
MapResolve

Anne Schlicht, Heiner Stuckenschmidt

University of Mannheim
{anne, heiner}@informatik.uni-mannheim.de

Abstract. We propose an approach to scalable reasoning on descrip-
tion logic ontologies that is based on MapReduce. Our work is inspired
by previous work that provided fast materialization of RDFS ontologies
and proposed MapReduce for more expressive logics. We explain chal-
lenges imposed by higher expressivity that were not addressed before
and describe how they can be solved.

1 Introduction

The MapReduce framework [2] was developed by Google labs for facilitating
distributed processing of large datasets. An open source implementation of the
framework is available1 and is attractive for many resource intensive computa-
tions. With a quite small effort for adapting a given application to the MapRe-
duce interface, the user benefits from multiplied resource availability and built-in
fault tolerance. However, the simple interface comes by the cost of reduced flex-
ibility in process interaction, which is a drawback in complex applications. We
investigate the application of MapReduce for reasoning on ontologies. In partic-
ular, we review previous approaches of MapReduce for RDFS and OWL Horst
materialization and EL+ classification. Moreover, we propose some extensions
that extend the applicability to other OWL fragments up to first order logic.

2 Previous Work

Recently, the MapReduce framework was proposed for materialization and clas-
sification of OWL fragments. We first review these approaches before we discuss
the MapReduce application for checking satisfiability of expressive ontologies.

2.1 MapReduce

The MapReduce framework [2] provides a simple interface for cluster computa-
tion. Two functions have to be implemented by the user to access the automatic
distribution, both functions are executed by a set of workers (i.e. machines).
First, the map function assigns a key to each input value (in this work the val-
ues are axioms) and outputs (key, value) pairs. Then, the reduce function is
called once for each key. It processes all corresponding values and outputs a list
of results. A partition function assigns the keys of the map output to reduce
workers.
1 e.g. Apache Hadoop http://hadoop.apache.org

2.2 RDF Schema Materialization

One of the first applications of MapReduce in ontology reasoning is the compu-
tation of the closure of a large RDF(S) graph described in [8]. RDF Schema rules
are implemented by MapReduce jobs. For example, the RDFS subclass rule

s rdf:type x & x rdf:subClassOf y ⇒ s rdf:type y

is implemented by a map function that maps potential premises to the shared
element x. I.e., the key for triples with predicate “rdf:type” is the object, the key
for triples with predicate “rdfs:subClassOf” is is the subject of the triple. The
whole triple is returned as value of the map output pair. The reduce function is
called once for each key and derives new axioms according to the subclass rule
from all triples that share this key. Note that a single call to this job performs
all derivations of this rule. The work for deriving all implied triples of type
(s, rfd:type, o) is partitioned among the reduce workers based on the objects o
that are the keys in the input to the reduce function.
The other RDFS rules are implemented by MapReduce jobs in a similar way.
The complete materialization consists of a sequence of MapReduce jobs, where
the output of one job is the input of the next job. As shown in [8], this method
is quite efficient when the number of schema triples is small enough to be stored
in memory of each reducer node. With clever ordering of the RDFS rules, the
materialization is usually2 complete after calling each job once. Hence, only a
handful of MapReduce jobs is necessary for materialization of the deductive
closure.

2.3 OWL Horst Materialization

The RDFS materialization was extended to OWL Horst in [7]. OWL Horst [6] is
a fragment of the Web Ontology language OWL that can be materialized using
a set of rules that is an extension of the set of RDF schema rules. The fragment
is popular for triple stores that are focused on scalability because of the rela-
tively high expressivity and feasible reasoning methods. The additional rules add
semantics for the OWL constructs “owl:someValuesFrom”, “owl:allValuesFrom”
and “owl:TransitiveProperty”. The higher expressivity of OWL Horst compared
to RDFS requires a couple of optimizations to keep tractability. While for RDFS
it is possible to have a single ’stream’ of instance triples for each reduce worker,
OWL Horst requires joins over more than one instance triple. The number of
necessary expensive joins is reduced by storing the “owl:sameAs” triples only
implicitly and other optimizations for transitive properties and property restric-
tions. With these optimizations, the authors were able to compute the closure of
100 billion triples. However, some inefficiencies were detected: For OWL Horst
rules, there is no order that can avoid the need for iterating repeatedly over all

2 For certain cases (e.g. if subproperties of ’rdf:SubpropertyOf’ are defined) that are
very rare in real world ontologies, repeated application of the rule sequence is nec-
essary for completeness.

2

rules. As the authors report, this is problematic because the same conclusions
are derived again and again in every iteration.

