
7

Structure-Based Partitioning of Large Ontologies

Heiner Stuckenschmidt and Anne Schlicht

Universität Mannheim, Germany

{heiner, anne}@informatik.uni-mannheim.de

Summary. In this chapter we describe a method for structure-based ontology partitioning

and its implementation that is practically applicable to very large ontologies. We show that

a modularization based on structural properties of the ontology only already results in mo-

dules that intuitively make sense. The method was used for creating an overview graph for

ontologies and for extracting key topics from an ontology that correspond to topics selected

by human experts. Because the optimal modularization of an ontology greatly depends on the

application it is used for, we implemented the partitioning algorithm in a way that allows for

adaption to different requirements. Furthermore this adaption can be performed automatically

by specifying requirements of the application.

7.1 Introduction

In our work, we focus on the task of splitting up an existing ontology into a set of modules

according to some criteria that define the notion of a good modularization. Intuitively, we can

say that a module should contain information about a coherent subtopic that can stand for it-

self. This requires that the concepts within a module are semantically connected to each other

and do not have strong dependencies with information outside the module. These consider-

ations imply the need for a notion of dependency between concepts that needs to be taken

into account. There are many different ways in which concepts can be related explicitly or

implicitly. At this point we abstract from specific kinds of dependencies and choose a general

notion of dependency between concepts. The resulting model is the one of a weighted graph

O = �C�D�w� where nodes C represent concepts and links D between concepts represent

different kinds of dependencies that can be weighted according to the strength of the depen-

dency. These dependencies can reflect the definitions of the ontology or can be implied by the

intuitive understanding of concepts and background knowledge about the respective domain.

Looking for an automatic partitioning method, we are only interested in such kinds of depen-

dencies that can be derived from the ontology itself. This leads us to a first central assumption

underlying our approach:

Assumption 1: Dependencies between concepts can be derived from the structure

of the ontology.

168 Heiner Stuckenschmidt and Anne Schlicht

Depending on the representation language, different structures can be used as indicators of de-

pendencies. These structures can be subclass relations between classes, other relations linked

to classes by the range and domain restrictions or the appearance of a class name in the defi-

nition of another class. In previous work, we have shown that this assumption is valid in many

cases [13]. A second basic assumption of our approach that directly follows from the first

assumption and will be the focus of this paper is the following:

Assumption 2: The quality of a modularization can be determined on the basis of

the structure of the individual modules and the connections between them.

This assumption does not only provide a rationale for structure-based ontology partitioning, it

also allows us to adapt the partitioning algorithm originally proposed in [13] by explicitly tak-

ing structural criteria for measuring the quality of the resulting modular ontology into account.

In the subsequent section we describe the different steps of the partitioning algorithm. Section

3 comprises an overview of the implementation including instruction for its utilization. We

demonstrate application of the tool for visualization and identification of key topics in section

4. The last section summarizes the main ideas and results and gives an outlook on future work.

7.2 Algorithm

Our algorithm consists of three tasks that are executed in six independent steps. The first

task (Steps 1.1 and 1.2) is the creation of a dependency graph from an ontology definition.

Guided by this graph the actual partitioning is the second task. The third task is optimization

of the partitioning by assignment of isolated concepts, merging some modules and duplicating

selected axioms. Step 4 describes how parameters that are required by the different partitioning

steps are determined automatically, based on a given set of criteria.

7.2.1 Dependency Graph

The first task of the algorithm is the conversion of an ontology in OWL, RDF or KIF format

into a weighted graph. It consists of two steps, the creation of the graph and the computation

of the weights.

Step 1.1: Create Dependency Graph: In the first step a dependency graph is extracted from

an ontology source file. The elements of the ontology (concepts, relations, instances) are

represented by nodes in the graph. Links are introduced between nodes if the corres-

ponding elements are related in the ontology. There are five types of relations between

elements to choose from for the creation of links: subclass, property, definition, substring

and distance relations.

When property relations are to be included, domain and range of each property are connected

by a link. Definition relations are established between a concept and terms contained in its

definition (either only properties or also other resources). These can be used to make concepts

dependent on some shared property. The remaining two relations, substring and string dis-

tance, look at the concept names (or labels if specified). They create a relation if one concept

name is contained in another or if the string distance between two concept names is below

a certain threshold. The string relations are oportune when the terms of the ontology have a

7 Structure-Based Partitioning of Large Ontologies 169

compositional structure. For example, [10] found that in the Gene ontology 65% of the terms

encode a semantic relation in their name (e.g. regulation of cell proliferation is related to cell

proliferation).

Step 1.2: Determine Strength of Dependencies: In the second step the strength of the depen-

dencies between the concepts has to be determined. Following the basic assumption of

our approach, we use the structure of the dependency graph to determine the weights of

dependencies. In particular we use results from social network theory by computing the

proportional strength network for the dependency graph. The strength of the dependency

of a connection between a node ci and cj is determined to be the proportional strengths

of the connection. The proportional strength describes the importance of a link from one

node to the other based on the number of connections a node has. In general it is com-

puted by dividing the sum of the weights of all connections between ci and cj by the sum

of the weights of all connections ci has to other nodes (compare [4], page 54ff):

w(ci� cj) =
aij + aji�

k

aik + aki

Here aij is the weight preassigned to the link between ci and cj - in the experiments re-

ported in this section this will always be one. As a consequence, the proportional strength

used in the experiments is one divided by the number of nodes ci is connected to.

The intuition behind it is that individual social contacts become more important if there are

only few of them. In our setting, this measure is useful because we want to prevent that classes

that are only related to a low number of other classes get separated from them. This would be

against the intuition that classes in a module should be related.

