated
to the same reasoner. Again, it is sufficient to consider inferences with
more than one premise, i.e. the ordered resolution rule. For each inference
(orderedResolution, p1, p2), the literal A in Definition 19 is strictly maxi-
mal, i.e. resolvable literal of the clause C ∨ A. Similarly, the literal ¬B is
resolvable literal of D ∨ ¬B. Since there is a unifier σ of A and B, the two
literals necessarily have the same top symbol. I.e., both A and B are of the
form P (..) with the same unary or binary predicate symbol P . Hence, P is
the allocation symbol of both clauses: a-symbol(C∨A) = a-symbol(D∨¬B).
Consequently both clauses are allocated to the same reasoner sa(P) that is
responsible for P .

Since caA is a complete allocation, we can decide satisfiability of ALCHI
ontologies using the distributed resolution in Algorithm 2 with calculus RA
and allocation function caA.

Theorem 4. The distributed resolution calculus RA(caA) decides ALCHI
satisfiability.

Proof. We have to show that RA(caA) is sound, complete and terminates.
Since RA is sound and terminates for ALCHI, Corollary 1 and 2 apply,
hence RA(caA) is sound and terminates for ALCHI. RA is complete and
caA is a complete allocation for RA. Consequently, according to Theorem 3
and Theorem 1, RA(caA) is complete for deciding ALCHI satisfiability.

60 CHAPTER 5. DISTRIBUTED FOL RESOLUTION

Ontology A Ontology B

A:Set v ∃A:part.A:Set B:Tuple v B:Set
A:Tuple v ∀A:part.¬A:Set B:Pair v B:Tuple

B:Pair(a)

Mapping

A:Tuple
.
= B:Tuple

A:Set
.
= B:Set

Figure 5.1: Description Logic example of two ontologies and a mapping.
The ontology axioms describe the concepts Set, Tuple and Pair. Mapping
axioms describe equivalences between elements of different ontologies.

Figure 5.2 illustrates distributed resolution on the example ontologies from
Figure 5.1. Here the setting is an ontology network consisting of two on-
tologies and a set of link axioms that connect the ontogies. The axioms
are translated to clauses specified by lists of literals, all variables are im-
plicitly universally quantified. The existential quantification is translated
to a skolem function. Inferred clauses are depicted below the dashed line,
the superscript numbers refer to the origin of a clause, i.e. the premises it
is derived from or the ontology that sent it. Arrows indicate propagation
of a clause to the other ontology. The precedence of symbols is B:Set >
B:Tuple > B:Pair > A:Set > A:Tuple > A:part. All literals with top
symbol A:part are selected. To help tracking the inferences, resolvable lit-
erals are set in black, other literals in gray. Hence, a derived clause consists
of the gray literals of its premises. The first inference of ontology A is clause
4, it is derived from clauses 1 and 3. The mapping axioms are added to
ontology B. Here the first inference is clause 8. Clause 10 is derived from 2
and 5 and then propagated to ontology A. From another propagated clause
and the local clauses, ontology A finally derives the empty clause and hence
detects the inconsistency in the ontology network.

After proving theoretical properties of distributed resolution and explaining
the distributed process on an example, we now turn to the implementation
of the algorithm and experiments.

5.3 Implementation

The distributed resolution implementation used in the experiments is based
on the first order prover Spass4 [64] developed at the Max-Planck-Institut

4http://www.spass-prover.org

http://www.spass-prover.org

5.3. IMPLEMENTATION 61

Ontology A Ontology B

(1) ¬A:Set(x)∨A:part(x, f(x)) ¬B:Tuple(x)∨B:Set(x) (1)
(2) ¬A:Set(x)∨A:Set(f(x)) ¬B:Pair(x)∨B:Tuple(x) (2)
(3) ¬A:Tuple(x)∨¬A:part(x, y)∨¬A:Set(y) B:Pair(a) (3)

Mapping

¬A:Tuple(x)∨B:Tuple(x) (4)
¬B:Tuple(x)∨A:Tuple(x) (5)

¬A:Set(x)∨B:Set(x) (6)
¬B:Set(x)∨A:Set(x) (7)

- -
(41,3) ¬A:Set(x) ∨ ¬A:Tuple(x)∨¬A:Set(f(x)) B:Tuple(x)∨¬A:Set(x) (81,7)
(52,4) ¬A:Set(x)∨¬A:Tuple(x) ¬B:Pair(x)∨A:Tuple(x) (92,5)
(6B) A:Set(x)∨¬A:Tuple(x) ←¬A:Tuple(x)∨A:Set(x) (104,7)
(76,5) ¬A:Tuple(x)
(8B) A:Tuple(a) ← A:Tuple(a) (113,9)
(98,7) �

Figure 5.2: Distributed ordered resolution example on the ontologies from
Figure 5.1.

Informatik. In particular, we use the Yago version of the Spass reasoner
that is optimized for large input. In contrast to the actor model imple-
mentation used in [39], Spass is written in C and benefits from the more
flexible memory management. Furthermore, Spass is designed with a fo-
cus on extendability and readability of the code and constitutes a good
basis for implementing distributed resolution following the message pass-
ing paradigm. Spass supports a number of different resolution strategies
including ordered resolution and basic superposition. The configuration al-
lows specifying the precedence, selection and ordering we need for ALCHI
clauses. We implemented definitorial form normalization and clausification
in a separate tool. Clauses are stored in separate files for each ontology and
include precedence and selection in every input file. The precedence com-
plies with the requirements of RA (Definition 20). Additionally, for some
experiments the function and predicate symbols are ordered according to the
number of occurrences in the input clauses, with rare symbols first. The ap-
plied reduction rules include forward and backward subsumption reduction5.
Note that we can use any reduction rule that does not impose a closed world
assumption. For example, a clause c that is subsumed by another clause s
is redundant independently of all other clauses.

5The complete configuration for Spass is: Distributed=1 Auto=0 Splits=0 Ordering=1
Sorts=0 Select=3 FullRed=1 IORe=1 IOFc=1 IEmS=0 ISoR=0 IOHy=0 RFSub=1 RB-
Sub=1 RInput=0 RSSi=0 RObv=1 RCon=1 RTaut=1 RUnC=1 RSST=0 RBMRR=1
RFMRR=1

62 CHAPTER 5. DISTRIBUTED FOL RESOLUTION

For turning Spass into a distributed reasoner (i.e. adding the ”Distributed”
option) we added support for sending and receiving clauses and for control-
ling the distributed process.

Sending clauses is the easy part, the provided printing methods were modi-
fied to print to a string instead of a file and the string is then send to another
reasoner via TCP. For receiving new clauses the input parser was modified
to read clause lists from a string that are subsequently added to the local
clause store. We changed the format of clauses to print symbol numbers
instead of symbol names to speed up parsing.

Sending is implemented as an additional reduction method. If a derived
clause is still considered non-redundant after all other reductions are applied,
allocation of the clause is computed. If the clause is not allocated to the
reasoner that derived it, it is marked as redundant and send to the reasoner
responsible for the clause. A set of received clauses is treated like a set
derived from a given clause, i.e. it is forward and backward reduced with
respect to the local worked off clause list before adding the non redundant
received clauses to the usable list. Hence, forward and backward reduction
are performed prior to sending and after receiving clauses for deleting as
many redundant clauses as possible. Clauses that have to be propagated
are send in every loop, but new clauses are received from other reasoners
only when the local clause set is completely saturated.

The allocation consists of two components, an allocation table that maps
symbols to reasoner IDs and a routing table that stores the corresponding
addresses for each reasoner ID. At startup, every reasoner reads the routing
table. For the allocation table we implemented different options. One option
is to specify the whole allocation table (symbol name - reasonerID) in a file
that is then read along with the routing table. For this variant, the allocation
table is created in advance by other tools as explained in Chapter 8. Other
options include allocation based on namespaces that are specified as prefixes
in the symbol names. The simplest type of allocation is computed from the
symbol index (i.e. the position of the symbol in the precedence): Divide
by the number of reasoners and allocate to the reasoner specified by the
remainder of the division.

Startup and shutdown of the system is initialized by a central control pro-
cess. In a fully decentralized P2P system this job is performed by the peer
that receives a query. The control process starts the separate machines on
their respective input clauses files. Apart from passing clauses between each
other, the reasoners send status messages whenever they are locally satu-
rated, when they continue reasoning on newly received clauses and when
they derive an empty clause. When one reasoner finds a proof or all reason-
ers are saturated for an interval longer than the maximal time necessary for
clause propagation, the query is answered and the reasoners are shut down.

5.4. EXPERIMENTS 63

� � �� �� �� ��

�

��

���

���

���

���

���

���������

��
�
��
�
�
��
�
�

1440

Figure 5.3: Runtimes for saturation of the FMA ontology, using different
numbers of reasoners.

5.4 Experiments

Experiments were executed on the Esslingen cluster of the bwGrid6 using
one core for each reasoner. Each compute node has 8 cores (two 4-core Intel
Nehalem CPUs with 2.27GHz/2.8GHz) and 24GB memory. We did not take
advantage of shared memory, communication between reasoners on the same
node was the same as between reasoners on different nodes.

5.4.1 FMA

For the first set of tests, we used the Foundational Model of Anatomy (FMA
light) ontology, one of the largest ontologies from the Open Biological and
Biomedical Ontologies (OBO) that is available in OWL. We removed anno-
tations as they are not relevant for reasoning. The expressivity of the tested
ontology is ALEH, translation to first order logic resulted in 164445 clauses.
Apart from the requirements of Definition 20 the precedence was random.
The allocation of symbols is computed using the metis graph partitioning
tool. Details of the allocation method are explained in Chapter 8.

Saturation of the ontology was performed using different numbers of reason-

6bwGRiD (http://www.bw-grid.de), member of the German D-Grid initiative, funded
by the Ministry for Education and Research (Bundesministerium für Bildung und
Forschung) and the Ministry for Science, Research and Arts Baden-Württemberg (Minis-
terium für Wissenschaft, Forschung und Kunst Baden-Württemberg).

http://www.bw-grid.de

64 CHAPTER 5. DISTRIBUTED FOL RESOLUTION

0 5 10 15 20 25

0

50

100

150

200

250

300

including given clauses
derived clauses only

modules

#
 p

ro
p

a
g

a
tio

n
s

/ 1
0

0
0

Figure 5.4: Number of propagated clauses for saturation of the FMA ontol-
ogy, using different numbers of reasoners. Denoted are the total number of
propagations and propagations of derived clauses

ers, the resulting runtimes are depicted in Figure 5.3. The used compute
nodes are equipped with 2.27GHz CPUs. The saturation without distribu-
tion on a single reasoner took more than 1400 seconds. Using two reasoners
for the same task reduced the runtime to about 300 seconds. From the du-
plication of computation power we would expect a decrease by at most 50%
to 700 seconds. The decrease in runtime that exceeds this number can have
different reasons. Probably, preprocessing like input reduction is not linear
in the input size and contributes to the observation. Another reason could
be the reduced size of the Wo clause lists. For the single reasoner, every Wo
clause is considered as partner clause for a given clause. In the distributed
setting only the local Wo clauses are considered resulting in fewer unifica-
tion attempts. Additionally, the amount of available CPU cache increases
with the number of reasoners. Hence, a single reasoner has to access the
slower memory more often.

For up to 10 reasoners, adding more reasoners to the problem reduced run-
time considerably. But, then the runtime converges to about 50 seconds. If
the total runtime sum of all reasoners would be constant, the system run-
time would decrease by 23% from 14 reasoners to 18 reasoners. But, the
decrease is only 6%. Possible reason for this deviation from the reference
value is overhead caused by distribution or a sequencial component of the
computation that cannot be computed in parallel.

The number of derived clauses did not increase considerably with adding
more reasoners. Hence, the restricted application of reduction rules was no
problem for this ontology. Figure 5.4 shows the increase of the number of

5.4. EXPERIMENTS 65

0 2 4 6 8 10 12 14 16 18

0

20

40

60

80

100

120

140

160

runtime/sec
propagations/1000

modules

Figure 5.5: Runtime and propagation for saturation of the NCI ontology
depending on the number of reasoners.

propagated clauses, when more reasoners are applied. The upper values are
the total number of propagations, lower values show only propagations of
derived clauses. The input clauses are distributed randomly, hence there
are some input clauses that are propagated when they are picked as given
clauses. The number of propagations increases, but the average number of
propagations per reasoner decreases. The moderate increase in derivations
and propagations indicates that the reason for the runtime convergence is
not caused by propagation or restricted reduction.

5.4.2 NCI

Another set of tests with a similar setting was executed for the NCI ontol-
ogy, an ontology developed by the National Cancer Institute7 of the U.S.
Department of Health and Human Services. Compared to the FMA ontol-
ogy, the NCI is smaller, it contains 27625 concepts and 70 object properties,
additional 100 concepts where introduced by normalization. The expressiv-
ity of the ontology is ALC, the first order representation consists of 60971
clauses. For the precedence, predicate symbols are ordered according to
the frequency. The allocation is close to random, it is computed from the
predicate index numbers. The applied nodes have CPUs with 2.8GHz.

Runtimes for the saturation are shown in Figure 5.5 depending on the num-
ber of applied reasoners. Increasing the number of reasoners from one to
two and four again decreases the runtime much more than expected. One
reasoner takes 144 seconds for the saturation while two reasoners need only

7www.cancer.gov

www.cancer.gov

66 CHAPTER 5. DISTRIBUTED FOL RESOLUTION

0 2 4 6 8 10 12 14 16 18

1

1.1

1.2

1.3

1.4

1.5

1.6

modules

im
b

a
la

n
ce

Figure 5.6: Balance of NCI saturation.

24 seconds and with four reasoners it takes less than 9 seconds. The number
of derivations was 123439 for all tests. The graphs for runtime and propa-
gation look very similar to those of the FMA, only the values are smaller
and the stagnation of runtime is observed for a smaller number of reason-
ers. With 8 reasoners, the runtime is decreased to about 3 seconds which is
close to the best runtime we achieved. For the FMA, where the saturation
requires about 10 times more runtime, we observe decreasing runtimes when
using up to 14 reasoners.
For FMA, the number of propagations per second for two reasoners was
only 500 although this number includes propagated input clauses. For NCI
an average of 2800 propagations per second was observed. Despite the dif-
ferences in propagation, the runtime decrease for two and four reasoners is
similar for the two ontologies. This indicates that not distribution overhead
but sequencial parts of the computation limit the distributability.
Figure 5.6 shows the saturation of NCI was well balanced for up to 8 rea-
soners. For 8 reasoners, one reasoner performed 20% more inferences than
the average. Imbalance increased linearly with the number of reasoners.

To sum up, the decrease in runtime achieved by distributed resolution ex-
ceeded our expectations. For some settings, a duplication of the number of
reasoners resulted in a runtime decrease by more than 50%.

Chapter 6

Distributed Resolution with
Transitive Properties

An important type of axiom that is not covered by ALCHI are axioms that
turn a property into a transitive property. The most prominent example
is the part-of property used in many ontologies. Obviously, part-of should
be declared as transitive property. Otherwise, it would not be possible
to derive for example “part-of(finger,arm)” from “part-of(finger,hand)” and
“part-of(hand,arm)”.
Unfortunately, with the standard translation of transitivity axioms to clauses
(Section 2.4), the calculus RA is not guaranteed to terminate. One option
is to replace transitivity axioms by simple subsumptions using a well known
transformation, thereby reducing the expressivity of a SHI ontology to
ALCHI. The transformation is polynomial in the size of the input, but
the adaption to the distributed setting is problematic. In contrast to the
transformation of ALCHI axioms to first order clauses, the advanced trans-
lation of transitivity depends on the whole ontology and not only on the
transitivity axioms. Hence, a new axiom that is added to a SHI ontology
can not be translated to clauses independently.
However, there is an approach proposed by [8], that replaces transitivity ax-
ioms not by simpler axioms but by additional resolution rules called ordered
chaining. For the saturation of the very large Yago ontology reported in
[57], application of the chaining rules caused the essential speedup that en-
abled the saturation. In this chapter, we describe how the chaining calculus
used by [57] can be distributed for reducing the runtime of the saturation.
The addressed expressivity is the Bernays-Schönfinkel Horn class with equal-
ity where all clauses are range restricted.

Definition 24 (BSHE).
The Bernays-Schönfinkel Horn class with equality (BSHE) is a subset of first
order clauses where clauses are of the form C ∨A or C with:

i) C contains only negative literals and A is a positive literal.

67

68 CHAPTER 6. TRANSITIVE PROPERTIES

ii) Every variable contained in A is also contained in a non-equality atom
of C.

iii) C and A contain no function symbols, only constants.

iv) Equality is present among the predicate symbols.

It is assumed, that all constants are different (unique name assumption),
i.e. literals a 6≈ b are always true and a ≈ b always false for all different
constants a and b. Consequently clauses can be simplified to contain no
ground equality literals by deleting false literals and deleting clauses that
contain true literals. Furthermore, clauses C ∨ x 6≈ t with variable x and
constant or variable t can be simplified to C[x← t] (replacing all occurrences
of x by t). Hence, all remaining equality literals are positive and non-ground.
Unit clauses cannot be equalities because (ii) implies all positive unit clauses
are ground.

Compared to the expressivity of ALC, BSHE does not support existential
restrictions on properties (∃R.C) because translation to first order logic
would introduce a skolem function (see Table 2.1). Furthermore, axioms
A v C tD are not expressible. But, it is possible to state that a property
is functional or transitive.

6.1 Calculus

Since BSHE does not contain function symbols, we do not need superpo-
sition rules in the calculus. Hence, no translation of predicates to general
functions is necessary. Motivated by the difficulties in deciding satisfiability
of the Yago ontology, [57] proposed a calculus for checking satisfiability of
BSHE theories. For guaranteeing completeness also for transitive predicates,
ordering requirements are necessary that are stronger than those used for
ordered resolution and basic superposition.