2.4 EL+ Classification

EL+ [1] is a fragment of OWL that does not contain union operators or forall
restrictions. Concepts in EL+ are built according to the grammar

C ::= A|>|C uD|∃r.C,

where A is a concept name, r is a role name and C,D are concept names or com-
plex concepts. In addition to general concept inclusions C v D and assertions,
an EL+ ontology may contain role inclusions r1 ◦ ... ◦ rn v r where r, r1, ..., rn
are role names. The essential property of EL+ is the existence of a simple set of
derivation rules that allows classification of EL+ ontologies in polynomial time.
For example, the rule

X v A & A v ∃r.B ⇒ X v ∃r.B

propagates a restriction on a class A to the subclass X of A. Motivated by the
materialization approaches mentioned before, [3] proposes a MapReduce variant
of the EL+ classification algorithm CEL. The derivation rules of CEL are trans-
lated to MapReduce jobs. Before the translation, the rules are slightly adapted,
such that for every rule all premises share at least one class or property name.
The shared terms are used as key in the input of the reduce function (output
of the map function) similar to the RDFS materialization. For the above rule,
axioms A v B are assigned the key B and restrictions A v ∃r.B are assigned
the key A. The reduce workers derive new axioms from sets of axioms that share
the same key. In contrast to the previous approaches, only the input to the re-
duce function is considered as premises and this set of potential premises is not
changed while the reduce worker runs. Recall that in the RDFS materializa-
tion, all applications of a certain rule are executed in a single MapReduce job.
In EL+ classification, an axiom derived by a reduce worker can only be con-
sidered as premise in the next job. Hence, the number of required MapReduce
jobs is at least the depth of the derivation graph. Another difference to previous
approaches is the maintenance of the axiom set. The authors propose to store
the axioms in a database instead of the files that are used by, e.g., the Hadoop
implementation of MapReduce.
The approach suffers from an unsolved efficiency issue: Rules of the underlying
CEL algorithm are only applied, if the conclusion is not already contained in
the current axiom set. But, in the MapReduce variant of the algorithm, the
authors do not report how this preconditions are checked and the preconditions
are not mentioned in the adapted rules set. We assume, that the database that
is used for storing intermediate results deletes duplicate axioms. But anyway, if
already derived axioms are repeatedly derived in every iteration, the method is
inefficient, especially because the number of iterations is very high as mentioned
before.

3

3 Description Logic Satisfiability

After analyzing the challenges of previous approaches we apply the MapReduce
framework for checking satisfiability of expressive ontologies. We will face similar
problems as the EL+ classification and propose a different solution that is also
relevant for other approaches.
In previous work [4, 5], we developed a distributed resolution method for checking
satisfiability of a given set of axioms translated to first order clauses. Different
variants of the algorithm are used depending on the expressivity of the ontology.
In theory, the method can be used for first order theories, but due to limited
space we focus on the basic variant for ALCHI in this paper. The reasoning
method is based on ordered resolution. For clauses C and D and literals A and
¬B, standard resolution is defined by the rule

C ∨A & D ∨ ¬B ⇒ Cσ ∨Dσ

where σ is the most general unifier of A and B. For ordered resolution, the
literals of each clause are ordered based on a precedence of predicate and function
symbols. Ordered resolution inferences are than restricted to premises where the
literals A and ¬B that are unified are the maximal literals of the premises.
A second rule (factoring) is necessary to guarantee completeness for first order
logic. We skip the definition because it has only one premise and hence we do not
need to take it into account for distribution of the reasoning method. For clauses
obtained from ALCHI ontologies, ordered resolution terminates and derives an
empty clause if and only if the input ontology is inconsistent.
All literals that occur in clauses obtained from an ALCHI ontology are of the
form P (t) or P (t1, t2) where P is a unary or binary literal and t is a constant or
variable or a term of form f(x) where f is function symbol and x is a constant
or variable. Literals A and B are only unifiable, if the predicates are the same,
i.e. A = P (...) and B = P (...) with a predicate P .

3.1 Naive MapReduce for Distributed Resolution

The key to applying MapReduce to description logic resolution is the shared
predicate of unified literals. Similar to the previous approaches, the map func-
tion reads all clauses and outputs a (key, value) pair for every clause. The value
is the clause, the key is the predicate of the maximal literal of the clause. Every
clause has a unique key, because clauses obtained from ALCHI ontologies have
a unique maximal literal [5]. For more expressive ontologies, literal types and
unification are more complicated and multiple (key, value) pairs may be gen-
erated for a clause. The partitioning function of the MapReduce job allocates
keys (i.e. predicates) to reduce workers. In the reduce function, the derivations
are performed on clauses that have the same predicate in their maximal liter-
als. This can be implemented using a standard reasoner that returns the local
saturated clause set as output. The output is then merged before the next call
to the MapReduce job. In the next map phase keys are recomputed. In contrast

4

to the previous approaches we can use a single map and reduce function for the
whole saturation. But, like for OWL Horst and EL+ we have to repeat the job
until no new clause is derived.