We use node d in Fig. 7.1 to illustrate the calculation of weights using the proportional

Fig. 7.1. An example graph with proportional strength dependencies.

strength. The node has four direct neighbors, this means that the proportional strength of

the relation to these neighbors is 0.25 (one divided by four). Different levels of dependency

between d and its neighbors now arise from the relative dependencies of the neighbors with

d (the proportional strength is non-symmetric). We see that e and f having no other neighbors

170 Heiner Stuckenschmidt and Anne Schlicht

completely depend on d. The corresponding value of the dependency is 1. Further, the strength

of the dependency between g and d is 0.5, because g has two neighbors and the dependency

between b and d is 0.33 as b has 3 neighbors.

7.2.2 Identification of Modules

Step 2: Determine Modules The proportional strength network provides us with a foundation

for detecting sets of strongly related concepts. For this purpose, we make use of an algo-

rithm that computes all maximal line islands of a given size in a graph [2].

Definition 1 (Line Island). A set of vertices I ⊆ C is a line island in a dependency

graph G = (C�D�w) if and only if

• I induces a connected subgraph of G

• There is a weighted graph T = (VT � ET � wT) such that:
– T is embedded in G

– T is an maximal spanning tree1 with respect to I
– the following equation holds:

max
{�v�v�)∈D|�v∈I∧v� �∈I)∨�v�∈I∧v �∈I)}

w(v� v�) < min
�u�u�)∈ET

w(u� u�)

Note that for the determination of the maximal spanning tree the direction of edges is not

considered. �

This criterion exactly coincides with our intuition about the nature of modules given in the

introduction, because it determines sets of concepts that are stronger internally connected

than to any other concept not in the set. The algorithm requires an upper and a lower bound

on the size of the detected set as input and assigns an island number to each node in the

dependency graph. We denote the island number assigned to a concept c as α(c). The
assignment α(c) = 0 means that c could not be assigned to an island.

We use different sets of nodes in the graph in Fig. 7.1 to illustrate the concept of a line island.

Let us first consider the set {a� ...� f}. It forms a connected subgraph. The maximal spanning

tree of this set consists of the edges a
1.0
−→ c, b

1.0
−→ c, c

0.33
−→ d, e

1.0
−→ d, and f

1.0
−→ d. We

can see however, that this node set is not an island, because the minimal weight of an edge

in the spanning tree is 0.33 and there is an incoming edge with strength 0.5 (g
0.5
→ d). If we

look at the remaining set of nodes {g�h}, we see that it fulfills the conditions of an island:

it forms a connected subgraph, the maximal spanning tree consists of the edge h
1.0
→ g and

the maximal value of in- or outgoing links is 0.5 (g
0.5
→ d). This set, however, is not what we

are looking for because it is not maximal: it is included in the set {d� ...�h}. This set is a line

island with the maximal spanning tree consisting of the edges e
1.0
−→ d, f

1.0
−→ d, g

0.5
−→ d and

h
1.0
−→ g where the minimal weight (0.5) is higher than the maximal weight of any external

link which is c
0.33
−→ d. Another reason for preferring this island is that the remaining node

set {a�b� c} also forms a line island with maximal spanning tree a
1.0
−→ c, b

1.0
−→ c and the

weaker external link c
0.33
−→ d.

1 A maximal spanning tree is a spanning tree with weight greater than or equal to the weight

of every other spanning tree.

7 Structure-Based Partitioning of Large Ontologies 171

The actual calculation of the islands is done by an external program written by Matjaz Zaver-

snik2. This program requires specification of minimum and maximum island sizes to compute

the above defined line islands. The minimum size is always set to 1 for not restricting the

island creation more than necessary.

7.2.3 Optimization 1: Assignment of Isolated Concepts

After partitioning, in some cases there will be some leftover nodes which are not assigned to

any cluster. The algorithm will automatically assign these nodes based on the strength of the

relations to nodes already assigned to a module.

Step 3.1: Assign Isolated Concepts Leftover nodes are assigned to the cluster to which they

have the strongest connection. In particular this is the island of the neighboring node they

have the strongest relation to. In cases where all neighboring nodes are unassigned as

well, these nodes are assigned first.

How this process works can best be explained by an example. Fig. 7.2 shows an example

network. It contains two modules (M1 and M2) and one leftover node (c8). c8 is connected to

module M1 by one edge with strength 0.3 and to module M2 by two arcs with strengths 0.2

and 0.3. To determine the strength of a connection between a leftover node and a module, the

Module M2Module M1

c1 c2

c3

c4 c5

c6 c7

c8

0.2

0.30.3

c5 node

edge

arc

module

Fig. 7.2. Example network for the assignment of leftover nodes to modules.

strengths of all edges and arcs that connect the two are summed. Because edges are undirected

and work in this respect in both directions, they can be considered twice as strong as arcs.

Therefore their weight is doubled. In the example network the connection between c8 and M1

is 0.6, between c8 and M2 0.5, so the leftover node will be assigned to module M1.

7.2.4 Optimization 2: Merging

Looking at the result of the example application we get a first idea about the strengths and

weaknesses of the algorithm. We can see that the algorithm generates some modules that meet

2 http://vlado.fmf.uni-lj.si/pub/networks/

172 Heiner Stuckenschmidt and Anne Schlicht

our intuition about the nature of a module quite well. In some cases subtrees that could be

considered to form one module are further split even if the complete subtree does not exceed

the upper size limit. This can be explained by an unbalanced modelling of the ontology as

subtrees tend to be split up at concepts with a high number of direct subclasses compared to its

sibling classes. This phenomenon often reflect a special importance of the respective concept

in the ontology that also justifies the decision to create a separate model for this concept. The

iterative strategy frees us from determining a lower bound for the size of modules. As a result,

however, the algorithm sometimes create rather small modules. This normally happens when

the root concept of a small subtree is linked to a concept that has many direct subclasses. For

the result of the partitioning method these subsets are often pathological because a coherent

topic is split up into a number of small modules that do not really constitute a sensible model

on their own.