Definition 25 (Admissible Ordering for RB).
An ordering � on ground terms and literals is admissible for RB if

• it is well founded and total on ground terms and literals,

• L � L′ whenever literals L and L′ contain the same transitive predicate
Q, and the maximal subterm of L′ is strictly smaller than the maximal
subterm of L,

• ¬A � A for all ground atoms A,

• ¬Q(s, t) � Q(s′, t′) whenever Q is a transitive predicate and max(s, t) �
max(s′, t′),

6.1. CALCULUS 69

• ¬Q(s, s) � ¬B whenever Q is a transitive predicate and B is Q(s, t)
or Q(t, s) and s � t.

These properties of the ordering ensure the calculus RB is efficient also for
transitive properties. We assume transitivity is not represented by clauses
but by marking some properties as transitive. The chaining rules make sure
the calculus is complete for the implications of transitivity, hyperresolution is
for the other implications. The last rule is object equality cut, it implements
the unique name assumption.

Definition 26.
The calculus RB consist of the rules Ordered Chaining, Negative Chaining
and Hyperresolution where the ordering � is admissible for RB. In the
following rules, Q is a transitive predicate.

Ordered Chaining
Q(l, s) Q(t, r)

Q(l, r)σ

where

1. σ is the most general unifier of s and t

2. lσ 6� sσ and rσ 6� tσ

Negative Chaining Right
Q(l, s) D ∨ ¬Q(t, r)

Dσ ∨ ¬Q(s, r)σ

where

1. σ is the most general unifier of l and t

2. sσ 6� lσ and rσ 6� tσ

Negative Chaining Left
Q(l, s) D ∨ ¬Q(t, r)

Dσ ∨ ¬Q(t, l)σ

where

1. σ is the most general unifier of s and r

2. lσ 6� sσ and tσ 6� rσ

Hyperresolution
A1 ... An ¬B1 ∨ ... ∨ ¬Bn ∨ P

Pσ

where

1. n ≥ 1, A1, ..., An are unit clauses,

2. P is a positive literal or false

3. σ is the simultaneous most general unifier of Ai and Bi respectively,
for all i ∈ {1, ..., n}

70 CHAPTER 6. TRANSITIVE PROPERTIES

OECut
a ≈ b
�

where a and b are two different constants.

Before we distribute this calculus, we address the theoretical properties that
have to be preserved by distribution.

6.1.1 Soundness, Completeness, Termination

It is easily checked that all inferences in RB are sound. It is well known,
that hyperresolution alone is complete for first order theories, hence RB is
also complete for BSHE. But, with clauses for transitivity, RB would not be
efficient because all implied binary unit clauses are materialized. Therefore,
transitivity clauses are deleted and the corresponding predicates are marked
as transitive. The calculus terminates because no conclusion is longer than
the main premise of an inference. Up to variable renaming, the number of
different clauses of a given length is finite.

More difficult to prove is the completeness of the calculus. For theories
without transitive predicates, hyperresolution is complete. Hence, it has to
be shown that the chaining rules are a proper replacement for inferences
with transitivity clauses. [57] proves completeness of the chaining calculus
by adapting the ideas from [8]. It shows the herbrand interpretation con-
structed from all ground instances of a saturated set of clauses is a model
also for the transitivity clauses.

Theorem 5. A set of clauses N saturated by RB is satisfiable if and only
if N does not contain the empty clause.

Proof sketch. In a saturated set N of clauses that contains no empty clause,
all ground instances of clauses are also saturated. A sequence of herbrand
interpretations Ik of the k smallest clauses in the set can be defined such
that Ik+1 can be constructed from Ik. This construction consists basically
in extending the interpretation of predicate P to instance a if the next
clause is a positive unit clause P (a). If the next clause is not a unit clause,
the interpretation does not change. The finally obtained interpretation In
(where n is the number of clauses in N) is a model for N and the transitivity
clauses and satisfies the unique name assumption.

For a detailed proof see [57].

6.2 Distribution

For distributing the calculus, we have to find an allocation of clauses that
preserves completeness. For efficiency, a clause should not be allocated to too
many reasoners, preferable is a functional allocation. For ordered resolution,

6.2. DISTRIBUTION 71

each clause has a unique resolvable literal that determines clause allocation
(Corollary 4). However, the BSHE calculus does not have this property. In
negative chaining inferences any negative literal with transitive predicate
is a resolvable literal. Fortunately, clauses do not usually contain many
literals of this type. Also, hyperresolution has multiple resolvable literals.
We assume the allocation of clauses is based on a given allocation of symbols
sa and analyze the rules of RB to find requirements of the allocation. For
each rule, we note which allocations are complete for this rule and what are
the allocation symbols. Thereby we find a complete allocation that creates
as few duplicates of clauses as possible.

Ordered Chaining For ordered chaining inferences, all premises are pos-
itive unit clauses. An allocation is complete for ordered chaining if all unit
clauses that consist of a positive transitive predicate literal Q(l, s) are al-
located to one reasoner responsible for Q. The corresponding allocation
symbol for these clauses is Q, the same as for ordered resolution.

Negative Chaining Since there is no maximality requirement for nega-
tive chaining, a clause has to be allocated to all reasoners responsible for a
transitive predicate contained in a negative literal of the clause. Hence, we
add to the allocation symbols all transitive predicates of negative literals.

Hyperresolution The unit clauses A1, ..., An have to be allocated to the
same reasoner as the main premise. Since this is not feasible, we propose a
modification of the hyperresolution rule below.

Object Equality Cut Any allocation is complete for OECut because the
rule has only one premise.

Note that the transitivity clauses have to be allocated to all reasoners be-
cause the information is necessary for deciding about allocation of clauses
with multiple binary literals. But, the chaining inferences for a transitive
predicate Q are only performed by the reasoner responsible for predicate Q.

The problematic rule for distribution is hyperresolution. Allocating all
premises of a possible hyperresolution inference to the same reasoner is
not efficient in general because it restricts the symbol allocation sa. For
obtaining a complete clause allocation, we would have to allocate any pair
of predicates that occurs in two negative literals of the same clause to one
reasoner. If there are many clauses that contain multiple negative literals,
this could prevent allocating predicates to different reasoners. We might
end up with allocating all predicates to the same reasoner. Furthermore,
the restrictions on the symbol allocation have to be analyzed before starting

72 CHAPTER 6. TRANSITIVE PROPERTIES

the reasoning process. Fortunately, it is possible to define a clause allocation
that is complete for any allocation of symbols if we modify the hyperresolu-
tion rule.
Hyperresolution is equivalent to a sequence of resolution inferences, where
the intermediate conclusions are deleted. I.e., instead of resolving the main
premise with all unit clauses A1, ..., An at the same time, we can resolve
with A1 and then resolve the conclusion with A2. By repeatedly resolving
the conclusion with the next unit clause, we end up with the final conclu-
sion that is identical to the conclusion of the corresponding hyperresolution
inferrence. The drawback is the higher number of derivations and the addi-
tionally necessary reductions.
As described in Chapter 5, ordered resolution can be distributed without
problems. Hence, we could replace hyperresolution by the corresponding or-
dered resolution rule where the side premises are unit clauses. However, we
prefer another solution that also avoids most of the redundant conclusions
that are skipped by hyperresolution. For applying the necessary restriction
to hyperresolution, we define a selection function that is designed for distri-
bution. Note that hyperresolution is complete for first order logic for any
selection function, hence we are free to adapt the selection to our needs.

Definition 27 (BSHE Selection).
Based on a precedence > of predicate symbols, the selection function selects
from each clause c

• the literal ¬Pmax(...) that contains the largest predicate Pmax of all
predicates contained in a negative literal of c and

• all literals ¬P (...) with sa(P) = sa(Pmax).

• If c is a positive unit clause, nothing is selected.

With this selection function hyperresolution is restricted for distribution:

Definition 28 (Restricted Hyperresolution).

Hyperresolution
A1 ... An ¬B1 ∨ ... ∨ ¬Bn ∨D

Dσ

where

1. n ≥ 1, A1, ..., An are unit clauses,

2. D is a (possibly empty) clause

3. ¬B1, ...,¬Bn are selected in ¬B1 ∨ ... ∨ ¬Bn ∨ D and nothing else is
selected.

4. σ is the simultaneous most general unifier of Ai and Bi respectively,
for all i ∈ {1, ..., n}

6.2. DISTRIBUTION 73

The calculus RB with hyperresolution replaced by restricted hyperresolu-
tion is denoted by R∗B. The restricted hyperresolution rule enables efficient
distribution. It splits up one hyperresolution inference into a sequence of
hyperresolution inferences, where in each inference all premises are allocated
to the same reasoner. We can now define an allocation that allocates a clause
to at most k reasoners, where k = min(q,m) is the maximum number q of
different transitive predicates that may occur in one clause or the number
of reasoners m.

Like for the other calculi, the clause allocation for BSHE is based on the
allocation symbols of a clause.

Definition 29 (BSHE Allocation Symbols).
For each clause c and predicate P ∈ Sig(c), we have P ∈ a-symbolB(c) iff
at least one of the following holds:

• c is a unit clause.

• P is a transitive predicate and c contains a literal ¬P (t1, t2).

• there is no literal ¬P ′(t1, t2) in c with P ′ > P

As before, the allocation of a clause c depends on the symbol allocation, i.e.
caB(c) = sa(a-symbolB(c)).

6.2.1 Soundness, Completeness and Termination

Soundness of R∗B is easily verified by checking the restricted hyperresolution
rule. Also, restricting hyperresolution does not prevent termination because
conclusions are always smaller than premises. Since the empty clause is the
smallest clause, only a finite number of inferences is possible. Furthermore,
a hyperresolution inference is equivalent to a sequence of restricted hyperres-
olution inferences with elimination of redundant clauses. Hence, restricting
hyperresolution preserves completeness.

Corollary 5. R∗B is a sound, complete and terminating calculus for deciding
BSHE satisfiability.

Soundness, completeness and termination of the distributed chaining calcu-
lus R∗B(aB) are implied by the properties of R∗B.

Theorem 6. R∗B(aB) is a sound, complete and terminating calculus for
deciding BSHE satisfiability.

Proof. According to Corollary 1 and 2, soundness and termination are pre-
served by distribution. It remains to be shown that the allocation aB is
complete. Then, according to Theorem 1, distributed chaining is complete.
We check completeness of the allocation aB for each rule in Definition 26.

74 CHAPTER 6. TRANSITIVE PROPERTIES

setting runtime

single reasoner 58 min
6 reasoners, 1 monadic 45 min
6 reasoners, 3 monadic 12 min

Table 6.1: Runtimes of Yago saturation for a single reasoner and different
distributed settings.

For ordered chaining inferences, both premises are unit clauses, hence they
are allocated to the same reasoner m = sa(Q) that is responsible for predi-
cate Q. Also, the premises of negative chaining are allocated to sa(Q). The
side premise because it is a unit clause and the main premise because Q is
a transitive predicate in a negative literal. Finally, the allocation is com-
plete for restricted hyperresolution because all literals ¬Bi are selected and
hence the contained predicates are allocated to the same reasoner sa(Pmax)
according to Definition 27. All literals Ai are unified with a Bi and hence
also allocated to sa(Pmax). Since all premises of an admissible inference are
allocated to the same reasoner, the allocation is complete.

6.3 Experiments

We tested distributed chaining on the ontology the calculus was developed
for, Yago (Yet Another Great Ontology). Yago was automatically gener-
ated from Wikipedia and WordNet by the database/information retrieval
group at the Max Planck Institute for Informatics [56]. For efficient satu-
ration, the ontology was translated to the Bernays-Schönfinkel Horn class
with equality [57]. The obtained ontology consists of 9’918’686 clauses, that
contain 248301 unary predicates (classes), 79 binary predicates (properties)
and 4433159 constants (instances) and no functions. In description logic
notation, the expressivity of the ontology is in SF , it contains functional
properties and transitive properties but no existential restrictions on prop-
erties. The Spass-Yago variant of the Spass reasoner was extended with
the chaining rules described in Definition 26. With improved transitivity
reasoning, the ontology was saturated in about 1 hour [57].

We compared the runtime for different distributed settings to the runtime
of a single reasoner, the results are depicted in Table 6.1. All experiments
are executed on the Esslingen cluster of the bwGrid6.

We first repeated the saturation using a single Spass-Yago reasoner with
the configuration proposed by [57]. Our results confirmed the reported run-
time of [57], the saturation was completed after 58 minutes. Additional tests
showed that hyperresolution is necessary. With hyperresolution replaced by

6.3. EXPERIMENTS 75

ordered resolution, the saturation was not finished after 5 hours. This is
a problem because distributed resolution does not guarantee completeness
when unrestricted hyperresolution inferences are applied and restricted hy-
perresolution is not implemented in Spass-Yago.
In the first distributed setting one reasoner was responsible for all monadic
predicates (i.e. the classes of the ontology) and hyperresolution was switched
on. Binary predicates where distributed randomly among the other reason-
ers. For the monadic clauses completeness is guaranteed, because all literals
are allocated to the same reasoner. We found that the saturation is also
complete for clauses containing binary literals: For every hyperresolution
inference, all top symbols of selected literals happen to be allocated to the
same reasoner. The runtime was reduced by a quarter with this distribu-
tion. Furthermore, the reasoners for binary predicates where locally satu-
rated after 10 minutes, only the monadic reasoner needed 45 minutes for the
saturation.
In a second test we used three reasoners for the monadic predicates and
three for the binary predicates. Here, an addition benefit of the distribution
is exploited. For optimizing the performance, we can use different config-
urations for the different reasoners. Hyperresolution was switched on only
for the reasoners responsible for binary predicates, for the monadic reason-
ers hyperresolution was switched off to guarantee completeness. Now, the
saturation was finished after 12 minutes. Maybe, implementing restricted
hyperresolution would further decrease the runtime.

76 CHAPTER 6. TRANSITIVE PROPERTIES

Chapter 7

Distributed Resolution with
Equalities

In this chapter, we extend the distributed resolution method to description
logics with cardinality restrictions. Cardinality restrictions are used to de-
clare certain properties as functional or restrict the property instances of
a certain type, e.g., Chair v Furniture u ∃≥3hasPart.Leg states that a
chair has at least three legs. Unqualified cardinalities (N) restrict only the
number of property instances, e.g., Triple v ∃=3hasElement states a triple
has three elements.

If an ontology contains cardinality restrictions or functional properties (F),
the corresponding set of first order clauses contains equality literals (see Sec-
tion 2.4). To deal with these equalities, a complex calculus is necessary that
is incompatible with the previous communication strategy used for ALCHI
and FOL. In particular, it is not possible to define a functional allocation for
the complex calculus, some clauses have to be copied to multiple reasoners.
Note that, although BSHE clauses may contain equalities as well, the calcu-
lus RB needs no special rule for equalities. This is due to the combination
of unique name assumption, absence of function symbols and horn property.
Most of the equalities in input clauses can be removed, and the remaining
equalities are very simple and all positive. In contrast, the distributed reso-
lution method that covers cardinalities requires a more involved calculus for
complete reasoning with complex equalities.

The extension of distributed resolution described in this chapter was first
proposed in [48].

7.1 Calculus

A complete calculus that terminates on clauses obtained from ontologies
that contain number restrictions is basic superposition [9, 30], an extension
of ordered resolution. Like ordered resolution, basic superposition uses an

77

78 CHAPTER 7. EQUALITIES

ordering of literals and selection function for restricting applicability of the
resolution rules.
As usual for theories containing equalities, we assume a translation of pred-
icates to general function symbols such that all literals are equalities (e.g.
the literal P (x) translates to P (x) ≈ >, see Section 2.6), we may still write
P (x) for readability purpose and call these literals predicate literals. Clauses
are split into skeleton clause C and substitution σ representing all substi-
tutions introduced by previous unifications. The clause Cσ is denoted as
closure C · σ or alternatively a closure is denoted by enclosing non-variable
subterms of Cσ that correspond to variables in C in brackets (e.g. P ([f(y)])
for P (x) · {x 7→ f(y)}).
For distributing basic superposition, the rules we have to take care of are
positive and negative superposition and hyperresolution. The other rules
contain only one premise and hence distribution of the input clauses into
separate sets does not restrict application of these rules. Decomposition
is the only reduction rule, the other rules are inference rules. We assume
rules with only one premise are applied eagerly (decomposition first) and
duplicated literals in a clause are deleted.

Definition 30 (Basic Superposition).

Positive superposition
(C ∨ s ≈ t) · ρ (D ∨ w ≈ v) · ρ

(C ∨D ∨ w[t]p ≈ v) · θ
where

1. σ is the most general unifier of sρ and wρ|p and θ = ρσ

2. tθ � sθ and vθ � wθ

3. in (C ∨ s ≈ t) · θ nothing is selected and (s ≈ t) · θ is strictly maximal

4. in D∨ (w ≈ v) ·θ nothing is selected and (w ≈ v) ·θ is strictly maximal

5. w|p is not a variable

6. sθ ≈ tθ � wθ ≈ vθ

Negative superposition
(C ∨ s ≈ t) · ρ (D ∨ w 6≈ v) · ρ

(C ∨D ∨ w[t]p 6≈ v) · θ
where

1. σ is the most general unifier of sρ and wρ|p and θ = ρσ

2. tθ � sθ and vθ � wθ

3. in (C ∨ s ≈ t) · θ nothing is selected and (s ≈ t) · θ is strictly maximal

7.1. CALCULUS 79

4. (w 6≈ v) · θ is selected or maximal and no other literal is selected in
D ∨ (w 6≈ v) · θ

5. w|p is not a variable

Ordered Hyperresolution

(C1 ∨A1) · ρ ... (Cn ∨An) · ρ (D ∨ ¬B1 ∨ ... ∨ ¬Bn) · ρ
(C1 ∨ ... ∨ Cn ∨D) · θ

where

1. σ is the most general substitution such that Aiθ = Biθ for 1 ≤ i ≤ n
and θ = ρσ

2. each Ai · θ is strictly maximal in Ci ∨Ai

3. each Ai and ¬Bi is a predicate literal

4. each ¬Bi · θ is selected or nothing is selected, n = 1 and ¬B1 · θ is
maximal w.r.t. (D ∨ ¬B1) · θ.