3.2 Avoiding Repetition

The problem of the straightforward application of MapReduce to resolution are
repeated inferences. Without recording the work that is already done, we will
repeat every derivation that is performed in every subsequent call to the job.
To solve the problem, we remember that repeated inferences are avoided by
standard reasoners using a very simple strategy. The current clause set of the
saturation process is partitioned into two sets: A set of clauses that is already
completely interresolved, this is the worked-off (WO) set. All other clauses are
in the usable (US) set. We start with all input clauses in the US set and an
empty WO set. Now, we iteratively pick a clause from the US set and resolve
it with any possible clause from the US set and then move the picked clause
to the WO set. Derived clauses are always added to the US set. This method
makes sure that any combination of premises is only tried once. The simple but
effective method can be applied to the file-based MapReduce resolution: Every
reducer works on two files that serve as US and WO set. When calling the reduce
function, the reducer first reads the WO clauses and then starts resolving with
the first usable clause. Derived clauses are appended to the local US set if they
have a local key according to map and partition function. Other derived clauses
are stored in a separate set DE. When the reducer is finished with the US set,
the WO and DE sets are written to disk. In the next iteration, DE clauses are
allocated by the map function to obtain the new US sets. Then the reducers
are started on the new WO and US sets. Efficient resolution reasoning requires
deletion of duplicate clauses and clauses that are subsumed by other clauses.
This redundancy check is performed in the reduce function. For every clause
picked from the US set, we first check if it is redundant or subsumes a clause of
the WO set and delete the redundant clauses.

3.3 Work Load Balance

The time required for local saturation can be very different among the reduce
workers depending on the size of the WO and US sets. To optimize balance
of work load, we modify the reduce function to saturate only a given number
(usChunk) of clauses and not the whole US set. At the beginning, we define
the amount of time tintended an iteration should take and set usChunk to the
same number for each key. After each run of the job, we increase or decrease
the number of US clauses that have to be resolved depending on the difference
between intended and actual runtime: usChunk = usChunk · tintended/tactual.
With chunked US sets work load balance would be improved considerably.

5

4 Conclusion

We investigated MapReduce approaches to ontology reasoning and found the
main challenge is avoiding repetition of inferences. For the limited expressivity
of RDFS, the problem can be avoided because every MapReduce job is executed
only once. For more expressive ontologies fixpoint iteration is necessary and
causes many repeated inferences in previous approaches. Applying MapReduce
for distributed resolution requires an approach that efficiently avoids repetition.
We propose solving the problem by adapting the standard method for avoid-
ing repetition of resolution inferences. The solution is also applicable to other
MapReduce approaches, EL+ classification would be tractable, the runtimes of
OWL Horst materialization would benefit from this optimization. Considering a
reasoning application that faces scalability problems on large input, MapReduce
implementations probably provide the easiest access to massive computation and
memory resources.
However, there are problems caused by separating the saturation process into a
sequence of jobs. With each iteration, the clause sets are parsed and written to
disc, generating needless overhead. Furthermore, derived clauses are not passed
on to the next worker instantly but only after the current job finishes. These
disadvantages are inherent to the MapReduce framework, they are the price for
usability and fault tolerance. For applications that focus on optimal performance,
frameworks that allow interaction between workers are preferable.

References

1. F. Baader, C. Lutz, and B. Suntisrivaraporn. Efficient reasoning in EL+. In Proceed-
ings of the 2006 International Workshop on Description Logics (DL2006), CEUR-
WS, 2006.

2. Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

3. Raghava Mutharaju, Frederick Maier, and Pascal Hitzler. A MapReduce Algorithm
for EL +. In Workshop on Description Logics (DL2010), pages 464–474, 2010.

4. Anne Schlicht and Heiner Stuckenschmidt. Distributed resolution for expressive
ontology networks. In Web reasoning and rule systems : Third International Con-
ference, RR 2009, 2009.

5. Anne Schlicht and Heiner Stuckenschmidt. Peer-to-peer reasoning for interlinked
ontologies. International Journal of Semantic Computing, Special Issue on Web
Scale Reasoning, 4(1), March 2010.

6. H.J. ter Horst. Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. Web Semantics:
Science, Services and Agents on the World Wide Web, 3(2-3):79–115, 2005.

7. Jacopo Urbani, Spyros Kotoulas, and Jason Maassen. OWL reasoning with WebPIE:
calculating the closure of 100 billion triples. The Semantic Web:, pages 213–227,
2010.

8. Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and F. van Harmelen. Scalable dis-
tributed reasoning using mapreduce. The Semantic Web-ISWC 2009, pages 634–
649, 2009.

6