When inspecting the dependencies in the relevant parts of the hierarchy, we discovered that

most of the problematic modules have very strong internal dependencies. In order to distin-

guish such cases, we need a measure for the strength of the internal dependency. The measure

that we use is called the ‘height’ of an island. It uses the minimal spanning tree T used to

identify the module: the overall strength of the internal dependency equals the strength of the

weakest link in the spanning tree.

height(I) = min
�u�u�)∈ET

w(u� u�)

We can again illustrate the the concept of height using the example from Fig. 7.1. We identified

two islands, namely {a�b� c} and {d� ...�h}. As the maximal spanning tree of the first island

consists of the two edges a
1.0
−→ c, b

1.0
−→ c, the height of this island is 1.0. In the maximal

spanning tree of the second island the edge g
0.5
→ d is the weakest link that therefore sets the

height of the island to 0.5.

Fig. 7.3. Sizes and heights of partitions in the SUMO ontology

7 Structure-Based Partitioning of Large Ontologies 173

We found many cases where generated modules that do not make sense had an internal

dependency of strength one. In a post-processing step this allows us to automatically detect

critical modules. While for the case of an internal strength of one we almost never found

the corresponding module useful in the context of the original ontology, it is not clear where

to draw the line between a level of internal dependency that still defines sensible modules

and a level that overrules important dependencies to concepts outside the module. In our

experiments we made the experience that a threshold of 0.5 leads to good results in most

cases.3

Fig. 7.4. Sizes and heights of partitions in the NCI ontology

Figures 7.3 and 7.4 show the results of comparing the size and the height of computed islands.

The plots clearly show a correlation between these properties. We also see that—except for one

case—islands with a height of one are quite small.4 The results of these experiments provided

us with sufficient evidence that the height of an island is a useful criterion for judging the

quality of a module. As described above, one of the findings in the first experiments was the

strong correlation between size of modules and the degree of internal dependency. Further, we

found out that small modules were unnatural in most cases. In a second experiment, we show

that this result can be used to ’repair’ the result of the straightforward partitioning.

Step 3.2: Merging All modules whose height reaches the given threshold are merged into

adjacent modules with a lower height. In many cases, there is only one adjacent module

to merge with. In cases where more than one adjacent module exist, the strength of the

dependencies between the modules is used to determine the candidate for merging.

3 Note that due to the calculation of the dependency value, the internal strength is always of

the form 1
n
.

4 The exception is a part of the NCI ontology that lists all countries of the world and therefore

contains 1 class with more than 200 subclasses

174 Heiner Stuckenschmidt and Anne Schlicht

7.2.5 Optimization 3: Criteria Maximization

Starting point of a partitioning problem is usually an application in need for a partitioning that

meets certain requirements. Investigation of applications for ontology modularization reveals

that the criteria for determining a “good” partitioning depend heavily on the concrete appli-

cation [6]. For enabling adjustment to different application requirements the parameters that

influence the final partitioning are customizable.

In order to support users to chose the right setting for a given application, we do not force to

directly provide values for the parameters mentioned above. Instead, the user is asked to select

and rank quality criteria for the resulting partitioning. This frees the user from the need to

understand the partitioning method and the influence of the different parameters. In contrast,

the user only has to be concerned with the requirements of the application at hand. We believe

that this is a big step towards enabling domain experts with limited knowledge about the

technical details of representation languages for ontologies to use this technology.

It can be assumed that different applications may not only impose different weights for the

built-in criteria but also require consideration of new criteria that are defined by the user. For

usage of additional criteria our tool provides a simple interface.We assume that althought there

may be various types of requirements, they all can be described by concrete measurements that

map partitionings to decimal numbers. Different applications may share some measurements

but disagree on their relative importance, it could even happen that one measurement is posi-

tive for one application and negative for another.

Criteria

The most obvious criteria used for optimization are number of modules, avarage module size

and variance of size. Uniformity of the size distribution, is measured by the criteria bulkyness

and granularity. The intention of bulkyness is to indicate that some modules are to large, e.g.

the largest module has almost the same size as the whole ontology. For obtaining a smooth

function module sizes ni = |Mi| are mapped to values in [0� 1] depending on the size n of the
ontology.

bulkyness(ni� n) =
1

2
−

1

2
cos(π ·

ni

n
)

These values are averaged over all modules (weighted by module sizes) to obtain a measure-

ment for the whole partitioning. Similarly, granularity indicates that modules are to small, e.g.

when half of the concepts are contained in modules of size 1.

granularity(ni� n) = (
1

2
+

1

2
cos(π ·

ni

n
))20

The precise value of the exponent does not matter, 20 is a value that worked well in practice.

The graphs depicted in Fig. 7.2.5 illustrates the choice of functions. If there are two modules

of the same size the bulkyness value is 0.5. If one of these modules is further partitioned into

modules with size 1% of the size of the ontology, the granularity value is 0.5. In addition

to criteria computed from size and number of modules, connectedness depends on the links

between the modules. In many applications the number of symbols shared between axioms in

different modules should be as small as possible. We consider the fraction of inter-modules

edges with respect to the total number of edges. A detailed investigation of this measurement

can be found in [12].

connectedness =
�{(v� v�) ∈ D | α(v) �= α(v�)}

�{(v� v�) ∈ D}

7 Structure-Based Partitioning of Large Ontologies 175

Fig. 7.5. bulkyness and granularity of modules against the relative size

where D is the set of edges of the dependency graph and α the assignment to modules (see
Def. 1).