Reflexivity resolution
(C ∨ s 6≈ t) · ρ

C · θ
where

1. σ is the most general unifier of sρ and tρ and θ = ρσ

2. (s 6≈ t) · θ is selected or maximal and no other literal is selected

Equality factoring
(C ∨ s′ ≈ t′ ∨ s ≈ t) · ρ
(C ∨ s′ ≈ t′ ∨ t 6≈ t′) · θ

where

1. σ is the most general unifier of sρ and s′ρ and θ = ρσ

2. tθ � sθ and t′θ � s′θ

3. (s ≈ t) · θ is selected or maximal and no other literal is selected in
(C ∨ t ≈ t′ ∨ s′ ≈ t′) · θ

Decomposition
C · ρ

C1 ∨Q([t]) ¬Q(x) ∨ C2 · θ
where

80 CHAPTER 7. EQUALITIES

1. x is the vector of m free variables of C2θ and t is a vector of m terms

2. C · ρ = C1 · ρ ∨ C2 · θ{x 7→ t}

3. Q is a fresh predicate if no clause was decomposed into C2θ before,
otherwise the previously introduced predicate is reused

4. ¬Q(t)τ � Lστ for each ground substitution τ where L is the main
premise of the inference that derived C · ρ and σ is the corresponding
unifier.

Without the decomposition rule (Definition 5.4.1 in [36]), basic superposi-
tion terminates only if there are no number restrictions on roles that have
subroles [36]. The decomposition rule is applied to derived clauses before any
other rule is applied. With number restrictions on roles that have subroles,
basic superposition may temporarily generate clauses that are no ALCHIQ
closures, but these are immediately reduced to ALCHIQ closures using the
decomposition rule.

An ordered hyperresolution combines a sequence of ordered resolution infer-
ences into one inference. This is equivalent to deleting intermediate conclu-
sions of the corresponding ordered resolution sequence. If at most one literal
is selected (i.e. n = 1), ordered hyperresolution is equivalent to ordered res-
olution. Ordered resolution is a special case of positive superposition, where
w|p = w, i.e. p is the root position. Hence, basic superposition is complete
without the hyperresolution rule, but it is more efficient with hyperresolu-
tion.

Definition 31 (Resolution Calculus RQ [30]).

RQ is the calculus with

1. inference rules positive and negative superposition, reflexivity resolu-
tion and equality factoring and decomposition reduction rule,

2. selection of all negative binary literals,

3. the term ordering �Q is a lexicographic path ordering (LPO, [38])
based on a total precedence > of function, constant and predicate sym-
bols with f > c > P > > for every function f constant c and predi-
cate P .

Literals that contain a function symbol are ordered first to avoid substituting
the arguments of functions with function terms. Limited nesting depth of
literal terms is necessary to guarantee termination of the calculus, it makes

7.2. ALLOCATION METHOD 81

sure only the types of clauses depicted in Table 7.1 occur when basic super-
position is applied to clauses obtained from an ALCHIQ ontology (i.e. the
set ofALCHIQ closures is closed under basic superposition). Strictly speak-
ing, clauses of other types may be derived, but these are always redundant
([36], Lemma 5.3.6) and deleted immediately.

type # closure type

1 ¬R(x, y) ∨R−(y, x)
2 ¬R(x, y) ∨ S(x, y)
3 Pf (x) ∨R(x, 〈f(x)〉)
4 Pf (x) ∨R([f(x)], x)
5 P1(x) ∨P2(〈f(x)〉) ∨

∨
〈fi(x)〉 ≈/ 6≈ 〈fj(x)〉

6 P1(x) ∨P2([g(x)]) ∨P3(〈f [g(x)]〉) ∨
∨
〈ti〉 ≈/ 6≈ 〈tj〉

7 P1(x) ∨
∨n

i=1 ¬R(x, yi)
∨n

i=1 P2(yi) ∨
∨n

i=1
n

j=i+1
yi ≈ yj

8 R(〈a〉, 〈b〉) ∨P(〈t〉) ∨
∨
〈ti〉 ≈/ 6≈ 〈tj〉

Table 7.1: The 8 types of ALCHIQ closures [30]. 〈t〉 denotes that term
t may but need not be marked (i.e. has been introduced by a previous
unification), ≈ / 6≈ denotes a positive or negative equality predicate. For
clauses of type 6, ti and tj are either of the form f([g(x)]) or of the form x
and the clause contains at least one term f(g(x)).

Because the set of clause types is finite and the set of symbols is finite for
every given ontology, the number of clauses that can be derived is finite, too
and hence basic superposition terminates for ALCHIQ input[30].

7.2 Allocation Method

For defining the allocation for ALCHIQ, we have to take care of the rules
positive superposition, negative superposition and hyperresolution. The
other rules have only one premise, hence distribution does not restrict the
application of these rules. The first consideration for distributing basic su-
perposition are the a-symbols of the ALCHIQ closures. To simplify the
observation, we first take advantage of the ordering restrictions imposed by
basic superposition. Note that the resolvable literal definition for ALC ap-
plies to basic superposition, too. From Definition 30 we can see that all
literals that are resolved are resolvable literals according to Definition 21.
In particular, the literals s ≈ t · ρ and w ≈ / 6≈ v · ρ are resolvable literals.
Furthermore, a close look at the ordering of Definition 31 reveals that the
ALCHIQ closures of types 3-6 and 8 are totally ordered and types 1 and 2
contain exactly one selected literal. Only closures of type 7 contain multiple
resolvable literals, but these are all predicate literals with the same predicate
symbol. Hence, for finding the a-symbols of a clause, we pick the resolvable

82 CHAPTER 7. EQUALITIES

literals and check which rules can be applied and which symbols necessarily
occur in both premises.

Hyperresolution. If the resolvable literal is a positive (negative) pred-
icate literal, the clause can be side premise (main premise) in an ordered
hyperresolution inference. For positive and negative literals, the a-symbol
for hyperresolution is the predicate of the resolvable literal. Only a clause
of type 7 may contain multiple resolvable literals, but these are all predicate
literals with the same predicate. Hence, the a-symbol is well defined.

Resolvable predicate literal, superposition at root position. For a
predicate literal, if the position p is the root position, the resolvable literal
of the other premise is a predicate literal, too. Positive superposition pro-
duces only redundant clauses, because w[t]p ≈ v is the tautology > ≈ >.
Negative superposition is equivalent to ordered resolution, because w[t]p ≈ v
evaluates to > 6≈ > (=false) and hence the conclusion is (C ∨D) · θ. Like
for hyperresolution, the corrsponding a-symbol is also the predicate of the
resolvable literal.

Resolvable equality, superposition at root position. For an equal-
ity literal, if the position is the root position, the resolvable literal of the
other premise is an equality literal, too. The a-symbol is the top symbol of
the larger argument of the equality. Note that the arguments of resolvable
equalities are always comparable for ALCHIQ closures.

Superposition at non-root position. If the position is not the root po-
sition, w|p is a function term because according to 5.) it is not a variable.
Hence, s is not a predicate, i.e. s ≈ t is an equality literal. s is not a vari-
able, because variable equations are never resolvable literals of ALCHIQ
closures. w ≈ v is a predicate literal, because strict subterms of function
terms are always marked in ALCHIQ closures. I.e. if w is a function term,
then w|p, p 6= ε is a variable. w|p is necessarily the first function term of the
literal. For literals with nested functions like P (f [g(x)]) the term g(x) is
not contained in w but part of the substitution ρ, i.e. the subterm w|1.1 is
a variable. Hence, function terms at position p = 1 or p = 2 of a resolvable
literal are a-symbols of a clause.

Definition 32 summarizes the computation of a-symbol forALCHIQ clauses.

Definition 32 (a-symbol for ALCHIQ).
For an ALCHIQ clause c with resolvable literal L:

a-symbolQ(c) = {AP -symbol(c)} ∪ {Af -symbol(c)}

7.2. ALLOCATION METHOD 83

where
AP -symbol(c) = P if L is a (possibly negative) predicate literal (¬)P (...)
Af -symbol(c) = f if L is an equality literal f(...) ≈/ 6≈ t or L is a (possibly
negated) predicate literal (¬)P (f(...)) or (¬)P (..., f(...)) with unmarked term
f(...).

Note that for closures of type 7 the AP -symbol is identical for all possible
selections, and Af -symbol is not applicable. From the analysis above, we can
see that the a-symbols of a ALCHIQ clause c are the union of AP -symbol(c)
and Af -symbol(c). Hence, the maximum number of a-symbols for a clause
is two.
The allocation of clauses to reasoners is based on the a-symbols and an
allocation sa of the signature symbols:

Definition 33 (Allocation for ALCHIQ).
The clause allocation ca(c) for the distributed calculus RQ(ca) is defined by

ca(c) = {sa(AP -symbol(c)), sa(Af -symbol(c))}

where sa : Sig(O)→M is an allocation of the signature symbols of the input
ontology O, including concepts introduced by the definitorial form transfor-
mation.

An example refutation is depicted in Figure 7.2. Before translating the ax-
ioms from Figure 7.1 to clauses as defined in 2.4, the normalization defined
in 2.3 is applied to obtain simple axioms. All predicates in Figure 7.2 are
abbreviated by their first letter, Q is a new predicate introduced by normal-
ization. The symbol precedence is s > t > a > A > G > C > F > Q > R,
literals of each clause are ordered with the resolvable literals first. For
brevity, we skip the subsumptions that are not relevant for the refutation,
i.e. ∃≤1R.¬G v A and C v ∃≤1R.F are not translated to clauses. The
remaining subsumption of axiom DL1 is translated to clause R1, axiom D3
is translated to G1. The query is tested by introducing a constant a that is
instance of A and ¬C (clauses A1 and C1). All other input clauses are from
the remaining subsumption of DL2. If the distributed resolution process

DL1 : Awardee ≡ ∃≤1Rated.¬GradeA
DL2 : CandidateScholar ≡ ∃≤1Rated.Failed

DL3 : GradeA v ¬Failed
query : Awardee v CandidateScholar

Figure 7.1: Description logic example.

84 CHAPTER 7. EQUALITIES

(inputR1) ¬R(x, y) ∨ ¬R(x, z) ∨G(y) ∨G(z) ∨ y = z ∨ ¬A(x) R

(inputR2) R(x, s(x)) ∨ ¬Q(x)

(inputR3) R(x, t(x)) ∨ ¬Q(x)

−−−−−−−−−−−−−−−

(R1,R2R4) ¬R(x, z) ∨G([s(x)]) ∨ [s(x)] = z ∨G(z) ∨ ¬A(x) ∨ ¬Q(x)

(R3,R4R5) G([s(x)]) ∨ [s(x)] = [t(x)] ∨G([t(x)]) ∨ ¬A(x) ∨ ¬Q(x)→Gy R5

(inputG1) ¬G(x) ∨ ¬F (x) G

−−−−−−−−−−−−−−−

(R5G2) G([s(x)]) ∨ [s(x)] = [t(x)] ∨G([t(x)]) ∨ ¬A(x) ∨ ¬Q(x)

(G1,G2G3) ¬F ([s(x)]) ∨ [s(x)] = [t(x)] ∨G([t(x)]) ∨ ¬A(x) ∨ ¬Q(x)→F

(s5G4) G([t(x)]) ∨ ¬A(x) ∨ ¬Q(x)

(G1,G4G5) ¬F ([t(x)]) ∨ ¬A(x) ∨ ¬Q(x)→F

(s7G6) G([t(x)]) ∨ F (t(x)) ∨ ¬A(x) ∨ ¬Q(x)→del (subs. by G4)

(inputC1) ¬C(a) C

(inputC2) C(x) ∨Q(x)

−−−−

(C1,C2C3) Q(a)→Qy C3

−− Q

(C3Q1) Q(a)

(A3Q2) ¬Q(a)

(Q1,Q2Q3) �

y G3

y G5

x

s5

(inputF1) F (s(x)) ∨ ¬Q(x) F

(inputF2) F (t(x)) ∨ ¬Q(x)

−−−−−−−−−−−−−−−

(G3F3) ¬F ([s(x)]) ∨ [s(x)] = [t(x)] ∨G([t(x)]) ∨ ¬A(x) ∨ ¬Q(x)

(F1,F3F4) [s(x)] = [t(x)] ∨G([t(x)]) ∨ ¬A(x) ∨ ¬Q(x)→s

(G5F5) ¬F ([t(x)]) ∨ ¬A(x) ∨ ¬Q(x)

(F2,F5F6) ¬A(x) ∨ ¬Q(x)→A

x

A3

y F4

y F6

(inputs1) s(x) 6= t(x) ∨ ¬Q(x) s

(inputs2) R(x, s(x)) ∨ ¬Q(x)

(inputs3) F (s(x)) ∨ ¬Q(x)

−−−−−−−−

(F4s4) [s(x)] = [t(x)] ∨G([t(x)]) ∨ ¬A(x) ∨ ¬Q(x)

(s1,s4s5) G([t(x)]) ∨ ¬A(x) ∨ ¬Q(x)→G

(s2,s4s6) R(x, t(x)) ∨G([t(x)]) ∨ ¬A(x) ∨ ¬Q(x)→del (type)

(s3,s4s7) G([t(x)]) ∨ F (t(x)) ∨ ¬A(x) ∨ ¬Q(x)→G

(inputA1) A(a) A

−−−−

(F6A2) ¬A(x) ∨ ¬Q(x)

(A1,A2A3) ¬Q(a)→Q

(inputt1) R(x, t(x)) ∨ ¬Q(x) t

(inputt2) F (t(x)) ∨ ¬Q(x)

−−−−

Figure 7.2: Distributed resolution example with equalities.

7.3. RESTRICTED INFERENCES 85

finds a proof (i.e. derives an empty clause �) we know that A u ¬C cannot
have an instance and hence A v C holds.

For simplicity, every predicate and function is allocated to a different rea-
soner depicted by a box containing the processed clauses. Input clauses
translated from the ontology and query are depicted above the horizontal
dash lines. Superscripts in the clause labels refer to the origin of the clause,
i.e. either two clauses from the same reasoner or a single clause that was
propagated from another reasoner. Clauses that are deleted locally because
they are propagated or redundant are set in gray.

The first box depicts the reasoner responsible for predicate R. Here the
clause R4 is derived from clauses R1 and R2. Then, R5 is derived from R3
and R4 and propagated to the reasoner responsible for G because G is the
predicate of the resolvable literal G([s(x)]). R5 is not propagated to the
reasoner responsible for s because the term [s(x)] is marked i.e. introduced
by previous unification.

Note that the duplicated literal ¬Q(x) is deleted immediately in clauses
F4, F6 and s5. Clause G6 is deleted because it is subsumed by clause G4.
Clause s6 is deleted because it is not of a type listed in Table 7.1, hence
we know it is redundant and we do not need to search for the subsumer
G4. The proof for the query is found by the reasoner responsible for Q,
by deriving an empty clause from two received clauses. The boxes can be
merged arbitrarily to reduce communication between reasoners. E.g. if a
single reasoner is responsible for predicates A, C and Q, the corresponding
boxes are merged and the clauses C3 and A3 are not propagated.

Before we address completeness of this distributed resolution method, we
turn to redundancy problems that require additional restriction of inferences.

7.3 Restricted Inferences

With the above allocation, no necessary inference is skipped, but some infer-
ences may be duplicated. For example, two clauses with resolvable literals
P (f(x)) and ¬P (f(x)) would be allocated to the reasoner responsible for P
and the reasoner responsible for f . Hence, both reasoners would perform
the inference with these two premises. Fortunately, all duplications of infer-
ences can be avoided by adding another allocation restriction to the basic
superposition calculus. E.g. we restrict the inference with wρ|p = wρ to the
reasoner responsible for P .

Definition 34 (Allocation Restrictions for Distributed RQ).
R∗Q is the calculus RQ with the restriction

sa(topSymbol(wρ|p)) = localID

86 CHAPTER 7. EQUALITIES

added to both superposition rules. localID ∈ M is a constant that identifies
the reasoner that computes the inference.

Definition 34 is more restrictive than the standard allocation restriction
∃m ∈M : a(((C ∨ s ≈ t) · ρ),m) ∧ a((D ∨ (w ≈/ 6≈ v) · ρ),m). In the above
example there are two m ∈ M that comply with the standard restriction
but for only one of them we have sa(topSymbol(wρ|p)) = m. The global
restriction corresponds to checking locally, if the top symbol of the unified
term is a local symbol. In the above example, the reasoner responsible for
f would not resolve the two clauses, because topSymbol(wρ|p) = P for this
inference. But, the reasoner responsible for P would perform this inference
and the calculus is still complete.
The idea is generalized to first order logic based on the term that is unified
with the corresponding term of another clause in an inference rule of the
calculus:

Definition 35 (General Allocation Restriction).
For a distributed resolution calculus R(ca) with non-functional allocation ca
based on symbol allocation sa, the restriction

sa(topSymbol(t)) = localID

where t is the unified term, is added to every rule r ∈ R with more than one
premise.

In contrast to ALCHIQ, the literals can have arbitrary nesting depth in full
first order logic. Consequently, the number of a-symbols of a clause is not
limited, i.e. we can expect a considerably higher communication overhead
than for ALCHIQ. However, clauses that reach a certain nesting depth
are often ignored to obtain an efficient approximation and decidable subsets
of first order logic usually impose a limit on the nesting depth. Hence we
expect that efficient variants of distributed resolution can be defined for
many relevant subsets of first order logic.

7.4 Completeness and Termination

Obviously, distributing resolution does not add any inferences, hence sound-
ness is preserved. We first proof the completeness and termination ofR∗Q(caQ)
for ALCHIQ and then address the completeness for full first order logic.