For optimization depending on specific terms contained in the ontology two additional criteria

are defined. Number of relevant modules and relative size of relevant modules are computed

depending on a given set of terms, i.e. a module is considered relevant if it contains one of the

terms. For the relative size, the sum of the sizes of the relavant modules is compared to the

size of the ontology.

There are different mechanisms for optimizing the configuration according to given criteria:

Dynamic defaults

Firstly, parameters that are not given in the settings file are determined automatically depend-

ing on given criteria. If for example the parameter “maximum island size” is not set in the

input, it is set to number of terms

10
· connectedness weight

bulkyness weight
. These dynamic default settings con-

stitute an approximation of the optimal configuration.

Axiom Duplication

The preceding partitioning and optimization steps result in a non-redundant distributed repre-

sentation of the source ontology. A term can not be allocated to more than one module. Some-

times it can be beneficial, however, to include certain axioms in several modules to decrease

the connectedness of the resulting modularization. As on the other hand, copying axioms in-

creases the redundancy, there has to be a tradeoff between these two conflicting requirements.

Currently, this can be specified by setting an upper bound for the acceptable redundancy in-

troduced. This means that the maximal redundancy is another parameter that influences the

quality of the resulting partitioning in terms of connectedness and redundancy, Algorithm 2

shows the method for duplicating axioms based on a maximal redundancy value.5

5 A partitioning is represented by a set of modules which in turn are represented by sets of

axioms

176 Heiner Stuckenschmidt and Anne Schlicht

Step 3.3: Axiom Duplication Axioms with a high number of links to another module are

copied to that module if connectedness is decreased by this duplication. Duplication stops

when the maximum redundancy is reached.

Algorithm 2 Axiom Duplication

Require: partitioning: Set<Set<Axiom>>
Require: maxRedundancy: double

limit =∞
candidates = ∅
while redundancy < maxRedundancy & limit > 0 do

for all (axiom,module) ∈ partitioning do
if numberOfLinks(axiom,module) > limit then

candidates.add(axiom,module)

end if

end for

for all (axiom,module) ∈ candidates do
if duplicating axiom to module decreases connectedness then

duplicate(axiom, module, partitioning)

end if

end for

limit = limit - 1

end while

Automatic configuration

The most advanced feature of the algorithm is the ability to automatically determine an optimal

configuration of parameter settings:

Step 4: Criteria-Based Optimization Based on a set C of criteria and their weights wc a con-

figuration p is chosen that maximizes the weighted sum of the criteria values vc�p.

max
p∈�onfig

�

c∈C

wc · vc�p

Figure 7.6 demonstrates the selection of the configuration. The highest point of the surface

corresponds to the best configuration for the given criteria.

7.3 Tool Support for Automatic Partitioning

The algorithm described in the last sections is implemented in the Partitioning Tool Pato, a

Java application with two interfaces. Firstly, it performs the partitioning interactively through

a graphical user interface. Secondly, the configuration can be specified in the settings file

directly, providing control over additional parameters. A default configuration is computed, if

only the source ontology file is specified. The tool is freely downloadable6 and licensed under

6 http://webrum.uni-mannheim.de/math/lski/Modularization/

7 Structure-Based Partitioning of Large Ontologies 177

Fig. 7.6. Criteria-based determination of the configuration for the extraction application (see

Sect. 7.4.3), displaying the value of (−connectedness− 5 · bulkyness)

the GNU General Public License. The features that where added in Pato1.3 (mainly criteria-

based optimization and OWL-output) are not yet supported by the GUI, they are controlled

using the settings file.

7.3.1 Graph Generation

Figure 7.7 shows a screen shot of the tool in which an OWL ontology is converted to a de-

pendency network. The screen is divided into three parts: the upper part gives a short help

text about the currently selected tab, the middle part is for specifying the required arguments

(in this case the input ontology and the output network) and the bottom part is for various

optional parameters that influence the conversion. The tool converts an ontology written in

RDFS or OWL to a dependency graph, written in Pajek format. Once the ontology is con-

verted to a Pajek network, it can be visualized and further processed using Pajek, a network

analysis program.7.

This tool uses Sesame, a system for storing and querying data in RDF and RDFS.[3] The

ontology is loaded into a local Sesame repository, after which it can be easily queried via

an API. Because Sesame does not have native OWL support, some extra programming

had to be done to deal with ontologies in this format. This includes explicitly querying for

resources of type owl:Class while retrieving all classes (Sesame only returns resources of

type rdfs:Class) and following blank nodes for determining the definition relations (see

below).

To filter out irrelevant resources, the user can specify a number of namespaces that are to

be ignored. They are entered in a text area (see Fig. 7.7). Resources that occur in those

7 http://vlado.fmf.uni-lj.si/pub/networks/pajek/

178 Heiner Stuckenschmidt and Anne Schlicht

Fig. 7.7. Screen shot of the partitioning tool with the ontology conversion tab active.

namespaces do not show up in the resulting network. In most cases the classes and properties

defined in RDFS and OWL can be ignored, and by entering the corresponding namespaces in

the text area those resources are prevented from appearing in the network.

Before converting an ontology, the user has to decide what relations to include in the network,

and if those relations are to be represented by edges (undirected) or arcs (directed). The tool

allows five types of relations to be included: subclass, property, definition, substring, and

string distance relations. The user also has to decide about the strength of each type. At the

moment, only subclass relations that are explicitly stated in the ontology are included in the

network. No reasoners are used to infer new subclass relations. This will be added in a future

version.

A simple but effective feature added in Pato 1.3 is the option to select if the values of

“rdfs:label” or “rdf:ID” are prefered for vertex labels. Now the use of “rdfs:label” can be

turned of by setting “ontology conversion - use labels=false” for ontologies that use labels for

verbose descriptions or other purposes.

7.3.2 Partition Generation and Improvement

The actual creation of the partitions is based on the previously generated dependency network.

It iteratively splits the network into smaller parts until a specified maximum number of con-

cepts per cluster is reached. Alternatively the occurence of very large and very small clusters

is measured and the iteration stops at the weighted optimum of these measures.

7 Structure-Based Partitioning of Large Ontologies 179

The actual calculation of the islands is done by an external Windows program written by Mat-

jaz Zaversnik8. On Unix Systems Pato searches for Wine9 and tries to use this application for

executing the Windows program.

7.3.3 Criteria-Based Optimization

The criteria-based optimization can be performed using build in analysis methods and/or ad-

ditional criteria. Currently Pato computes connectedness of modules and some measures that

depend on the size distribution of the modules. Either the partitioned graph structure and the

final resulting distributed ontology are subject to analysis.

The relevant criteria are specified in the settings file, with weights indicating their relative

importance. For example “criteria weight - connectedness=3.7” sets the importance of the

connectedness-criterion.

It can be assumed that different applications may not only impose different weights for the

build-in criteria but also require consideration of new criteria that are defined by the user.

For usage of additional criteria the simple interface “Analyse” is provided that contains two

methods, one for setting the input and one for getting the result, both represented as in-

stances of java.util.Properties. The new analyse-class computes the value of one or more

new criteria, its “getResult”-methode then returns the criteria name - criteria value pairs as

an Properties-instance. The only thing to do apart from implementing the computation of

the new criteria is declaring the name of the new class in the settings file (e.g. “analyse

class=some.package.name. AnalyseImplementation”). After registration the new class is used

automatically without recompiling Pato.

7.3.4 Visualization of Criteria Dependencies

If lists of parameters are specified for the parameters “maximum island size” and/or “height

threshold”, the corresponding criteria values are additionally stored as matrices. The produced

file can be loaded into matlab or scilab for plotting the dependencies between criteria and

parameters, Fig. 7.6 was created this way. Furthermore the matrices can be used for efficient

determination of the pareto-optimal10 configuration. Especially when relative importance of

criteria is vague it might be necessary to try different weights, the optimal configurations for

all possible weight assignments are the pareto-optimal configurations.

7.3.5 Module Graph Creation

For creating the ontologies overviews like displayed in Fig. 7.8 Pajek is used. Pato generates

a network file (named “...net”) for the graph and a corresponding vector file (“...vec”) that

defines the vertex sizes. The two files are loaded via Pajeks graphical user interface. Drawing

is initiated by selecting “Draw-Vector” from the Draw-menu. For determination of vertex

labels Pajeks centrality calculation is performed on the dependency graph created by Pato.

The resulting vector file is in the settings file as value of “centrality vector file” prior to the

module graph creation.

8 http://vlado.fmf.uni-lj.si/pub/networks/
9 http://www.winehq.org/

10 A pareto-optimal configuration is a configuration that can not be improved for any criterion

without degrading the value of another criterion.

180 Heiner Stuckenschmidt and Anne Schlicht

7.3.6 Comparison and Evaluation

To evaluate the partitioning against some golden standard or against some other partitioning,

the tool can calculate three similarity measurements: precision, recall and EdgeSim[9]. The

first two measures are based on the numbers of intra-pairs, which are pairs of concepts that are

in the same cluster[1]. The EdgeSim measure considers both the vertices and the edges and

is not sensitive to the size and number of clusters (as are precision and recall). An intra-edge

connects an intra-pair of vertices while an inter-edge connects vertices from different clusters.

Precision: The precision of a partitioning is defined as the ratio of intra-pairs in the generated

partitioning that are also intra-pairs in the optimal partitioning.

Recall: The recall of a partitioning is defined by the ratio of intra-pairs in the optimal parti-

tioning that are also intra-pair in the generated one.

EdgeSim: The EdgeSim measure is defined by the ratio of edges that are either intra-edges

in both partitions or inter-edges in both partitions.

The three measures give an indication of how well the partitioning was performed and there-

fore what relations and strengths give best results.

7.4 Application

The main application area for Pato is visualization and identification of the key topics of an

ontology. Visualization devides into the different tasks of visualizing a whole ontology by

identifying modules and partitioning for visualization of single modules. Considering single

modules is also relevant for facilitated reasoning and is related to module extraction.

7.4.1 Visualization of Large Ontologies

Module Graph

Apart from the resulting OWL-modules, Pato generates networks that can be visualized using

Pajek11, a tool for large network analysis. The network shown in Fig. 7.8 displays each module

as a vertex, the size corresponding to the number of terms in the module. In addition to visual-

ization, we used Pajek for determining the module labels. In particular, a module is labeled by

the vertex with the highest betweenness12, a centrality measurement defined by [8] for social

networks.

For successful visualization of the whole ontology, the number of modules should be about

30 to provide as much information as can be displayed. Furthermore very large modules

should be avoided. Therefore the criteria weights are set to (-1) for connectedness and (-2)

for abs�numberOfModules-30).

According to this criteria, Pato chooses the configuration13. Figure 7.9 shows the weighted

sum of the criteria values. Dependency weights14 where set directly, they depend on the type

of relations that are to be visualized in the module graph.

11 http://vlado.fmf.uni-lj.si/pub/networks/pajek/
12 The betweenness of a vertex v ∈ V is the percentage of shortest paths this vertex lies on:

betweenness(v) =
�

s�t∈V

s�=v �=t

σst�v)
σst

were σst is the number of shortest paths between the

vertices s and t, and σst(v) is the number of shortest paths between s and t that v lies on.
13 height threshold=0.2, max island size=7000
14 strength subclass links=7, strength property links=0.2, strength definition links=3

7 Structure-Based Partitioning of Large Ontologies 181

Fig. 7.8. The module graphs displays the connections between modules. For each module the

name of the vertex with the highest centrality labels the module.