Theorem 7 (Completeness of Distributed Resolution for ALCHIQ). Dis-
tributed resolution with calculus R∗Q(caQ) decides ALCHIQ satisfiability.

Proof. Assume that all reasoners are saturated. We have to show that if
the set of all input clauses is unsatisfiable, an empty clause is derived by
one of the reasoners. Since RQ is refutation complete, it remains to be

7.4. COMPLETENESS AND TERMINATION 87

shown that the union Wo∪ of all Wo sets is a saturated set of clauses, i.e.
every clause that can be derived from Wo∪ by RQ is already contained
in Wo∪ or subsumed by a clause in Wo∪. Then, if the input clauses are
inconsistent, Wo∪ contains an empty clause and hence one of the separate
Wo sets contains an empty clause.
Assume in contrary, that Wo∪ is not saturated, i.e. there is a non-redundant
clause n /∈ Wo∪ that can be derived from clauses c ∈ Wo∪ and c′ ∈ Wo∪.
The derivation of n required that a term from premise c is unified with a term
of premise c′. The unified term is not a variable because in Definition 30
w|p is required to be not a variable and s · ρ is the larger argument of
an equality which is no variable if (s ≈ / 6≈ t) · ρ is resolvable literal of
an ALCHIQ closure. Hence, every possible superposition inference with
a premise c requires unification of a term with top symbol in a-symbol(c)
and every possible partner clause c′ must contain a resolvable literal that
contains a term with top symbol in a-symbol(c). There is a symbol S ∈
a-symbol(c) ∩ a-symbol(c′) which implies a(c, sa(S)) ∧ a(c′, sa(S)) i.e. c
and c′ are both allocated to reasoner sa(S). But, since the Wo set of this
reasoner is saturated, and the clause n is not redundant, n is contained in
the reasoners Wo set and hence n ∈Wo∪

Hence, if an empty clause can be derived from a set of input clauses by RQ,
the empty clause is also derived by R∗Q(caQ). The allocation caQ ensures all
premises of a possible inference meet in one module. A clause is allocated to
at most two modules, every inference is unique, i.e. the same clause is not
derived again in another module from the same premises. Local saturation
of the local clause sets is enough to guarantee completeness of the method.
Termination of RQ obviously implies termination of the distributed variant
R∗Q(caQ) since no inferences are added by distribution and the only necessary
reduction rule has only one premise.

Corollary 6. Distributed basic superposition terminates on ALCHIQ.

If we apply R∗Q(caQ) to full first order logic with equalities, termination is
obviously not guaranteed. We can preserve completeness when distributing
basic superposition for FOL. But, many propagations may be necessary and
the communication overhead may outweigh the computation power added by
distribution. For completeness for FOL, we have to consider any predicate
or function symbol contained in a resolvable literal as a-symbol.

Furthermore, for the proof of Theorem 7, we used the restriction that unified
terms are never variables. In contrast, for first order logic, the input could
contain a clause x ≈ y consisting of only one literal. It has two terms that
could be unified with terms of other clauses, both are variables (namely x
and y) and hence can be unified with any term. Consequently, we have to
allocate this clause to all reasoners.

88 CHAPTER 7. EQUALITIES

However, real world tasks do not contain this type of clause, as it states
that any two constants are identical. Also, the nesting depth of functions
is often limited in real world theories. For subsets of first order logic that
provide an efficient calculus, we expect that a complete and efficient clause
allocation can be defined.

7.5 Implementation

Our distributed resolution implementation is based on the first order prover
Spass8 [64]. For extending the implementation described in Section 5.4 to
equalities, the calculus and the allocation are changed.

Basic superposition requires recording previous unifications which is not im-
plemented in Spass. But, Spass implements superposition. In this calculus,
the restriction “w|p is not a variable” of positive and negative basic super-
position is replaced by “w|p ·σ is not a variable”. Hence, superposition adds
inferences that are skipped by basic superposition and is also complete for
ALCHIQ−. Basic superposition is more efficient and hence the runtimes
and number of derived and propagated clauses would be smaller with basic
superposition. However, we can use superposition alternatively for extend-
ing the supported expressivity of distributed resolution to equalities. This
greatly simplifies the implementation because we can use the distributed res-
olution implementation described in Section 5.4. For changing the calculus,
we only adapt the configuration of Spass to enable superposition9.

The allocation of a clause is extended in two ways. First, there are not only
predicate literals but also equalities. If a resolvable literal is an equality,
the allocation is defined by the top symbol of the larger argument (which is
always a function symbol). Second, predicate literals that contain a function
term are additionally allocated to the reasoner responsible for the top symbol
of this function term. In the implementation, the first allocation symbol is
either a function or predicate symbol and a derived clause is always sent
to the responsible reasoner (if it is not the local reasoner). The second
allocation symbol is either a function symbol inside a predicate literal or
null. A clause is send to the reasoner responsible for the second allocation
symbol if it is not null and the responsible reasoner is different from the local
reasoner and different from the reasoner responsible for the first allocation
symbol.

8http://www.spass-prover.org
9The complete configuration for Spass is: Distributed=1 Auto=0 Splits=0 Order-

ing=1 Sorts=0 Select=3 FullRed=1 IORe=1 IOFc=1 IEmS=0 ISoR=0 IOHy=0 -IERR=1
-ISpR=1 -ISpL=1 -IEqF=1 -RFSub=1 -RBSub=1 -RInput=0 -RSSi=0 -RObv=1 -
RCon=1 -RTaut=1 -RUnC=1 -RSST=0 -RBMRR=1 -RFMRR=1

http://www.spass-prover.org

7.6. EXPERIMENTS 89

0 2 4 6 8 10 12 14

0

0.5

1

1.5

2

2.5

3

3.5

4

modules

ru
n

tim
e

/s
e

c

0 2 4 6 8 10 12 14

0

5000

10000

15000

20000

25000

30000

derivation
propagation

modules

#
 c

la
u

se
s

Figure 7.3: Runtimes for saturation of the SWEET ontology, using different
numbers of reasoners.

7.6 Experiments

The experiments were executed on the Esslingen cluster of the bwGrid6 using
2.27GHz CPUs with 24G memory. Our implementation was tested on the
Semantic Web for Earth and Environmental Terminology (SWEET [42]), a
set of linked ontologies published by the NASA Jet Propulsion Laboratory.
The ontology network describes 5050 classes and 106 individuals, translation
to first order logic yields 9112 clauses. We replaced datatype properties by
object properties and nominals by common concepts because the current
version of our system does not support them. Transformation of transitivity
axioms did not add new axioms. The expressivity of the obtained test
ontology network is ALCHIN .

The time needed for saturating the merged ontology is short compared to
the FMA ontology we tested in the previous chapter. Despite the small size
of the ontology, Figure 7.3 shows runtime is still reduced by using more ma-
chines for the saturation. In our setting, the optimal number of reasoners for
the task is 4, adding more reasoners does not reduce runtime considerably.

Ideally, the runtime in the distributed setting would equal the runtime of a
single process divided by the number of reasoners used for the task. This
would imply a decrease in runtime by 50% when using 2 reasoners instead
of 1. But, here the decrease is 38% and from 2 reasoners to 4 reasoners
the decrease is 32%. Note that without equalities, the runtime decrease was
considerably higher in Chapter 5.

To find the specific reason for convergence, we investigate the distributed
saturation in more detail. First, one reasoner may have a larger portion of
the work assigned than the others. Since the runtime of the system is the

90 CHAPTER 7. EQUALITIES

0 2 4 6 8 10 12 14

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

modules

im
b

a
la

n
ce

Figure 7.4: Balance of SWEET saturation.

maximum runtime of the participating reasoners and not the average, this
increases runtime of the system. The imbalance depicted in Figure 7.4 is
measured by comparing the maximum number of derived clauses of a single
reasoner to the overall number of derivations. Obviously, a single reasoner
is optimally balanced. With 4 reasoners, one of the reasoners derives 40%
more clauses than the average. For six reasoners, this number increases to
more than 50%.

Another possible reason for runtime convergence is additional work caused
by distribution. Redundant clauses are only deleted if they are redundant
with respect to the module that derives or receives them. Hence, some re-
dundant clauses may be kept in the distributed setting, that are deleted in
the conventional saturation process. Additionally, propagated clauses are
printed and then parsed again when they are received, leading to updates of
local index structures. Additional work is indicated by the overall number of
derivations and propagations in Figure 7.5. The total number of derivations
does not increase considerably with increased number of reasoners. I.e. the
limited redundancy check is not an issue. As expected, the number of prop-
agations increases. The question is, whether this increase explains the curve
of runtime in Figure 7.3. Compared to the experiments in Chapter 5 the
number of propagations and the increase is higher. We observe an average
of 3700 propagations per second for two reasoners and an increase by 57%
for 4 reasoners. This is considerably more than the 37% we observed for
NCI and FMA. The difference is even larger when we take into account the
imbalance depicted in Figure 7.4. Like for the NCI, imbalance increases lin-
early with the number of reasoners. But, imbalance values are considerably
higher for SWEET. For 8 reasoners the imbalance is 1.61 while for NCI it
was only 1.19. I.e., for SWEET there is one reasoner that performed 61%
more derivations than the average.

7.6. EXPERIMENTS 91

0 2 4 6 8 10 12 14

0

5000

10000

15000

20000

25000

30000

derivation
propagation

modules

#
 c

la
u

se
s

Figure 7.5: Number of derivations and propagation for saturation of SWEET
ontology.

Note that although we used superposition in the experiments, the results
also allow drawing conclusions about the performance of distributed basic
superposition. The more efficient basic superposition calculus would require
less derivations and reduce the runtime for both the single reasoner setting
and the distributed setting. In particular, the total amount of redundant
inferences avoided by basic superposition is similar for the distributed set-
ting and the single reasoner setting. Hence, we can expect that distributing
basic superposition reduces runtime similar as distributing superposition.

To sum up, in comparison to computation on a single reasoner, runtimes are
decreased by distributed superposition. However, the decrease in runtime is
smaller than for ordered resolution due to a higher number of propagations
and higher imbalance of workload.

92 CHAPTER 7. EQUALITIES

Part III

Allocation

93

Chapter 8

Partitioning

Distributed resolution requires an allocation of clauses to reasoners, that is
based on an allocation of the signature symbols of the ontology. This allo-
cation of symbols is obtained from a partitioning of the ontology terms by
allocating each part to one reasoner. In the previous chapters we assumed a
partitioning of the ontology terms is given, for example by the namespaces of
a set of linked ontologies or by a random separation into disjoint sets. The
symbol allocation has a considerable influence on the performance of the
system. First, the number of clauses processed by each reasoner and hence
the workload distribution depends on the symbol allocation. Second, the
allocation of symbols determines if a derived clause is propagated, i.e. the
necessary amount of communication between reasoners. Hence, a random
allocation is probably not the best solution, we can expect a better perfor-
mance for allocations that are designed for the requirements of distributed
resolution.

8.1 Related Work

There are a couple of approaches to ontology modularization, corresponding
to various use cases. The approaches can be classified into ontology parti-
tioning and module extraction. The former addresses the task of turning
one ontology into a set of linked ontologies, while the latter extracts a mod-
ule from an ontology, e.g. for reusing it in another ontology. Despite the
different focus of these approaches, one task can be reduced to the other.
In particular, we can partition an ontology by repeatedly extracting parts
from it and we can extract a module from an ontology by first partition-
ing the ontology and then choosing one of the created ontology modules.
Module extraction approaches usually start with a set of ontology terms
and traverses the graph representation of the ontology, selecting concepts,
properties and axioms based on heuristics for their relevance to the desired
module [18]. Ontology partitioning methods are either based on graph par-

95

96 CHAPTER 8. PARTITIONING

titioning or use logical criteria for determining the partitioning. The most
prominent logical approach was proposed for partitioning in [35], it choses
modules such that the original ontology is a conservative extension of the
module. This means that all axioms in a specified local part of the module
signature that are implied by the original ontology are also implied by the
module alone. Obviously, reasoning in an ontology partitioned into modules
with this property is very efficient, since many axioms are known to be ir-
relevant for answering a given query. But, the reduced reasoning effort is
traded by very complex methods for creating and preserving the conserva-
tive extension property. Furthermore, this partitioning method may create
partitionings where one of the modules contains more than 80 % of the ax-
ioms of the whole ontology. More balanced partitioning is achieved by graph
based methods. These create a graph from the ontology and apply graph
partitioning methods [52] or traverse the graph and collect concepts and ax-
ioms [51]. Since our distributed reasoning approach requires balanced sizes
of the modules, we rely on graph partitioning.

8.2 Graph-based Ontology Partitioning

Our partitioning method extends the graph based approach described in [52].
It first encodes dependencies between elements in the ontology in a graph
structure. In a second step the obtained graph is partitioned using graph
partitioning methods. Finally, a distributed ontology is created from the
original ontology, based on the graph partitioning. We first give an overview
over the three steps before explaining each step in detail. The partition-
ing method is not restricted to a specific application, it can be adapted
to different requirements by choosing different algorithms for the subtasks
and adjusting the parameters of the applied algorithms. We describe the
method in general, address adaption for distributed resolution and compare
the performance of different methods subsequently.

8.2.1 Step 1: Create Dependency Graph

In the first step, a graph structure is created that represents the dependen-
cies between elements in the ontologies. The nodes of the graph correspond
to classes and properties of the ontology. If the ontology to be partitioned is
represented by clauses, unary predicate symbols correspond to class names
and binary predicates to properties. In addition to predicates, function
symbols that are introduced by skolemization may be considered for the
dependency graph. An edge is created between two symbols, if there is
a reason to prefer allocating both symbols to the same ontology part. The
edges and weights of edges are determined by the application, it corresponds
to the overhead generated by separation.

8.3. DEPENDENCY GRAPH 97

8.2.2 Step 2: Graph Partitioning

In the second step, a graph partitioning algorithm is used to determine sets
of ontology elements that should be in one module. In principle any graph
partitioning algorithm can be used for this task. The suitability of an par-
ticular algorithm depends on the requirements of the application that uses
partitioned ontologies. Prerequisite for applying structural partitioning is
that the requirements can be formulated as, or approximated by a graph
partitioning objective function. For distributed reasoning, this objective
function consists of minimizing the edge cut (that approximates communi-
cation overhead) and maximizing the balance of partition sizes.

8.2.3 Step 3: Partition Realization

Finally, a distributed ontology is created based on the graph partitioning.
The straight forward realization allocates each axiom of the ontology to
one of the modules. To allow for a more fine grained distribution, large
axioms can be converted to a set of smaller axioms. If redundancy in the
distributed representation of the ontology is allowed, each axiom may be
copied to different modules to reduce dependencies between the modules.
For distributed resolution, partition realization is not essential as we can
use the allocation function for creating a partitioned clausal representation
of the ontology. However, partition realization is still useful for obtaining a
distributed DL representation of the ontology.

8.3 Dependency Graph

There are numerous ways of creating the dependency graph for a given
ontology. We distinguish three types of dependency graphs.

8.3.1 Based on DL Axioms

Since an ontology is a graph by definition, this graph could be used directly
as dependency graph. The nodes are the classes, properties and individuals,
edges are subclass relations, instance relations and property relations. But,
there are some problems with using the ontology graph directly: First, edges
and nodes are not disjoint in the ontology graph. E.g. the same property
corresponds to a node in the domain definition of the property and it cor-
responds to an edge in any property assertion. Most of the available graph
partitioning methods do not allow overlap between the set of edges and the
set of nodes of the graph. Furthermore, usually a single type of edges is as-
sumed and weights for nodes and/or edges are required. Hence, the edges of
the ontology graph are not used directly as edges of the dependency graph.
Options for generating edges include

98 CHAPTER 8. PARTITIONING

• Link a class to its (direct) subclasses

• Link a class to its instances

• Link a property to direct subclasses of its domain and range

• Link all direct subclasses of the domain of a property (classes that
share a property)

• Link classes and properties that appear in the same axiom

• Link classes or properties that have similar names

All these options can be combined and weights can be assigned to each type
of edge. This method for dependency graph creation is used by the pato
partitioning tool.

8.3.2 Based on Clauses

For distributed resolution, the axioms are represented as clauses, hence this
representation can be used as basis for the dependency graph. There are
different options for defining the edges and the weight for edges and nodes.

Nodes The nodes are the predicates and function symbols appearing in
the clauses. The node weight is supposed to approximate the workload
caused by a symbol. The most obvious approximation is the number of oc-
currences of a symbol. Alternatively, we could count the number of clauses
or the number of literals, that contain the corresponding symbol. The dif-
ference between these numbers is probably small.

Edges Edges are introduced between nodes if there is a clause that con-
tains both corresponding symbols. The weight of the edge is the number of
clauses that contain both symbols. It can be restricted to count only pairs
of symbols that occur in consecutive literals according to the ordering.
The edge weight should estimate the second performance factor, i.e. the
communication costs caused by the separation of two symbols. The com-
munication costs depend on the number of propagated clauses, i.e. clauses c
with a parent clause p such that the top symbols of c and p are allocated to
different reasoners. In ordered resolution, the top symbol of a derived clause
is the top symbol of the second literal (assuming the clauses are ordered)
of one of the parent clauses. Hence, if the order is given, the top symbols
of consecutive literals are probable to be top symbols of a derived clause
and its parent. For indicating that these symbols should be resolved by the
same reasoner, we add an edge. If the order is not given (e.g. because it is
computed after partitioning) any pair of symbols occurring in a clause may
cause a propagation.

8.4. GRAPH PARTITIONING 99

8.3.3 Based on Derivation

Another option for the dependency graph is to measure the actual size of
the modules and the costs caused by separation. I.e. for distributed reso-
lution we record the used computation resources and communication over-
head. The computation effort for a symbol S is the computation time spend
on derivations and reductions on clauses with top symbol S. It can be
approximated by the number of derived clauses with top symbol S. The
communication overhead corresponds to the number of propagated clauses.
Obviously, this method is not applicable in general, as performing a reason-
ing task is required to create the dependency graph. However, the method
is useful for evaluating other dependency graph methods.