7.4.2 Identification of Key Topics

We consider an imaginary optimal partitioning of the ontology. An automatically generated

partitioning is evaluated against this optimal partitioning in terms of recall and precision.

The basic problem of evaluating a partitioning is the fact, that in most cases we do not

have an optimal partitioning to compare to. For these cases, we have to rely on alternative

methods to determine the quality of the partitioning. A possibility that we will explore is

empirical evaluation through user testing. Such an evaluation requires that the subjects have

some knowledge about the domain modeled by the ontology. Therefore the ontology and the

subjects have to be chosen carefully. The first option is to chose an ontology about a rather

general topic (e.g. the transportation ontology). In this case any student is knowledgable

enough to be chosen as a test subject. The other option is to chose a more specialized

model and look for domain experts. Options here are the use of a computer science specific

ontology (eg. the ACM classification) or a medical ontology. The advantage of the former

is that test subjects are easier available while the time of medical experts is often rather limited.

A basic problem of empirical evaluation is the complexity of the task. Users will often not

be able to oversee the complete ontology and to determine a good partitioning for themselves

(in fact this is the reason why we need automatic partitioning). The most basic way of doing

empirical evaluation is to directly use the notion of intra-pairs. As we have seen above, know-

ing all intra-pairs is sufficient for determining the quality measures defined above. This means

that we can present pairs of concepts to subjects and ask them whether or not these concepts

should be in the same part of the ontology. A problem of this approach is that the subject is

not forced to be consistent. It might happen, that according to a subject A and B as well as A

and C should be in the same part, but B and C should not. The second problem is the number

of tests necessary to determine a partitioning. In the case of the ACM hierarchy, more that

182 Heiner Stuckenschmidt and Anne Schlicht

Fig. 7.9. The criteria evaluation for visualization displays the value of −2 ·
abs(numberOfModules − 30)− connectedness .

1,5 Million pairs would have to be tested. In order to avoid these problems of consistency and

scalability of empirical evaluation, we decided to perform an evaluation that is not based on

concept pairs. The setting of our experiments is described in the following.

Setting

We used the ACM classification of computer science topics as a basis for performing an

empirical evaluation of our partitioning method. The nature of the ACM hierarchy allows us

to evaluate our method in terms of the number of key concepts identified when partitioning

the model. The idea is that the root of each subtree distinguished by our partitioning algorithm

should denote a unique subfield of computer science. When partitioning richer ontologies

the hierarchy of one part would be a forest and centrality measures would be a better

choice for denoting a subfield. However, for a partitioned hierarchy the subhierarchies are

connected and the root is its superordinate concept. In order to determine such subfields

that should be identified by the method, we analyzed the organization of computer science

departments of Dutch universities with respect to the topics they used to identify subdivisions

of their department. We then manually aligned these topics with the ACM topic hierarchy by

translating the topic found into terms appearing in the ACM topic hierarchy. In cases where

the topic matched more than one ACM terms (e.g. databases and information systems) both

terms were counted. Terms that do not have a counterpart in the ACM hierarchy were ignored

(e.g. ’mediamatics’).

The test set consisted of 13 Dutch universities. Ten out of these had computer science depart-

ments. We extracted 85 terms from the corresponding web sites, mostly names of departments,

7 Structure-Based Partitioning of Large Ontologies 183

groups or institutes. We were able to map 77 of these terms into 42 distinct terms from the

ACM hierarchy. We distinguish three subsets of these 42 terms: terms that occur at least once,

terms that occur at least twice and terms that occur at least three times. We can assume that

terms that occur more than once to be important subfields of computer science that we would

like to capture in a single module.

Results

We compared these extracted terms with the root concepts of subtrees of the ACM hierarchy

generated using our partitioning method. We chose to use a setting where the maximal size

of an island is set to 100 and the threshold for merging islands is 0.2. With these settings, the

method generated 23 modules. We decided to ignore three of the root terms:

ACM CS Classification This is the root of the hierarchy and not a proper term denoting a

computer science topic

Mathematics of Computation The subtopics of this will normally be found in mathematics

rather than computer science departments and were therefore not covered by our test set.

Hardware The subtopics of this module will normally be found in electrical engineering

rather than computer science departments.

After this normalization, we compared the root terms of the generated modules given in Table

7.4.2 with the terms identified on the department web pages and used overlap to compute the

quality of the partitioning in terms of precision and recall of our method.

From the web pages of Dutch computer science departments, we extracted the 42 ACM

terms shown in Table 7.2. The most often occurring term was ’Algorithms’ that described

5 groups, followed by ’Software’ and ’Software Engineering’. Other frequently appearing

topics were ’Robotics, ’Computer Systems’, ’Computer Graphics’, Information Systems’,

’Expert Systems and Applications’ (often referred to as ’Intelligent Systems’), Life Science

applications, ’Systems Theory’ and ’Theory of Computation’.

We can see that there is quite some overlap between the root nodes of the subtrees determined

by our methods and the terms from the test set. The overlap is especially striking when we only

consider the set of terms that occurred more than two times in the description of groups. Six out

of these eleven terms where also determined by our method. The recall becomes worse when

considering terms than only occurred twice or once. This was expected, however, because

there are single research groups on more specific topics such as distributed databases that are

not necessarily regarded as important subfields by a large majority of people. We included

these terms with less support in the test set to evaluate how many of the terms found by our

method are used to describe the topics of groups. It turns out that 12 out of the 20 terms occur

in the test set leading to a maximal precision of 60% for the largest test set. We used to F-

Measure ((2 ∗ (precision ∗ recall))/(precision + recall)) to determine the overall quality
of the results. It turns out that we receive the best results on the set of terms that occur at least

twice. A summary of the results is shown in Table 7.3.