The runtime of a distributed saturation indicates the quality of the whole
partitioning method. Using the derivation graph, we can distinguish be-
tween the quality of the dependency graph and the quality of the graph
partitioning method. We start reasoning with an arbitrary partitioning and
record node weights and edges for every derived clause. The obtained de-
pendency graph is what we are trying to approximate with the clause-based
method. Furthermore, runtime logs of propagation and derivation can be
used for the dynamically optimized partitioning presented in Chapter 9.

8.4 Graph Partitioning

After creating a dependency graph from the ontology, standard graph par-
titioning methods can be used for partitioning the ontology symbols. We
used two available graph partitioning tools and additionally we implemented
a simple algorithm for distributed resolution.

8.4.1 Greedy Balance

One of the simplest partitioning algorithms ignores edges for creating a
balanced partitioning. The greedy balance algorithm repeatedly assigns
the node with the highest weight to the smallest part until all nodes are
assigned to one part. This method can serve as a baseline for evaluating
other partitioning algorithms. We expect lower communication costs for
algorithms that also take into account the edges of the graph.

8.4.2 Balanced Edge Cut

Graph partitioning methods are well known for resource optimization e.g. in
grid clusters. According to the two important properties of the resulting par-
titioning, there are algorithms available that minimize both the edge cut and
the imbalance. The edge cut is the sum of the weights of edges connecting
different parts, it corresponds to the overhead introduced by separating the

100 CHAPTER 8. PARTITIONING

whole system into parts. The imbalance of the size distribution corresponds
to the balance of workload distribution. There are different definitions for
imbalance, we use the size of the largest part divided by the average size of
a part.

Definition 36 (Imbalance).
The imbalance of a partitioned graph is

imbalance =
n · sizemax
sizegraph

where n is the number of parts of the partitioning, sizegraph is the sum of
node weights in the graph and sizemax is the sum of the node weights in the
largest part.

A perfectly balanced partitioning has an imbalance value of 1, the maximum
imbalance of n is reached when one part contains all nodes and the other
parts are empty. For defining the optimal partitioning, we would have to
combine edge cut and imbalance into a single objective function. But, since
computing an optimal solution is not possible for very large graphs any-
way, available tools compute good solutions and do not define the relative
importance of edge cut versus imbalance explicitly.
The common algorithms for this type of partitioning used by [31, 25] apply a
coarsening-refinement approach. They repeatedly compute a simpler graph
(coarsening), then partition the simpler graph and finally refine the graph
stepwise back to the original graph.
For coarsening the graph, neighboring nodes are merged and the weight of
the merged node is set to the sum of the weights of the original nodes, thus
preserving the essential properties of the graph. Many graph partitioning
methods are designed for nodes with coordinates, in our case we can use the
greedy balance algorithm for partitioning the coarsest graph. One of the
most popular methods for partitioning refinement is the iterative method
proposed by Kernighan and Lin [32]. It starts with an arbitrary initial
bisection of the graph and reduces the edge cut in each iteration by swapping
a set of nodes from one part with a set of nodes from the other part. A
more efficient variant is described in [21]. The method was extended to
graph quadrisection [55] and to arbitrary numbers of sets, edge weights, and
node weights [26]. The refinement technique is particularly relevant for the
dynamic allocation described in the next chapter.

8.4.3 Islands Algorithm

The island algorithm was proposed for ontology partitioning in [52, 46, 54].
The idea is to create clusters such that the edges inside a cluster are stronger
than edges connecting different clusters. In particular, the algorithm com-
putes all maximal line islands [10]:

8.5. PARTITION REALIZATION 101

Definition 37 (Line Island).
A subset of nodes I of a graph is a line island in the graph, if and only if
there is a spanning tree T over nodes in I such that

max
(u,v)∈E,v 6∈T

w(u, v) < min
(u,v)∈T

w(u, v)

where u and v are nodes and E are the edges of the graph. (u, v) is the edge
connecting u and v and w(u, v) is the weight of this edge.

For the determination of the maximal spanning tree the direction of edges
is not considered. In the application for ontology partitioning, [53] nor-
malized the graph before computing the line island and added optimization
for obtaining more balanced partitions. After normalization, the sum of
the weights of connected edges equals 1 for every node in the graph. The
computed line island partitioning often creates parts that consist of a single
node, these are merged into a neighboring part. Furthermore, a high mini-
mum edge weight in a cluster indicates a small size of the cluster. Hence, [53]
provides an option for merging clusters with minimum edge weight above a
specified threshold.

8.5 Partition Realization

In the previous sections, we showed how a partitioning of ontology sym-
bols can be created. For running a distributed resolution task, this type of
partitioning is sufficient. However, when different modules of the ontology
are developed independently in collaborative maintenance or when modules
are used independently of others, a modular ontology representation is re-
quired. For obtaining a connected set of ontology modules the axioms of the
given ontology are partitioned into sets of axioms. I.e. we have to create a
partitioning of axioms based on the partitioning of symbols.
Methods for computing this ontology network are described in terms of a
mapping that assigns a set of symbols to each axiom. Each module corre-
sponds to one part of the symbol partitioning and contains all axioms that
are mapped to at least one of the symbols in the part.

Definition 38 (Partition Realization).
A partition realization function rf maps each axiom α to a set of symbols
RS. A modular ontology {Oi} (i = 1..n) is obtained from an ontology O
and symbol allocation sa via the realization function:

Oi = {α ∈ O | ∃S ∈ rf(α), i ∈ sa(S)}

The best realization function depends on the application. The simplest
realization results in a modular ontology where each module contains all
axioms that contain one of the symbols allocated to the module.

102 CHAPTER 8. PARTITIONING

Definition 39 (Local Comprehensive Realization).
The local comprehensive realization rf1 maps an axiom to all symbols that
are contained in the axiom.

rf1(α) = {S ∈ Sig(α)}

If this realization is performed on the saturated ontology, each module con-
tains most of the information about the ontology terms allocated to it. But,
since the realization is a pure syntactical method, the modules are not com-
pletely self-contained. There may be axioms from the signature of one mod-
ule, that are implied by the modular ontology but not by the module alone.
Disadvantage of the first realization is the redundancy of the representation.
One axiom may be contained in many modules. The duplicate free realiza-
tion function creates a modular ontology where each axiom is contained in
exactly one of the modules.

Definition 40 (Duplicate Free Realization).
The duplicate free realization rf2(α) depends on the type of the axiom α:

rf2(A v C) = A

rf2(P v Q) = P

rf2(A ≡ C) = A

rf2(C(a)) = C

rf2(P (a, b)) = P

where A is a concept name, C and D are concepts, P and Q are property
names and a, b are constants.

The modules created by this realization are duplicate free, but less self-
contained than modules created by the first realization function. For on-
tologies that contain general concept inclusions C v D, we can extend the
definition by choosing a symbol of the axiom randomly or normalizing the
ontology. An ontology in definitorial form (Definition 2) does not contain
axioms C v D with complex concept C, these are transformed into axioms
> v ¬C t D. However, superconcepts of > are then all allocated to the
same module which may cause imbalanced module sizes.
The described realization functions show the trade off between local com-
pleteness and redundancy of the representation. Depending on the require-
ments of an application we can define realizations that are more compact
than rf1 but provide more complete information in each module than rf2.

8.6 Experiments

We tested different dependency graph and graph partitioning methods for
deciding which methods are suitable for our distributed reasoning setting.

8.6. EXPERIMENTS 103

partitioning runtime/sec propagation imbalance derivation

c-greedy 7.7 94361 1.11 123478
d-greedy 8.3 93616 1.10 123439

round robin 9.88 93623 1.08 123439
c-edge 11.3 37117 1.38 123478
d-edge 20.3 5781 1.22 123439

pato-islands 255.8 930 3.89 123411

Table 8.1: Comparison of partitioning methods.

For the comparison depicted in Table 8.1, we saturated the NCI ontology
distributed to 4 reasoners using different partitioning methods. Apart from
the round robin allocation, each partitioning method consists of a combi-
nation of dependency graph creation and graph partitioning method. The
dependency graph was created from the clauses (c-greedy, c-edge) or the
derivation graph (d-greedy, d-edge) or from the OWL axioms (pato-islands).
For the pato-islands partitioning, it is not possible to specify the number of
created parts in advance. Pato created a partitioning consisting of 24 parts.
The smaller parts were merged into one part to obtain a partitioning of 4
parts.

Applied graph partitioning methods are greedy balance (c-greedy, d-greedy),
balanced edge cut (c-edge, d-edge) and islands algorithm. The round robin
partitioning is the simplest strategy. It is based on the index number i(S)
of a symbol S, i.e. the allocation is sa(S) = i(S)%4. For balanced edge
cut partitioning, different algorithms are available. In preliminary inves-
tigations, we tested two free implementations, metis10 [31] and chaco11

[25]. The properties of the resulting partitionings are very similar [41], but
only metis is able to create partitionings for arbitrary number of parts while
chaco is limited to powers of two. Hence we used metis for balanced edge
cut computation.

We recorded runtime of the saturation and number of propagated clauses
and additionally counted the number of clauses dm that where derived by
each reasoner m. The depicted derivation is the sum d1 + d2 + d3 + d4.
Consequently, imbalance is computed as 4

derivation ·max
m

(dm) and the highest

possible imbalance is 4.

Table 8.1 shows the dependency graph created based on derivations did
not perform better than the clause graph. When used in combination with
the balanced edge cut algorithm, the saturation required almost twice the
runtime of the clause graph based variant. Hence, the clause graph ap-
proximates actual costs good enough, the derivation graph is not a more

10http://glaros.dtc.umn.edu/gkhome/views/metis
11http://www.sandia.gov/~bahendr/chaco.html

http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.sandia.gov/~bahendr/chaco.html

104 CHAPTER 8. PARTITIONING

c-
edge

d-
edge

c-
greedy

d-
greedy

round
robin

pato-
islands

Figure 8.1: Derivation graphs of NCI saturation. Comparison of partitioning
methods.

exact approximation. Furthermore, the greedy strategy and even the sim-
ple round robin outperformed the balanced edge cut partitioning. Actually,
round robin is a bit similar to the greedy strategy because for computing the
precedence, symbols are ordered according to their frequency in the input.
Hence, the four most frequent symbols are allocated to different reasoners
by both greedy and round robin partitioning.

Figure 8.1 gives are more detailed picture of balance and propagation for the
different partitioning methods. The reasoners are depicted by nodes, with
the size corresponding to the number of derivations of the reasoner. Arcs
depict propagation, the width corresponds to the square root of the num-
ber of propagations. For c-greedy, d-greedy, and round robin partitioning,
the graphs are very similar. Both node weights and edge weights are well
balanced. For balanced edge cut partitioning, the number of propagations
is much lower. Especially for c-edge, derivations and propagations are less
balanced. The pato-islands graph shows extreme imbalance and extreme
low propagation.

Variation in the number of derivations is very low. Even the highest number

8.6. EXPERIMENTS 105

of observed derivations is only 1‰ higher than the number of derivations
without distribution.
Probably, the reason for bad performance of balanced edge cut is too much
emphasis on the edge cut minimization. Apparently, the cost of propaga-
tion is not very high in our setting and hence it is more important to reduce
imbalance than to reduce the number of propagations. In fact, the highest
number of propagations was observed on the fastest saturation. However,
it might be possible to improve the partitioning by taking into account the
propagation. But, an adapted partitioning algorithm must put a strong
focus on balance when reducing the edge cut. Note, that in distributed
reasoning settings with slower network connection the results would be dif-
ferent. Depending on the network properties, algorithms with more focus
on edge cut might be appropriate.
The partitioning created by pato-islands is not suitable for distributed res-
olution. Detailed investigation of the distributed process showed, that the
merged part of the partitioning was saturated after only 3 seconds. Hence,
the partitioning created by pato was considerably improved by merging the
24 parts into 4 parts. However, the results are much worse than for the
simple round robin partitioning. There is no reason to expect good re-
sults when we use the pato dependency graph or the islands partitioning
method in other combinations. The low propagation value is only caused by
the extreme imbalance, one reasoner performed 97% of the total number of
derivations.
The resource requirements for computing partitionings are very small com-
pared to the runtime of the saturation. Only the pato and island methods
require several minutes, but they are not suitable anyway. The most expen-
sive of all other methods is computing the balanced edge cut which took less
than 0.2 seconds.

To sum up, the results achieved with very simple partitioning strategies
are quite good. Improving the simple partitioning by taking into account
propagation requires a different balanced edge cut algorithm that puts more
emphasis on the balance.

106 CHAPTER 8. PARTITIONING

Chapter 9

Dynamic Allocation

The previous chapter investigated methods for creating the allocation of
signature symbols to reasoners that is required for distributed resolution.
While an arbitrary allocation is acceptable in theory, the performance of
the reasoning process depends on the quality of the applied partitioning.
There are a couple of methods for creating a symbol partitionings, for some
ontologies a very simple round robin strategy can create an acceptable par-
titioning.

However, computing a suitable allocation in advance is not always possible.
For some ontologies, the input clauses give a bad estimation of the workload
caused by each symbol. For example, a property symbol P may occur only
once in a single clause stating that P is a superproperty of property Q.
But, the reasoning process will derive a clause with top symbol P from
any clause with top symbol Q which can cause a very high workload for
symbol P . Although in this special case we can adapt node weights of the
clause graph to improve the partitioning, there is no way to give a reliable
prediction of the workload of each symbol. In general, we cannot give any
guarantee for the quality of a symbol partitioning before the reasoning task
is finished. For improving the workload balance on reasoning tasks that
start with an initial partitioning of bad quality, we need means to improve
the partitioning at runtime.

Another problem with the partitioning methods discussed in the previous
chapter arises when distributed reasoning is applied in a dynamic environ-
ment. Our distributed reasoning method envisions reasoning over very large
ontologies composed of connected ontology modules. For very large ontol-
ogy networks, computation of reasoning tasks may take several hours de-
spite parallel computation. During the reasoning process, the availability of
computation resources may change. Additional compute nodes may become
available or used nodes may have to stop and continue working on a different
task. For this setting, it is necessary to move workload between nodes.

Finally, the workload caused by a given symbol usually changes during rea-

107

108 CHAPTER 9. DYNAMIC ALLOCATION

soning time. For example, at the beginning of a task many given clauses
have the top symbol S, but later given clauses with top symbol S are very
rare. Hence, the runtime of the whole process might be decreased if we could
use different symbol partitionings at the beginning and at the end.
Therefore, the extension to distributed reasoning proposed in this chapter
aims at solving multiple problems. It enables improving the initial parti-
tioning at runtime and adapting the partitioning to changing workload of
the signature symbols. Furthermore it allows adding and removing compute
nodes during computation.
Advantages of changing allocation at runtime are evident. But, changing the
allocation of a clause at runtime could easily lead to flaws in the reasoning
process, inferences could be skipped accidentally. Furthermore, temporary
differences in the allocation tables of the reasoners could result in oscillating
clauses that are send back and forth between reasoners, causing high network
traffic. For solving these problems, we propose a representation of dynamic
reallocation that structures a changing allocation into a sequence of modifi-
cations. After explaining the theory of reallocation, challenges imposed by
delay in the communication are addressed.

9.1 Reallocation

Recall, that the allocation of clauses is induced by an allocation of symbols
to reasoners. Hence, two main tasks have to be performed to change the
allocation of clauses at runtime. First, the symbol allocation tables of every
reasoner need to be updated to the new allocation. Second, the set of
clauses with changing allocation must be moved from the reasoner that
was previously responsible for these clauses to the reasoner that will be
responsible for resolution on the clauses next. To keep the reallocation
process simple, we first consider one reallocation task at a time.

Definition 41 (Reallocation Task).
A reallocation task is a tuple (sa1, sa2,m1,m2) of two allocations and rea-
soners such that for all symbols S:

• either sa1(S) = sa2(S), or

• sa1(S) = m1, and sa2(S) = m2.

The symbols S with sa1(S) 6= sa2(S) are the reallocated symbols of the real-
location task.

Hence, a reallocation task is a pair of allocations, such that one reasoner m1

is responsible for all reallocated symbols before the change of allocation and
a reasoner m2 is responsible for the reallocated symbols after the change.
The symbols that do not change allocation can be allocated to any reasoner.
Dynamic allocation of clauses can be described as a series of reallocation
tasks, where every task consists in changing the allocation of a set of symbols.

9.2. DYNAMIC ALLOCATION ALGORITHM 109

9.1.1 Completeness of Distributed Calculus

In theory, switching the allocation is performed instantly for all symbols
and corresponding clauses. Correctness, completeness and termination of
a distributed resolution calculus do not depend on any property of the al-
location. In particular, it is not required to remain unchanged. The only
assumption is that for each derivation the allocation symbols are allocated
to a single well defined reasoner. In between two derivations, the allocation
may change without any effect because a resolution rule is applicable to a
pair of clauses if they share an allocation symbol. The specific allocation of
the shared and unshared allocation symbols is not relevant.

Corollary 7 (Instant Reallocation). The distributed resolution calculus R(ca)
with clause allocation ca based on a dynamic symbol allocation sa is complete
if the calculus R(ca) is complete with static allocation.

For the calculus, a change in the allocation is no problem. The challenge of
dynamic reallocation is caused by physical distribution.

9.2 Dynamic Allocation Algorithm

It is not sufficient to change the local allocation tables, we also have to
search for local clauses that are now allocated to a different reasoner and
propagate them accordingly. Changing the physical location of clauses takes
some time. Note, that in a setting with enough shared memory for storing
all clauses we could avoid moving a clause to another location. But, chang-
ing the allocation still requires expensive updates of index structures and
synchronization.

A simple implementation of dynamic reallocation is to stop all reasoners at
the beginning of the main loop, just before picking a given clause. With
the whole system at hold, all updates and propagations can be executed
safely before the reasoners resume working on the updated clause sets with
updated allocation tables.

9.2.1 Propagation

Clause propagation for dynamic allocation is considerably more complicated
then with static allocation. Assume we have a Wo clause c in reasoner sa(P)
that is subject to propagation. The clause has two a-symbols, P and f , with
different allocation sa(P) 6= sa(f). Only f is a reallocated symbol. Then,
we do not know if it is necessary to propagate c to the reasoner responsible
for f . Maybe, c was send to sa(f) already when it was derived. But, it
is also possible that c was not propagated to sa(f). To avoid unnecessary

110 CHAPTER 9. DYNAMIC ALLOCATION

propagation, we have to find an efficient way to record required information
about previous allocations.
The solution to this problem is to record the type of allocation for each
instance of a clause that has more than one a-symbol. I.e., if clause c
is propagated to reasoner m1 because m1 is responsible for symbol S, we
store the relevant allocation symbol {S} with the clause. Then, we do not
need to keep track of previous allocations. If c is a Wo clause that might
require propagation, it is propagated to the reasoner responsible for S if
sa(S) 6= localID .
For defining the relevant allocation symbols, we need to refer to different
copies of the same clause.

Definition 42 (Relevant Allocation Symbols).
The relevant allocation symbol ra-symbol(c) of a clause c is one of the alloca-
tion symbols a-symbol(c). A set of copies c1, ..., cn of the same clause can be
represented by one clause cm with ra-symbol(cm) =

⋃1..n
i ra-symbol(ci). Ini-

tially, for every input clause or derived clause c, all a-symbols are relevant:
ra-symbol(c) = a-symbol(c).

Note that we have to record the relevant allocation symbols only for clauses
that have multiple a-symbols, for other clauses ra-symbol(c) = a-symbol(c).
With this information it is now possible to decide about propagation: Each
clause ci that is subject to propagation is only propagated to reasoners re-
sponsible for a symbol in ra-symbol(ci). For extending the distributed res-
olution prover in Algorithm 2 to dynamic allocation, a call to the function
updateAllocation(reallocationSymbols, oldAllocation, newAllocation) is
inserted between line 1 and line 2 when a reallocation task is pending. Algo-
rithm 3 depicts the updateAllocation function. It changes the allocation
of the reallocated symbols to the reasoner specified by newAllocation and
propagates the corresponding Wo clauses. Before returning, it waits until
all reasoners have finished the allocation update.

9.2.2 Completeness of Algorithm

Corollary 7 shows the calculus allows changing the symbol allocation at any
time. It remains to be shown that also the implementation in Algorithm 2
and 3 preserves completeness for dynamic allocation.

Theorem 8 (Dynamic Completeness). The satisfiability check implemented
by Algorithm 2 extended by the dynamic allocation in Algorithm 3 is complete
for first order clauses. For ALCHIQ clauses the algorithm terminates and
decides satisfiability.

For proving that the distributed reasoning algorithm preserves completeness,
also when the allocation changes, we consider different copies of a clause for
every a-symbol and show that Wo clauses are always saturated. The proof

9.2. DYNAMIC ALLOCATION ALGORITHM 111

Algorithm 3 Dynamic Extension for Distributed Resolution Prover

updateAllocation(reallocationSymbols, oldAllocation, newAllocation)

1: updateAllocationTable(reallocationSymbols, newAllocation)
2: if oldAllocation == localID then
3: for clause in Wo do
4: for symbol in ra-symbol(clause)∩ reallocationSymbols do
5: sendto(clause,newAllocation)
6: if ra-symbol(clause)\ reallocationSymbols == ∅ then
7: delete(clause)
8: end if
9: end for

10: end for
11: end if
12: if newAllocation == localID then
13: Wo←Wo∪ Receive()
14: end if
15: Wait()

requires talking about properties of the global clause sets that we define
below.

Definition 43 (Global Clause Sets).
The global Wo set and Us set are the union of all the local clause sets of all
reasoners m.

• Wo∪ =
⋃
m Wom

• Us∪ =
⋃
m Usm

• WU∪ = Wo∪ ∪Us∪

According to Definition 42, there is a copy of an input clause for every
a-symbol. Since only redundant clauses are deleted in the saturation, this
property holds for any clause.

Corollary 8 (Relevant Symbol Invariant). For each non-redundant clause
c ∈WU∪ and each allocation symbol S ∈ a-symbol(c) there exists a copy ci
of c with S = ra-symbol(ci), ci ∈WU∪.

Worked off clauses are moved when the allocation of corresponding relevant
allocation symbols changes. However, clauses with the same relevant allo-
cation symbols are always moved together, hence they are always contained
in the same Wo set.

Corollary 9 (Atomic Worked Off Sets). For every symbol S, Wo clauses
c with ra-symbol(c) = S are always contained in the Wo set of the rea-
soner responsible for S before a reallocation starts and after a reallocation
is completed.

112 CHAPTER 9. DYNAMIC ALLOCATION

Consequently, the global set of all Wo clauses is always saturated.

Lemma 1 (Worked Off Invariant). In distributed resolution with dynamic
allocation, for every clause c with Wo∪ `R c:

• either c ∈WU∪ or

• c is redundant in WU∪.

Proof. Assume that Wo∪ is not saturated, i.e., there are clauses p, q ∈Wo∪
that are premises of an applicable resolution rule and the conclusion c is
not redundant and not contained in WU∪. Then, there is a symbol S with
S ∈ (a-symbol(p) ∩ a-symbol(q)). According to Corollary 8 there are copies
p′, q′ of p and q with S = ra-symbol(p′) = ra-symbol(q′). Assume, without
loss of generality, that p′ was added to Wo∪ before q′, and q′ was picked as
given clause and added to Wo∪ by reasoner m. Hence, m was responsible
for symbol S at that moment. Consequently, p′ was contained in the Wo set
of reasoner m according to Corollary 9. Hence, q′ would have been resolved
with p′ to obtain c. Clause c is only deleted if it is redundant, otherwise
c ∈WU∪.

With this preparation, we can now prove the completeness of distributed
resolution with dynamic allocation.

Proof of Theorem 8. Like in previous chapters, termination and correctness
are not affected by extending distributed resolution. If the underlying cal-
culus is correct and terminates, the same holds for the distributed dynamic
algorithm. Of course, termination is not guaranteed for full first order logic,
only for the decidable subsets ALCHIQ.
Completeness is more difficult to prove, it follows from Lemma 1. Assume
the input clauses are unsatisfiable. When distributed resolution returns, all
reasoners are locally saturated, i.e. the local Us sets are empty. Since the
applied calculus R is complete, we have Wo∪ `R �. Furthermore, the empty
clause is never redundant. Consequently, � ∈WU∪ according to Lemma 1.
Because Us∪ is empty, this implies � ∈Wo∪. Hence, every contradiction is
detected by distributed resolution.

Hence, the allocation of symbols can be changed at any time during the
distributed reasoning process.

9.3 Subtask Coordination

The reallocation method described in the previous sections requires to halt
the whole system for updating the allocation. Local reasoning continues
only after all reasoners are finished with the reallocation task. For improving
reallocation, we divide a reallocation task in a couple of subtasks, namely

9.3. SUBTASK COORDINATION 113

updating the local symbol allocation table of every reasoner and propagating
the corresponding reallocated clauses. Then we analyze the dependencies
between subtasks, to obtain an appropriate order of the subtasks that avoids
flaws, idle times and unnecessary network traffic.

RI update: The reasoner specified in newAllocation, usually an idle rea-
soner, updates the local allocation table.

RB update: The busy reasoner oldAllocation updates the local allocation
table for delegating work to RI .

Ro update: The other reasoners update the allocation tables in arbitrary
order.

RB send: RB sends reallocated clauses to RI .

RI receive: RI receives and inserts clauses into local clause set.

The simple implementation of reallocation is depicted in Table 9.1. First all
reasoners are stopped, then the updates and propagations are performed,
finally the reasoners continue reasoning. Obviously, the propagated clauses
cannot be received before they are send and a reasoner has to update the
allocation table before sending or receiving reallocated clauses.

RI stop RI update RI receive RI continue
RB stop RB update RB send RB continue
Ro stop Ro update Ro continue

Table 9.1: Partial order of subtasks for simple reallocation.

Starting from the simple reallocation implementation, we will find a more
efficient method by defining an appropriate partial order of the subtasks and
relaxing the restrictions on reasoner downtime. I.e. we stop the reasoners as
late as possible and continue as soon as it is safe to do so. After analyzing the
dependencies between subtasks, we can relax the restrictions of the simple
reallocation method.

Lazy usable reallocation We do not need to reallocate Us clauses before
restarting reasoners because they can be propagated when they are picked
as given clause. The allocation may change again in the meantime, it is
sufficient to decide propagation based on the relevant allocation symbols
and current allocation when the given clause is processed. In the following,
with ’RB send’ and ’RI receive’ we denote sending and receiving of Wo
clauses.

114 CHAPTER 9. DYNAMIC ALLOCATION

RI stop RI update RI receive RI continue
RB stop RB update RB send RB continue

Ro update

Table 9.2: Partial order of subtasks for efficient reallocation.

RI update ≺ Ro update, RB update ≺ Ro update Once the allocation
tables of RI and RB are updated, delays in updating the other reasoners do
not cause problems: If some reasoner Rsome still uses an out-of-date alloca-
tion, it will send a clause that should go to RI to RB instead. But, RB will
just forward this clause to RI , so apart from a short detour in the clause
propagation, outdated partition tables of other reasoners do not cause prob-
lems. Hence, if we make sure the other reasoners are updated later, they do
not have to stop reasoning at all.

RI update ≺ RB update For RI and RB we have to take care about the
order of updates: Assume RB is updated, but RI not yet. In this case,
RB allocates clauses to RI that RI allocates RB. Hence, as long as the
update of RI is delayed, clauses may be send back and forth between the
two reasoners. If we make sure RI is updated first, RB may only delay
sending some clauses until it is updated.

RB update ≺ RI send On the one hand, we would like to keep the S-
clauses at RB until the allocation is updated at RB for resolving given
clauses with the same top symbol. On the other hand, for the same reason
we would like to have the S-clauses at RI by the time the allocation of RI
is updated. We decide for the first option for two reasons: First, RB is busy
and likely to pick a given clause with modified allocation while RI will more
probably not do anything until the S-clauses are received. Second, other
reasoners are updated later and still send S-clauses to RB.

The partial order given by these considerations is depicted in Table 9.2.
Reasoners that do not send or receive reallocated clauses do not have to
wait at all, they just update the local allocation table. RB does not need
to stop either, if it sends the reallocated Wo clauses right after updating
the local allocation table. Only reasoner RI stops after updating. In most
cases, RI is idle anyway, hence it is no problem to wait for the reallocated
clauses before going on.

Note that we could even continue RI directly after updating the table if we
record allocation changes. To avoid missing inferences in RI , we have to
skip given clauses that are reallocated clauses and put them back into the
Us set until the Wo set is received.

9.4. DECIDING ABOUT REALLOCATION 115

We assume, reallocation tasks do not overlap, i.e. every subtask is com-
pleted before the first subtask of the next reallocation task starts. In the-
ory, a much weaker requirement is sufficient to guarantee flawless dynamic
allocation. We only have to make sure the reallocation symbol sets of every
pair of overlapping reallocation tasks are disjoint. But, the communication
between reasoners is more complicated when reallocation tasks overlap.

Now we have decided for an order of the subtasks, we have to synchronize the
reasoner processes accordingly. Assume, a reallocation task (sa, sa′, RB, RI)
is to be executed with reallocated Symbols S. For every consecutive pair
of subtasks that is performed by different reasoners, we have to send a
message from the reasoner that performs the first subtask to the reasoner
that performs the next subtask to ensure correct order of subtasks. The
final process structure is depicted in Figure 9.1.

update allocation update allocationupdate allocation

receive WO clauses send WO clauses

R
idle

R
busy

R
other notify realloc. notify realloc.

3
4

6

7

5

1 2

Figure 9.1: The process of reallocating a set of symbols S to an idle reasoner.

Note that up to subtask (6), the idle reasoner usually stays saturated. If it
happens to receive propagated clauses from other reasoners and continues
reasoning, the idle reasoner should not pick given clauses that are S-clauses
because they have to be resolved with the Wo S-clauses that did not arrive
yet. Hence, in this case the selection of given clauses has to be adapted until
the Wo S-clauses are received.

9.4 Deciding About Reallocation

The idea of dynamic allocation is improving the allocation of symbols at
runtime. We showed that this is possible in theory in the previous section,
but, changing the allocation may also result in a less appropriate partition-
ing. The benefits from dynamic reallocation depend on the right choice of
reallocation tasks. First, we have to decide which are the reasoners RB
and RI that should rebalance their workload. Then, we have to select the
reallocation symbols from the symbols RB is currently responsible for.

116 CHAPTER 9. DYNAMIC ALLOCATION

9.4.1 Choose Reasoners

Obviously, we are searching for a reasoner RB with heavy workload and a
reasoner RI that is idle or has very low workload. Relevant measurement for
determining the workload is, first of all, the current number of Us clauses. If
the Us set is small, the reasoner RB will be idle very soon, and the effort for
the reallocation would not pay off. All Us clauses have to be picked as given
clauses and processed. But, when reallocations have been performed already,
not every given clause is resolved with the Wo clauses. Some Us have been
reallocated, i.e. the allocation changed since the clause was derived and it
is propagated to the reasoner that is now responsible for the given clause.
For a more accurate estimation of workload than the number of Us clauses
alone, we can take into account increase or decrease of the number of Us
clauses per second. This measurement is additionally influenced by the
number of Wo clauses, because, if there are many potential partners for a
given clause, then it takes longer to process the given clause.
Wo clauses do not only affect workload but also the overhead of reallocation:
Every propagated Wo clause is send and received and inserted into another
Wo set.

Decision Communication

The decision, which reasoners adjust their workload depends on the situation
of multiple reasoners. Furthermore, even with full information, the reasoners
cannot decide independently, they have to agree on the reallocation to be
performed. We propose different strategies for the decision process and
address the advantages and disadvantages.

Local Communication One option is to decide about reallocation lo-
cally, by negotiation between two reasoners. When a reasoner has very high
workload, it sends a reallocation request to a neighbor. The neighbor ei-
ther rejects or replies with an “agree” message. If the neighbor has too
much workload, it just ignores the request. After a specified timeout, the
request expires, i.e. it is resent if the first reasoner is still busy. Note that
a busy reasoner may send only one request at a time to avoid overlapping
reallocations.

This method can be modified in various ways. Instead of repeating a request
when the status of the busy reasoner remains the same, it could send an
explicit “expire” message. This reduces the number of requests, but it takes
longer to find an idle neighbor because the expiration and hence the request
to the second neighbor may take longer.

Alternatively, the busy reasoner can send a third message to confirm the
reallocation. Then, multiple requests may be pending at the same time. If
there are two positive replies, the busy reasoner sends only one confirmation.

9.4. DECIDING ABOUT REALLOCATION 117

This speeds up the detection of possible reallocations, but it also increases
network traffic. Another alternative is swapping busy and idle reasoner. In
this variant, the idle reasoner sends a request (i.e. reallocation proposal)
and the neighbors may accept or deny.

All local communication methods require a high number of messages between
reasoners. In general, many reasoners have a high workload and will send a
lot of requests to neighboring reasoners. Hence it is necessary to restrict RB
to reasoners with workload above some limit, e.g., defined by the number of
Us clauses. Furthermore, the frequency of request can be limited. After a
negative reply, RB should wait for a specified period before asking the same
reasoner again.

Central Communication For reducing the communication in the ontol-
ogy network, a central control node can be appointed to decide about real-
location. Then, only the control node is notified about the current workload
of every reasoner and decides if a reallocation is necessary. The control node
chooses a reallocation task and notifies the reasoner RI which in turn no-
tifies RB. With this communication design, only one message is send for
every change of reasoner status and no repetition of the message is nec-
essary. However, there is also a drawback to the centralized design. The
control node imposes a communication bottleneck, all information is gath-
ered there. Hence, in very large networks this can slow down the process.

9.4.2 Choose Symbols

The optimal choice of reallocation symbols mainly depends on the workload
caused by each symbol. Furthermore, symbols that are connected to symbols
allocated to RI in the derivation graph should be preferred for reallocation.
One option is to use the current partitioning of the of current derivation
graph as initial partitioning for an incremental graph partitioning algorithm
like the balanced edge cut discussed in Chapter 8. But, the experiments in
Section 8.6 showed it is often enough to consider node weights. Depending
on the difference in workload of the reasoners RB and RI , the total weight
sum of the reallocated symbols is decided. A reasonable choice is to reallo-
cate symbols with total weight wr that corresponds to half of the workload
difference.

wr = wB ·
loadB − loadI

2 · loadB
where wB is the total weight sum of reasoner RB and load is the workload
of RB and RI respectively.

While the resulting reallocation task is probably a good choice, the effort
for selecting the reallocation symbols is high. Apart from counting deriva-

118 CHAPTER 9. DYNAMIC ALLOCATION

tions and deletions for each symbol, we have to implement a communication
protocol for notifying all reasoners about the choice of reallocation symbols.
The communication is much simpler, when reallocation does not depend on
symbol weights, but only on the previous allocation. In fact, it is possible
to define a reallocation function that can be computed independently in
every reasoner. I.e., the reallocation function computes a set of reallocation
symbols for a given pair of reasoners.

Definition 44 (Simple Reallocation Function).
A simple reallocation function maps a tuple (sa,RB, RI) of an allocation
function sa and two reasoners RB, RI to a set RS of symbols.

Before we define a simple reallocation function, we give an allocation func-
tion that is used as initial allocation.

Definition 45 (Chunk Allocation).
For a chunk allocation sa, the symbols are numbered according to the prece-
dence, the first symbol in the precedence is S0. The symbol allocation sa is
computed from the index number of the symbol.

sa(Si) = i%C/step

where m is the number of reasoners, C ≥ m is a constant and step = C/m.
A set of symbols with the same value of i%C is called a chunk.