The main observation is that there is a significant overlap between topics that occur in the

name of computer science research groups and the root nodes of the subtrees determined

by our method. We were able to reach a precision of up to 60 percent when considering all

terms occurring on the web sites. When only considering terms that are used more than two

times, our method reached a recall of almost 55 percent. This can be considered a very good

result as the chance of picking the most frequently occurring terms from the ACM hierarchy

184 Heiner Stuckenschmidt and Anne Schlicht

1. Numerical Analysis

2. Image Processing and Computer Vision

3. Management of Computing and Information Systems

4. Computing Milieux

5. Software Engineering

6. Computer Communication Networks

7. Data

8. Information Storage and Retrieval

9. Operating Systems

10. Database Management

11. Computer Systems Organization

12. Information Interfaces and Presentation

13. Software

14. (Mathematics of Computing)

15. Theory of Computation

16. (ACM CS Classification)

17. Information Systems

18. Computer Applications

19. Simulation and Modeling

20. Artificial Intelligence

21. Computer Graphics

22. Computing Methodologies

23. (Hardware)

Table 7.1. The method determined 20 terms to represent important subareas of computer sci-

ence. (Apart from the three nodes Mathematics of Computing, ACM CS Classification and

Hardware)

is
�

11
1300

�
(the binomial of 11 over 1300) and we do not have more information than the pure

structure of the concept hierarchy.

This result supports our claim, that the structure of concept hierarchies contains important

information about key concepts that in turn can be used to partition the hierarchy. Our hy-

pothesis is, that this phenomenon is not random, but that people, when creating classification

hierarchies are more careful when determining the subclasses of important classes. The result

is a high number of children that cause our method to split the hierarchy at this particular

point.

7.4.3 Visualization and Reasoning via Module Extraction

Large ontologies often cause problems for reasoning and editing. Furthermore the time

needed for a human to overlook an ontology dramatically increases with its size. If not

the whole ontology but only parts of it are relevant for an application the straight forward

approach to dealing with too large ontologies is to consider only a part of it.

7 Structure-Based Partitioning of Large Ontologies 185

occurrence ACM term

> 2 Algorithms

Software

Software Engineering

Robotics

Computer Systems Organization

Computer Graphics

Information Systems

Applications And Expert Systems

Life And Medical Sciences

Systems Theory

Theory Of Computation

> 1 User Interfaces

Programming Techniques

Artificial Augmented And Virtual Realities

Artificial Intelligence

Image Processing And Computer Vision

Input/Output And Data Communications

Parallelism And Concurrency

Probability And Statistics

> 0 Computer-Communication Networks

Business

Computing Methodologies

Control Design

Decision Support

Distributed Artificial Intelligence

Distributed Databases

Formal Methods

Games

Information Search And Retrieval

Information Theory

Management Of Computing And Information Systems

Microcomputers

Natural Language Processing

Neural Nets

Numerical Analysis

Physical Sciences And Engineering

Real-Time And Embedded Systems

Security

Signal Processing

Software Development

System Architectures

Systems Analysis And Design

Table 7.2. ACM terms extracted from web sites of Dutch Computer Science Departments

186 Heiner Stuckenschmidt and Anne Schlicht

Test Set Precision Recall F-Measure

> 2 30% 6 of 20 54.55% 6 of 11 38.71%

> 1 40% 8 of 20 42.11% 8 of 19 41.03%

> 0 60% 12 of 20 28.57% 12 of 42 38.71%

Table 7.3. Summary of evaluation results

[5] describes a scenario in which knowledge is selected from online available ontologies.

This knowledge selection procedure was applied to the semantic web browser plugin Magpie

[7]. Magpie requires to automatically select and combine online available ontologies for

identifying and highlighting instances of concepts in associated colors. Figure 7.10 depicts

the sequence of tasks that have to be performed a detailed desciption of the application can be

found in Chap. 3.1.

The partitioning method adressed in this chapter was applied for step 2, the extraction

Fig. 7.10. The knowledge selection process and its use for semantic browsing with Magpie.

Illustration from [6].

of relevant modules from the previously selected ontologies. A comparision of different

extraction methods for this scenario is reported in [6], here we demonstrate how Pato is

applied for the extraction process.

Usually knowledge extraction tools rely on a traversal approach and gather information from

an ontology starting from a set of relevant terms. Nevertheless, in cases where knowledge is

extracted repeatedly from the same ontology using a partitioning tool may be more efficient.

The partitioning can be computed offline, repeated traversal of the whole ontology is replaced

by the less complex selection of modules.

7 Structure-Based Partitioning of Large Ontologies 187

Setting

The scenario described above was simulated by manually extracting relevant keywords

in news stories, using ontology selection tools15. In an example first described in [11]

the keywords Student, Researcher, and University where used to select ontologies. Three

ontologies covering these terms where obtained:

ISWC: http://annotation.semanticweb.org/iswc/iswc.owl

KA: http://protege.stanford.edu/plugins/owl/owl-library/ka.owl

PORTAL: http://www.aktors.org/ontology/portal

The appropriateness of Patos partitionings for this application is evaluated by two new criteria.

First, the size of the obtained modules should be small with respect to the original ontology.