Hence, there are C chunks corresponding to the C possible remainders of
the division i/C. Without dynamic reallocation, the best value for C is
the number m of available reasoners. In this case, chunk allocation is round
robin allocation (sa(Si) = i%C) which leads to the best balance of workload
when the precedence is based on symbol frequency. However, for enabling
reallocation, C is set to a higher number, e.g. 4m.
For simple reallocation, we propose the clock reallocation method. It is
illustrated by arranging the symbols Si in a circle. The circle consists of C
chunks divided into m sections, each section is allocated to one reasoner.
Now, the reallocation corresponds to moving a section border clockwise or
counterclockwise as depicted in Figure 9.2. One chunk of the local symbols
of reasoner RB is reallocated to the idle reasoner RI . In the first picture,
chunk 11 is reallocated clockwise from reasoner R0 to R4. The second picture
shows clockwise reallocation from R2 to R3.
The precise definition of clock reallocation is given below.

Definition 46 (Clock Reallocation).
Clock reallocation maps a tuple (sa,RB, RI) of an allocation function sa and
two reasoners RB, RI to a reallocation task (sa, sa′, RB, RI) by defining the
reallocated symbols RS:

RS = {Si | sa(Si) = RB, sa(Si+1) = RI}

9.5. EXPERIMENTS 119

R
3
= R

B

R
2
= R

I

R
1

R
0

R
4

chunk 0

chunk 11

reallocated
symbols:
chunk 6

R
4
=

R

B

R
0
= R

I

R
1

R
2

R
3

reallocated
symbols:
chunk 11

chunk 0

Figure 9.2: Clock reallocation with 12 chunks and 5 reasoners, clockwise
and counterclockwise.

The new allocation sa′ is defined based on the reallocated Symbols:

sa′(S) =

{
RI for S ∈ RS
sa(S) otherwise

In general, the partitioning of symbols obtained by clock reallocation is not
optimal, but the reallocation can be computed very efficiently.

9.5 Experiments

We tested dynamic distributed resolution by simulating a change in the
availability of reasoners. The test data is the NCI ontology. All tests were
executed on the same node of the Freiburg cluster of the bwGrid6, using
2,83GHz CPUs with 16G memory.

First, the saturation starts with 4 reasoners and a chunk allocation with
C = 8 chunks allocated to two reasoners. By using only half of the reasoners
at the beginning, a increase in the number of available reasoners from 2 to
4 is simulated. Some time after the start of the saturation, reallocations are
performed using different methods. For comparison, we first saturated the
ontology without reallocation to obtain the baseline results depicted in the
first line of Table 9.3. Tests with 4 reasoners, where only 2 are busy and the
standard setting for 2 reasoners had similar results. The runtime values are
larger than in Section 5.4, because the Esslingen cluster of the bwGrid was
used in that section.

On first reallocation tests (not reported in the table), we observed that the
reallocation of Wo clauses took several seconds for every reallocation task.
This was caused by a very inefficient implementation of the function that
deletes Wo clauses. Without distribution, this function is rarely called,
hence it was not optimized for SPASS. For a simple solution to the prob-

120 CHAPTER 9. DYNAMIC ALLOCATION

setting reallocations t/sec # deriv. # prop.

baseline - - 41.34 123439 55983
manual 3 sec 0→3,1→2 34.87 123439 99778
manual 32 sec 0→3,1→2 37.58 123439 82814

auto 13 sec 0→3 33.80 123439 79494
auto 13 sec 0→3 ∗2 32.48 125354 91354
auto 13 sec 0→3 ∗3 33.32 130994 92107
auto 13 sec 0→3 ∗4 34.19 141468 91256

Table 9.3: Evaluation of NCI saturation for different dynamic settings with
2+2 reasoners. Performance depends on the time of the first reallocation,
number of reallocations and concrete reallocation tasks.

lem, the deletion of propagated Wo clauses is skipped. This induces some
redundant derivations, nevertheless the saturation is faster.

For the manual reallocation setting depicted in lines 2 and 3 of Table 9.3, the
reallocation tasks (i.e. reasoners RB and RI) are hard coded. One chunk is
reallocated from R0 to R3 and one chunk from R1 to R2. These reallocations
are the straight forward choice for using the two additional reasoners if we do
not consider workload. The second column in Table 9.3 shows the time the
reallocations were performed. For early reallocation 3 seconds after start,
the runtime was reduced by 6.5 seconds. For late reallocation, the runtime
decrease is still 3.8 seconds compared to the baseline.

The number of propagations is higher for early reallocation. This is not
surprising because early reallocation is more similar to static allocation to
four reasoners, while late reallocation is more similar to static allocation to
two reasoners. The number of propagations increases with the number of
reasoners.

The automatic reallocation setting uses centralized communication for the
reallocation decision. The reasoners message to the control node the current
number of Us clauses, whenever the change in the number exceeds 300. A
specified amount of time after the saturation start, the control node chooses
the best reallocation task and decides if it is performed. I.e., of all reasoners
that have an idle neighbor, RB is the reasoner with the largest set of Us
clauses. RI is the idle neighbor of RB. If the number of Us clauses of
RB is at least 500, the reallocation task is started. The total number of
reallocations is limited by a hard coded value of 1 to 4.

For all tests with automatic reallocation, the first reallocation was performed
about 13 seconds after start of the saturation. Depending on the number of
performed reallocations, the runtime and number of derivations and propa-
gation vary. If the number of reallocations is limited to one, the runtime is
already shorter than for both manual allocation settings. This implies the
reallocation 1→2 causes more overhead than improving the allocation. Also

9.5. EXPERIMENTS 121

with two reallocations, the automatic setting has a shorter runtime than the
hard coded reallocation. Hence, the method for deciding about reallocation
performed well. However, we had to set a limit for the number of allocations.
Without this restriction, more than 20 reallocation are performed and the
runtime increases to more than 70 seconds. The limit on Us clauses only
avoids reallocations close to the end of the saturation.
If the limit is increased from 2 to 3 and 4 reallocations, the runtime increases
by about a second for each reallocation. The best result is obtained for 2
automatic reallocations.
If there is more than one reallocation between the same reasoners, the num-
ber of derivations increases, because the propagated Wo clauses are not
deleted. For 4 reallocations, the obtained partitioning was less balanced
than for 2 reallocations and for 3 reallocations. On the one hand, bad bal-
ance can decrease the number of propagations, as we have already seen in
Section 8.6. On the other hand, reallocations increase the number of prop-
agations. This explains the non monotonic characteristics of propagation
observed for automatic reallocation.

In summary, the results show that dynamic allocation is possible and can
decrease runtime. More investigations are necessary for developing better
strategies for the reallocation decision based on more detailed information
on the gradient of the number of Us clauses and the workload connected to
specific symbols.

122 CHAPTER 9. DYNAMIC ALLOCATION

Part IV

Conclusion

123

Chapter 10

Future Work

In this chapter we discuss additional options for improving distributed res-
olution. In particular, we propose allocating a symbol to multiple reasoners
for improving the balance of workload. Furthermore, the supported ex-
pressivity can be extended and there are many options for improving the
performance of the distributed reasoning system. Finally, investigations on
the general applicability of distributed resolution would facilitate adapting
distributed resolution to other rule based calculi.

10.1 Subdivided Symbols

We have only one restriction imposed on allocation of clauses: It is based on
an allocation of symbols with each symbol allocated to exactly one reasoner.
On the first sight this is no severe restriction, but there are cases where we
want to avoid this restriction. Some symbols, like for example the “part-of”
property can cause very high workload. If a large amount of the derivations
are clauses with the same top symbol, the distribution may be imbalanced
even if one of the reasoners is only responsible for the problematic sym-
bol. For these cases, subdividing responsibility for one symbol to multiple
reasoners improves balance and thereby may decrease runtime.

Although the simplicity of our approach is based on allocating a symbol to
only one reasoner, the approach can be extended to use multiple reasoners
for resolving clauses with the same top symbol. To illustrate the idea of
this extension, we first consider a situation with three reasoners used for
the same symbol S. We assume an allocation function that allocates some
clauses with top symbol S to R1 and the others to R2. A suitable allocation
of S-clauses can be defined, for example, based on the top symbol of the
next literal.

The saturation process for a symbol S allocated to multiple reasoners con-
sists of two steps. First, the sets Wo1 and Wo2 are generated by two reason-
ers responsible for S. For this step, Algorithm 2 is used just like for reasoners

125

126 CHAPTER 10. FUTURE WORK

Us 3.1

Wo 3.1

DerivedGiven

Us 3.2

Wo 3.2

resolution

Given

resolution

Wo 1 Wo 2

Figure 10.1: Saturating two worked-off clause sets with shared a-symbol.

that do not share responsibility for a symbol. Step 2 is the saturation of the
set Wo1 ∪Wo2 without repeating the already performed inferences.

The modified saturation is depicted in Figure 10.1. Algorithm 4 specifies the
corresponding procedure for n reasoners responsible for the same symbol.
We use a third reasoner R3 for saturating the union, it is also possible to use
R1 or R2 (the reasoner that is locally saturated first). R3 can start as soon
as Wo clauses are available from R1 or R2. In difference to Algorithm 2, R3
maintains two distinct sets of Us clauses and two distinct sets of Wo clauses
to avoid repeating inferences that where already performed by R1 or R2.

R3 picks a given clause from one of the usable sets, e.g. Us3.1 that contains
Wo clauses from R1. The given clause is resolved with partner clauses from
Wo3.2 (i.e. Wo clauses from R2) and then added to Wo3.1. All derived
clauses are propagated by R3, the allocation function allocates no clause to
R3. In difference to Algorithm 2, two clauses from Us3.1 are never resolved
with each other. Note that factoring is only applied by R1 and R2, but not
R3 because all clauses derivable by factoring are already contained in the
Us sets of R3.

The method could be extended to also use multiple reasoners for the second
step of the saturation. Adding reduction to the Algorithm 4 is less impor-
tant than in Algorithm 2 since the input is partially saturated already.

Hence, with a small modification to the local reasoning algorithm, it is
possible to distribute the workload caused by a single symbol to multiple
reasoners.

10.2 Expressivity

The ordered resolution calculi presented in Chapter 5 and Chapter 7 are
complete for first order logic but are not distributed efficiently for every
decidable subset of first order logic. We addressed several decidable logics

10.2. EXPRESSIVITY 127

Algorithm 4 Distributed Resolution Prover 2

isSatisfiable(KB)

1: Wo ← {∅, ∅, ...}
2: Us ← KB
3: while Us i 6= ∅ for some i do
4: Given ← choose(Usi)
5: Us i ← Usi \ {Given}
6: Woi ←Woi ∪ {Given}
7: New ← ∅
8: for j = 1 to n do
9: if j 6= i then

10: New ← New∪ resolve(Given,Woj)
11: end if
12: end for
13: for clause in New do
14: for reasonerID in a(clause) do
15: send(clause,reasonerID)
16: end for
17: end for
18: Us ← Us ∪ receive()
19: if � ∈ Us then
20: for reasonerID ∈ M do
21: send(�, reasonerID)
22: end for
23: return false
24: end if
25: if Us == ∅ and globally saturated then
26: return true
27: end if
28: end while

128 CHAPTER 10. FUTURE WORK

that are relevant for knowledge representation, but for deciding satisfiability
of any OWL-DL ontology, additional work is necessary.

Equalities While the theoretical investigation on distributed resolution
for the description logic ALCHIQ− is based on basic superposition, our
experiments were executed with the less efficient superposition. For larger
ontologies an extension of the implementation is necessary. A simple exten-
sion would be to add a reduction rule that removes clauses that are not on
the list of clause types in Table 7.1. For example, we can remove all clauses
that contain a literal with three nested function symbols. However, the best
solution is a complete implementation of basic superposition.

Transitivity Transitive properties like “has-part” are required by many
ontologies. In Chapter 6 we proposed a distributed resolution calculus for
BSHE that enables efficient reasoning with transitive properties. However,
BSHE does not contain function symbols, hence the corresponding descrip-
tion logic subset does not allow existential restrictions. For applying dis-
tributed resolution to ontologies that contain transitive properties and exis-
tential restrictions, we have to extend the calculus.

Datatypes Datatypes in ontologies allow expressing that e.g. an adult
is a person with an age of at least 18. In theory, datatypes do not add
expressivity, as they can be translated to the abstract domain. But, has-
Value restrictions are used frequently on datatype properties and translate
to nominals. Our approach can be extended to datatypes with the approxi-
mation of nominals described below. In practice however, reasoning on the
translated datatypes is not very efficient. The better choice is modifying the
reasoner to deal with datatypes directly.

Nominals Nominals (O), i.e. references to instances in axioms describing
classes, are a known source of scalability problems but not used in many
ontologies. Nominals can be approximated in the description logic ALC by
common classes. For example the axiom Photoionization v ∃hasStar.Sun
can be replaced by the axioms Photoionization v ∃hasStar.Sun Class and
Sun Class(Sun), with a new class Sun Class. The information that Sun
must be the only instance of Sun Class is missing in this approximation.

Actually, the clause ¬Photoionization(x) ∨ hasStar(x, Sun) is the correct
translation of the nominal axiom. However, this is an additional clause
type (type O1) not included in Table 5.1 or Table 7.1. Adding this clause
type to the ALC clauses introduces another new clause type O2: P1(x) ∨
P2(c) (obtained from resolution with type 3). Unfortunately, literals in
this clause are not completely ordered, two literals (P1(x) and P2(c)) are
maximal and none is selected. Furthermore, clauses derived from this type

10.3. PERFORMANCE 129

can have arbitrary numbers of different Variables. Hence, the calculus is
not guaranteed to terminate because it may generate an infinite number of
clauses. We cannot extend our distributed resolution methods to nominals
that easily. Adding the nominal clauses to ALCHIQ raises even more clause
types with multiple resolvable literals. Hence, other methods are necessary
for dealing with nominals in distributed resolution.

10.3 Performance

There are many possibilities for improving the performance of distributed
resolution. First of all, modified data structures and additional indexes
would speed up retrieval and deletion of clauses with given top symbol. In
our experiments, the whole Wo clauses of a reasoner were scanned for po-
tential partner clauses of a given clause. If a separate list of Wo clauses is
maintained for every top symbol, scanning Wo clauses that are no possible
partners of the current given clause would be completely avoided. Fur-
thermore, this improvement would speed up dynamic allocation because it
enables selecting the Wo clauses for propagation without scanning through
all Wo clauses.

Propagation and Parsing Another working point for performance of
propagation is parsing and serialization of clauses. In our experiments, prop-
agated clauses are written to a string and parsed like input clauses. Parsing
is more efficient then the original parser because the symbol index number
is written instead of the symbol name, but still optimization is possible.
The propagation can be realized more efficiently by sending a clause object
directly, then the clause structure is received with the clause and parsing
can be skipped.

Assertion Summary Although distributed reasoning is applicable to on-
tologies with instances (i.e. constants), it is not designed for large amounts
of assertional data. Especially, in combination with general concept in-
clusions, large amounts of data will slow down the reasoning process be-
cause saturation materializes implied assertions. For increasing the perfor-
mance for this type of ontologies, distributed resolution should be extended
with approaches for efficient assertional reasoning. For example, [22] pro-
pose a method that replaces groups of similar instances by representatives.
Thereby, the assertional data is reduced and the reasoning is faster. In the
result, the representatives are replaced again by the original instances.

Shared Memory Furthermore, the performance would be improved by
taking benefit of available shared memory. If enough shared memory is
available for two reasoners, the communication between these reasoners does

130 CHAPTER 10. FUTURE WORK

not require TCP connections. The clauses can be stored in shared memory,
available to both reasoners.

Caching Our focus on satisfiability checking is motivated by the fact that
all relevant queries can be reduced to satisfiability. However, for some queries
the direct reduction to satisfiability is not very efficient. In theory, the
concept hierarchy of an ontology is computed by a series of subsumption
test that in turn correspond to satisfiability checks. But, testing every pair
of concepts for subsumption is not the most efficient method, it is possible
to combine some tests and thereby reduce the number of tests. Also, the
order of the subsumption tests matters, because depending on the result of
a subsumption test, other test may be skipped. Hence, more investigations
of the saturation process are necessary for designing a classification method
based on distributed resolution. Apart from classification, there are other
queries that require special optimizations, like conjunctive queries.
Furthermore, we have to consider the repeated execution of similar queries.
Even when standard translation to a satisfiability check is appropriate,
caching techniques should be added to improve query runtime. The sim-
plest caching method is to store a saturated version of the input ontology.
Then, only the query clauses have to be saturated, most of the work is done
off line. However, additional methods are necessary for removing again the
query and its implications before starting the next query. Otherwise, the
saturated ontology has to be loaded for every query.

10.4 Generalization

We showed distributed resolution is applicable to a couple of different calculi.
This raises the question, which properties of a calculus determine applica-
bility for distribution and if it would be possible to automatize distribution.
In particular, we would like to automatically define the a-symbol function
and automatically modify rules of the calculus if necessary. Then, given a
calculus like the calculus for EL+ classification proposed by [5], we could
automatically compute a distributed variant of the calculus.
Automatic distribution requires to first give a general formal description of
calculi that takes into account the required connections between premises.
The first step is to investigate the properties of calculi that are necessary
and sufficient for efficient distribution.

Chapter 11

Summary

This work investigates a method for distributed reasoning on ontologies. The
increasing size of ontologies used for knowledge representation requires using
multiple processors for computation of a reasoning task. Hence, reasoning
methods are necessary that divide the computation into several processes
that can be executed in parallel.
We proposed a distributed reasoning method that checks satisfiability of dif-
ferent subsets of first order logic, with a focus on subsets of OWL-DL. The
method is sound and complete and for decidable fragments it terminates.
The distribution of the reasoning process is based on a distribution of the
ontology axioms. Distribution reduced the runtime of satisfiability tasks
considerably. In some settings, duplicating the number of reasoners reduced
runtime by more than 50%. Theoretical investigation and experiments an-
swered the research questions posed in the introduction:

Q1 Which reasoning method is a good basis for distributed reasoning on
description logic ontologies?

Resolution is a good basis for distributed reasoning, it allows dividing the
input into subsets of axioms that can be processed largely independently.
Actually, distribution is almost inherent in resolution. A given clause is
only resolved with a subset of the worked off clauses and these subsets can
be separated. In contrast, tableaux reasoning, which is one of the most
popular methods for description logic reasoners, is not that compatible with
distribution.

Q2 Is it possible to preserve soundness, completeness and termination
of this reasoning method when distributing computation to a set of
parallel processes?

In Chapter 5 we identified the allocation symbols of a clause that are the
connection between premises of a resolution inference. The allocation sym-
bols determine whether two clauses can be resolved with each other and

131

132 CHAPTER 11. SUMMARY

guide our allocation method. Any partitioning of the ontology signature
defines an allocation of clauses to reasoners. We proved that for all these
allocations, soundness, completeness and termination of different resolution
calculi are preserved by the proposed distributed resolution method.

Q3 Is the distribution efficient, the runtime decreased?

The theoretical properties are essential, but for applications the viability of
distributed resolution depends on the actual decrease in runtime that can
be achieved. We tested the method on different ontologies and observed a
runtime decrease that exceeded our expectations. In some settings, doubling
the number of reasoners decreased the runtime by more than 50 %.

Q4 Does the distributed reasoning method scale?

For investigating scalability of the approach, we recorded the maximum
number of reasoners that can be successfully used for a reasoning task. This
number increased with the size of the ontology and runtime of the saturation.

Q5 What is the expressivity that can be supported by distributed reason-
ing?

Distributed resolution can be applied to full first order logic, but then the
representation may contain multiple copies of each clause because the num-
ber of allocation symbols is not limited. Consequently, the number of prop-
agations may be very high. We showed that efficient distribution is possible
for the description logics ALCHI and ALCHIQ and the BSHE class.

Q6 What is the best method for computing a distribution of input axioms?

We tested different methods for computing a partitioning of ontology sym-
bols that is the basis for the clause allocation of distributed resolution. The
results in Chapter 8 showed that simple partitioning strategies based on
only the frequency of symbols performed good enough. Even a round robin
allocation may be acceptable. More sophisticated methods that take into
account propagation must put a heavy emphasis on balance. Otherwise,
reducing propagation is traded by high imbalance and results in bad perfor-
mance of the partitioning for distributed resolution.

Q7 Is it possible to change the distribution of axioms at runtime?

The number of processors that are available may change at runtime, if a
reasoning task on a large ontology takes several hours. For this setting, we
propose runtime modification of the clause allocation. The investigations
in Chapter 9 show that soundness, completeness and termination are pre-
served, if the subtasks of the allocation change are executed in a specific
order. Experiments showed that dynamic allocation can reduce runtime of
distributed resolution.

133

Q8 What optimizations of the method are necessary and/or possible?

The first optimization we propose aims at improving balance of workload.
In Section 10.1 we proved that subdividing symbols for allocation is possible
and does not cause duplication of inferences. Also important for applica-
tions of distributed resolution is built-in support for reasoning on datatypes
and the combination of transitivity and equalities. A simple but effective
performance enhancement can be achieved by adapting the representation
of Wo clauses. Separation into disjoint sets corresponding to the relevant
allocation symbols would speed up local reasoning and propagation.

To sum up, distributed resolution is a promising method for scaling up rea-
soning on large ontologies. Experiments proved the concept feasible. Addi-
tional work is necessary for investigation and implementation of extensions
and optimizations.

134 CHAPTER 11. SUMMARY

Bibliography

[1] Philippe Adjiman, Philippe Chatalic, Francois Goasdoué, Marie-
Christine Rousset, and Laurent Simon. Distributed reasoning in a peer-
to-peer setting: Application to the semantic web. Journal of Artificial
Intelligence Research, 25:269–314, 2006.

[2] Gene Myron Amdahl. Validity of the single-processor approach to
achieving large scale computing capabilities. In AFIPS Conference Pro-
ceedings, volume 30, pages 483–485, 1967.

[3] Eyal Amir and Sheila McIlraith. Partition-based logical reasoning for
first-order and propositional theories. Artificial Intelligence, 162(1-
2):49–88, 2005.

[4] Grigoris Antaniou and Frank van Harmelen. Web Ontology Language:
OWL. In Steffen Staab and Rudi Studer, editors, Handbook on Ontolo-
gies, pages 67–92. Springer, 2009.

[5] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. Cel—a
polynomial-time reasoner for life science ontologies. In Proceedings of
the 3rd International Joint Conference on Automated Reasoning (IJ-
CAR’06), pages 287–291. Springer, 2006.

[6] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. Efficient
reasoning in EL+. In Proceedings of the 2006 International Workshop
on Description Logics (DL2006), CEUR-WS, 2006.

[7] Franz Baader and Werner Nutt. Basic description logics. In Franz
Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter Patel-Schneider, editors, The Description Logic Handbook, pages
43–95. Cambridge University Press, 2003.

[8] Leo Bachmair and Harald Ganzinger. Ordered chaining calculi for first-
order theories of transitive relations. J. ACM, 45:1007–1049, November
1998.

[9] Leo Bachmair, Harald Ganzinger, Christopher Lynch, and Wayne Sny-
der. Basic paramodulation. Information and Computation, 121(2):172–
192, 1995.

135

136 BIBLIOGRAPHY

[10] Vladimir Batagelj. Analysis of large networks - islands. Presented at
Dagstuhl seminar 03361, August 2003.

[11] Maria Paola Bonacina. The clause-diffusion theorem prover peers-mcd
(system description). In Proceedings of the 14th International Confer-
ence on Automated Deduction, volume 1249 of Lecture Notes In Com-
puter Science, pages 53–56, London, UK, 1997. Springer.

[12] Maria Paola Bonacina. A taxonomy of parallel strategies for deduc-
tion. Annals of Mathematics and Artificial Intelligence, 29(1–4):223–
257, 2000. Published in February 2001.

[13] Maria Paola Bonacina and Jieh Hsiang. Parallelization of deduction
strategies: An analytical study. J. Autom. Reasoning, 13(1):1–33, 1994.

[14] Alex Borgida and Luciano Serafini. Distributed description logics: As-
similating information from peer sources. Journal of Data Semantics,
1:153–184, 2003.

[15] Susan E. Conry, Douglas J. MacIntosh, and Robert A. Meyer. Dares:
A distributed automated reasoning system. In Proceedings of AAAI-90,
pages 78–85, 1990.

[16] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike
Sattler. Modular reuse of ontologies: Theory and practice. Journal of
Artificial Intelligence Research (JAIR), 31:273–318, 2008.

[17] Bernardo Cuenca Grau, Bijan Parsia, and Evren Sirin. Combining owl
ontologies using e-connections. Journal Of Web Semantics, 4(1), 2005.

[18] Mathieu d’Aquin d’Aquin d’Aquin d’Aquin, Anne Schlicht, Heiner
Stuckenschmidt, and Marta Sabou. Ontology modularization for knowl-
edge selection: Experiments and evaluations. In 18th International
Conference on Database and Expert Systems Applications (DEXA),
2007.

[19] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107–113,
2008.

[20] Francesco Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea
Schaerf. Reasoning in description logics. In G. Brewka, editor, Prin-
ciples of Knowledge Representation and Reasoning, Studies in Logic,
Language and Information, pages 193–238. CLSI Publications, 1996.

[21] Charles M. Fiduccia and Robert Marcel Mattheyses. A linear-time
heuristic for improving network partitions. In Proceedings of the 19th
Design Automation Conference DAC ’82, 1982.

BIBLIOGRAPHY 137

[22] Achille Fokoue, Aaron Kershenbaum, Li Ma, Edith Schonberg, and
Kavitha Srinivas. The summary abox: Cutting ontologies down to size.
In Proceedings of ISWC-06, pages 343–356. Springer, 2006.

[23] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Math-
ematica und verwandter Systeme. Monatshefte für Mathematik und
Physik, 38:173–198, 1931.

[24] Peter Haase and Yimin Wang. A decentralized infrastructure for query
answering over distributed ontologies. In Proceedings of The 22nd An-
nual ACM Symposium on Applied Computing (SAC), 2007.

[25] Bruce Hendrickson and Robert Leland. The Chaco User’s Guide, Ver-
sion 2.0, 1995.

[26] Bruce Hendrickson and Robert Leland. A multi-level algorithm for
partitioning graphs. In Supercomputing. Proceedings of the IEEE/ACM
SC95 Conference, 1995.

[27] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular
actor formalism for artificial intelligence. In Proceedings of the 3rd
international joint conference on Artificial intelligence, pages 235–245,
San Francisco, CA, USA, 1973. Morgan Kaufmann Publishers Inc.

[28] Thomas Hofweber. Logic and ontology. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Stanford University, fall 2011
edition, 2011.

[29] Ian Horrocks and Peter F. Patel-Schneider. Reducing owl entailment
to description logic satisfiability. Journal of Web Semantics: Science,
Services and Agents on the World Wide Web, 1(4):345—-357, 2004.

[30] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning in De-
scription Logics by a Reduction to Disjunctive Datalog. Journal of
Automated Reasoning, 39(3):351–384, 2007.

[31] George Karypis and Vipin Kumar. METIS A Software Package for
Partitioning Unstructured Graphs, Partitioning Meshes, and Comput-
ing Fill-Reducing Orderings of Sparse Matrices, Version 4.0, 1998.

[32] Brian Wilson Kernighan and Shen Lin. An efficient heuristic procedure
for partitioning graphs. The Bell system technical journal, 49(1):291–
307, 1970.

[33] Douglas B. Lenat. Cyc: A large-scale investment in knowledge infras-
tructure. Communications of the ACM, 38(11):33, 1995.

138 BIBLIOGRAPHY

[34] Ewing L. Lusk, William W. McCune, and John Slaney. Roo: A parallel
theorem prover. In Proceedings of the 11th CADE, volume 607 of LNAI,
pages 731–734. Springer, 1992.

[35] Carsten Lutz, Dirk Walther, and Frank Wolter. Conservative exten-
sions in expressive description logics. In Twentieth International Joint
Conference on Artificial Intelligence IJCAI-07, 2007.

[36] Boris Motik. Reasoning in Description Logics using Resolution and De-
ductive Databases. PhD thesis, Universität Karlsruhe (TH), Karlsruhe,
Germany, January 2006.

[37] Raghava Mutharaju, Frederick Maier, and Pascal Hitzler. A MapRe-
duce Algorithm for EL+. In Workshop on Description Logics (DL2010),
pages 464–474, 2010.

[38] Robert Nieuwenhuis and Albert Rubio. Theorem proving with ordering
and equality constrained clauses. Journal of Symbolic Computation,
19:321–351, 1995.

[39] Philipp Nowakowski. Dire: Implementation of a distributed reasoner
for description logic. Master’s thesis, Universität Mannnheim, 2010.

[40] Eyal Oren, Spyros Kotoulas, George Anadiotis, Ronny Siebes, Annette
ten Teije, and Frank van Harmelen. Marvin: A platform for large-scale
analysis of semantic web data. In Proceedings of the International Web
Science Conference, 2009.

[41] Ivo Popov. Graph partitioning for parallel computing. Technical report,
University of Mannheim, 2008.

[42] Rob Raskin. Knowledge representation in the semantic web for earth
and environmental terminology (SWEET), 2005.

[43] Alan Rector. The galen high level ontology. Studies in health technology
and informatics, 1996.

[44] Nicholas Rescher. Leibniz’s interpretation of his logical calculi. The
Journal of Symbolic Logic, 19(1):1–13, 1954.

[45] Anne Schlicht and Heiner Stuckenschmidt. Distributed resolution for
ALC - first results. In ESWC Workshop on Advancing Reasoning on
the Web, 2008.

[46] Anne Schlicht and Heiner Stuckenschmidt. A flexible partitioning tool
for large ontologies. In International Conference on Web Intelligence
and Intelligent Agent Technology (WI/IAT), 2008.

BIBLIOGRAPHY 139

[47] Anne Schlicht and Heiner Stuckenschmidt. Towards distributed ontol-
ogy reasoning for the web. In International Conference on Web Intel-
ligence and Intelligent Agent Technology (WI/IAT), 2008.

[48] Anne Schlicht and Heiner Stuckenschmidt. Distributed resolution for
expressive ontology networks. In Web reasoning and rule systems :
Third International Conference, RR 2009, 2009.

[49] Anne Schlicht and Heiner Stuckenschmidt. Peer-to-peer reasoning for
interlinked ontologies. International Journal of Semantic Computing,
Special Issue on Web Scale Reasoning, 4(1), March 2010.

[50] Anne Schlicht and Heiner Stuckenschmidt. Mapresolve. In Proceed-
ings of the Fifth International Conference on Web Reasoning and Rule
Systems, RR 2011, 2011.

[51] Julian Seidenberg and Alan Rector. Web ontology segmentation: Anal-
ysis, classification and use. In Proceedings of the 15th international
World Wide Web Conference, Edinburgh, Scotland, 2006.

[52] Heiner Stuckenschmidt and Michel Klein. Structure-based partitioning
of large concept hierarchies. In Sheila A. McIlraith, Dimitris Plex-
ousakis, and Frank van Harmelen, editors, Proceedings of the Third
International Semantic Web Conference (ISWC 2004), pages 289–303,
Hiroshima, Japan, November 2004.

[53] Heiner Stuckenschmidt and Maarten R. Menken. Tool Support for
Dependency-Based Partitioning of OWL Ontologies. Technical report,
Vrije Universiteit Amsterdam, 2005.

[54] Heiner Stuckenschmidt and Anne Schlicht. Structure-based partitioning
of large ontologies. In Modular Ontologies. Springer, 2009.

[55] Peter R. Suaris and Gershon Kedem. An algorithm for quadrisection
and its application to standard cell placement. IEEE Transactions on
Circuits and Systems, 35(3):294–303, March 1988.

[56] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a
core of semantic knowledge. In Proceedings of the 16th international
conference on World Wide Web, WWW ’07, pages 697–706, New York,
NY, USA, 2007. ACM.

[57] Martin Suda, Christoph Weidenbach, and Patrick Wischnewski. On the
saturation of yago. In Jürgen Giesl and Reiner Hähnle, editors, Auto-
mated Reasoning, volume 6173 of Lecture Notes in Computer Science,
pages 441–456. Springer, 2010.

140 BIBLIOGRAPHY

[58] Tanel Tammet. Resolution methods for Decision Problems and Finite
Model Building. PhD thesis, Chalmers University of Technology and
University of Göteborg, 1992.

[59] Herman J. ter Horst. Completeness, decidability and complexity of
entailment for RDF Schema and a semantic extension involving the
OWL vocabulary. Web Semantics: Science, Services and Agents on
the World Wide Web, 3(2-3):79–115, 2005.

[60] Dmitry Tsarkov, Alexandre Riazanov, Sean Bechhofer, and Ian Hor-
rocks. Using vampire to reason with owl. In International Semantic
Web Conference (ISWC), 2004.

[61] Jacopo Urbani, Spyros Kotoulas, and Jason Maassen. OWL reason-
ing with WebPIE: calculating the closure of 100 billion triples. The
Semantic Web, pages 213–227, 2010.

[62] Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and F. van Harmelen.
Scalable distributed reasoning using mapreduce. The Semantic Web-
ISWC 2009, pages 634–649, 2009.

[63] Christoph Weidenbach. Combining superposition, sorts and splitting.
In Alan Robinson und Andrei Voronkov, editor, Handbook of Automated
Reasoning, volume II, chapter 27. Elsevier, 2001.

[64] Christoph Weidenbach, Uwe Brahm, Thomas Hillenbrand, Enno Keen,
Christian Theobalt, and Dalibor Topić. SPASS version 2.0. In Andrei
Voronkov, editor, Automated deduction - 18th International Conference
on Automated Deduction. Springer, 2002.

	I Introduction
	Motivation
	Scalability Problem
	Goal
	Research Questions
	Overview

	Preliminaries
	RDFS and OWL
	Description Logic
	Normalization
	Clausification
	Resolution
	Term Ordering
	Redundancy

	Related Work
	Typology of Distributed Reasoning Methods
	Reasoning
	Distribution Principles

	Distributed RDF Reasoning
	Modular DL Reasoning
	Resolution Methods
	Parallel Computation
	MapReduce
	Actor Model

	Conclusion

	II Distributed Resolution
	Distributed Resolution
	Reasoning Method
	Allocation
	Distributed Algorithm
	Distributed Calculus
	Soundness, Completeness, Termination

	Distributed FOL Resolution
	Calculus
	Distribution
	Implementation
	Experiments
	FMA
	NCI

	Transitive Properties
	Calculus
	Soundness, Completeness, Termination

	Distribution
	Soundness, Completeness and Termination

	Experiments

	Equalities
	Calculus
	Allocation Method
	Restricted Inferences
	Completeness and Termination
	Implementation
	Experiments

	III Allocation
	Partitioning
	Related Work
	Graph-based Ontology Partitioning
	Step 1: Create Dependency Graph
	Step 2: Graph Partitioning
	Step 3: Partition Realization

	Dependency Graph
	Based on DL Axioms
	Based on Clauses
	Based on Derivation

	Graph Partitioning
	Greedy Balance
	Balanced Edge Cut
	Islands Algorithm

	Partition Realization
	Experiments

	Dynamic Allocation
	Reallocation
	Completeness of Distributed Calculus

	Dynamic Allocation Algorithm
	Propagation
	Completeness of Algorithm

	Subtask Coordination
	Deciding About Reallocation
	Choose Reasoners
	Choose Symbols

	Experiments

	IV Conclusion
	Future Work
	Subdivided Symbols
	Expressivity
	Performance
	Generalization

	Summary