Second partitioning with all relevant terms in one module are prefered i.e. the number of

modules containing relevant terms should be small.

relativeSize=-40

numberOfRelevantModules3=-1

The former criterion is the relative size of the resulting module compared to the size of the

ontology, the latter criterion was emphazised by an exponent. In this application the relative

importance of the two criteria can not be modelled by linear weights only because its gra-

dient is not zero. By setting the exponent to 3 we make sure the rating of a partitioning is

more affected by the decreasing the number of relevant modules from e.g. 3 to 2 than by the

decreasement from 2 to 1.

Results

ISWC KA PORTAL

configuration max island size 40 10 15

height threshold 1.1 1.1 0.2

strength definition links 1 0 0

evaluation relevant modules 1 2 1

relative Size 0.54 0.14 0.27

Table 7.4. Configuration and evaluation for the knowledge extration setting.

Table 7.4.3 shows that for ISWC and KA the merging optimization was not necessary (the

height ranges between 0 and 1, so merging modules with heigth 1.1 and larger means not

15 in particular Swoogle (http://swoogle.umbc.ed)

188 Heiner Stuckenschmidt and Anne Schlicht

merging at all). Due to the application requirement of small module size leftover nodes and

small modules are not merged into larger modules. The low height threshold for PORTAL

is caused by the second criterion. For forcing all terms into one module more merging was

necessary.

Fig. 7.11. Relevant modules of ISWC, KA and PORTAL ontologies for the terms researcher,

student, university.

7.5 Conclusion

In this chapter we have described a method for structure-based ontology partitioning that is

practically applicable to very large ontologies. The main idea of the algorithm is translating

the structure of the ontology to a weighted graph. This graph is split up such that the resulting

modules are stronger internally connected than externally connected. Finally three optimiza-

tion steps are performed to improve the partitioning. Experiments on different ontologies

have shown that a modularization based only on structural properties of the ontology already

results in modules that intuitively make sense. Helpful visualization of large ontologies and

extraction of key topics provided evidence for the appropriateness of the proposed approach.

Because modularizing an ontology essentially is a modeling activity, there is no “golden

standard” to compare our results with. Actually, the notion of a “good” partitioning depends

to a large extent on the application that uses the partitioned ontology. For enabling adaption

to different application requirements we designed a parameterized partitioning algorithm.

The parameters that determine the resulting partitioning are set automatically depending on

given requirements. Encoding parameter selection as an optimization problem with respect

to relevant quality criteria has been crucial for implementing automatic parameter selection.

This disburdens the user from thinking about technical details of the algorithm and draws his

attention to the requirements of the application at hand.

7 Structure-Based Partitioning of Large Ontologies 189

In future work we are planning to use our partitioning tool for distributed reasoning. The

performance of distributed reasoning algorithms depends on additional properties like the size

of the shared language. These requirements will be evaluated and implemented in the further

development process of Pato. Thus it will be possible to configure the partitioning process to

result in a reasonable trade-off between reasoning related requirements and maintainability

requirements.

References

1. Nicolas Anquetil, Cédric Fourrier, and Timothy C. Lethbridge. Experiments with hierar-

chical clustering algorithms as software remodularization methods. In Proceedings of the

Working Conference on Reverse Engineering �WCRE’99), pages 304–313, Atlanta, USA,

oct 1999.

2. Vladimir Batagelj. Analysis of large networks - islands. Presented at Dagstuhl seminar

03361: Algorithmic Aspects of Large and Complex Networks, August/September 2003.

3. Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic archi-

tecture for storing and querying rdf and rdf schema. In Ian Horrocks and James Hendler,

editors, Proceedings of the First International Semantic Web Conference �ISWC 2002),

pages 54–68, Sardinia, Italy, jun 2002.

4. Ronald S. Burt. Structural Holes. The Social Structure of Competition. Harvard Univer-

sity Press, 1992.

5. Mathieu d’Aquin, Marta Sabou, and Enrico Motta. Modularization: a key for the dy-

namic selection of relevant knowledge components. InWorkshop on Modular Ontologies

�WoMO), 2006.

6. Mathieu d’Aquin, Anne Schlicht, Heiner Stuckenschmidt, and Martha Sabou. Ontology

Modularization for Knowledge Selection: Experiments and Evaluations. In International

Conference on Database and Expert Systems Applications �DEXA), 2007.

7. Martin Dzbor, John Domingue, and Enrico Motta. Magpie - towards a semantic web

browser. In International Semantic Web Conference �ISWC), 2003.

8. Linton C. Freeman. A set of measures of centrality based on betweenness. Sociometry,

40(1):35–41, 1977.

9. Brian S. Mitchell and Spiros Mancoridis. Comparing the decompositions produced by

software clustering algorithms using similarity measurements. In Proceedings of the 17th

IEEE International Conference on Software Maintenance �ICSM 2001), pages 744–753,

Florence, Italy, nov 2001.

10. Philipp V. Ogren, Kevin B. Cohen, George Acquaah-Mensah, Jens Eberlein, and

Lawrence Hunter. The compositional structure of gene ontology terms. In Pacific Sym-

posium on Biocomputing, 2004.

11. Marta Sabou, Vanessa Lopez, and Enrico Motta. Ontology selection on the real semantic

web: How to cover the queens birthday dinner? In European Knowledge Acquisition

Workshop �EKAW), Podebrady, Czech Republic, 2006.

12. Anne Schlicht and Heiner Stuckenschmidt. Towards Structural Criteria for Ontology

Modularization. In Workshop on Modular Ontologies ISWC, 2006.

13. Heiner Stuckenschmidt and Michel Klein. Structure-based partitioning of large concept

hierarchies. In Sheila A. McIlraith, Dimitris Plexousakis, and Frank van Harmelen, ed-

itors, Proceedings of the Third International Semantic Web Conference �ISWC 2004),

pages 289–303, Hiroshima, Japan, nov 2004.

