Distributed Resolution
for Expressive Ontology Networks

Anne Schlicht, Heiner Stuckenschmidt

Knowledge Representation and Knowledge Management Research Group
Computer Science Institute
University of Mannheim
{anne, heiner} @informatik.uni-mannheim.de

Abstract. The Semantic Web is commonly perceived as a web of partially inter-
linked machine readable data. This data is inherently distributed and resembles
the structure of the web in terms of resources being provided by different par-
ties at different physical locations. A number of infrastructures for storing and
querying distributed semantic web data, primarily encoded in RDF have been
developed but almost all the work on description logic reasoning as a basis for
implementing inference in the Web Ontology Language OWL still assumes a cen-
tralized approach where the complete terminology has to be present on a single
system and all inference steps are carried out on this system.

We propose a distributed reasoning method that preserves soundness and com-
pleteness of reasoning under the original OWL import semantics. The method is
based on resolution methods for ALCHZQ ontologies that we modify to work
in a distributed setting. Results show a promising runtime decrease compared to
centralized reasoning and indicate that benefits from parallel computation trade
off the overhead caused by communication between the local reasoners.

1 Introduction

Almost all the work on description logic reasoning as a basis for implementing infer-
ence in the Web Ontology Language OWL still assumes a centralized approach where
the complete terminology has to be present on a single system and all inference steps
are carried out on this system. This approach has a number of severe drawbacks. First of
all, the complete, possibly very large data sets have to be transferred to the central rea-
soning system creating a lot of network traffic. Furthermore, transferring the complete
models to a single reasoner also makes this a major bottleneck in the system. This can
go as far as reaching the limit of processable data of the reasoning system. A number of
approaches for distributed reasoning about interlinked ontologies have been proposed
that do not require the models to be sent to a central reasoner [5,7, 10]. All these ap-
proaches rely on strong restrictions on the types of links between ontologies or the way
concepts defined in another ontology may be used and refined and thus introduce spe-
cial kinds of links between data sets stored in different locations. In particular, none
of these approaches supports the standard definition of logical import from the OWL
specification, limiting their usefulness on real data sets. We illustrate these problems
using a small example.



Example 1. We assume the two small ontologies depicted below are connected by an
owl:imports statement in ontology B.

Ontology A Ontology B

A:Car C A:Vehicle B:HybridCar C A:Vehicle
A:Car T 3<; A:hasEngine B:HybridCar C 3>9A:hasEngine

As we can easily see, A:Car T —B:HybridCar, and hence adding the assertion
?A:Car N B:HybridCar(a)” would yield an inconsistency.

Our goal is to have a distributed reasoning method that performs local reasoning on the
two ontologies and that is still able to detect the inconsistency. Looking at the previous
proposals for distributed reasoning mentioned above, we notice that none of them meets
these requirements. The framework of e-connections[7] does not apply in this scenario
as it does not allow the specification of subsumption relationships between interlinked
ontologies. Using the framework of conservative extensions[10] does not provide any
advantages in terms of local reasoning. In particular, the overall model is neither a
conservative extension of ontology A nor of ontology B as in both cases, the additional
information in the other parts can be used to derive new information concerning the
signature of ontology A or ontology B, respectively. Encoding the ontology network in
distributed description logics, finally, the domains of A and B are disjoint by definition
and the assertion ”A:Car M B: HybridCar(a)” is not expressible.

Note that a set of ontologies linked by mapping axioms can also be represented in
terms of OWL imports. In this case, the mapping axioms would be part of any of the
two ontologies and and the other ontology would be imported by the one containing the
mapping axioms.

Our aim is to develop a method for reasoning about description logic ontologies that
overcomes the disadvantages of existing methods. We have designed and implemented
a distributed reasoning method that 1) preserves soundness and completeness of rea-
soning under the original OWL import semantics 2) avoids restrictions on the use of
definitions from remote models in local definitions or on the way knowledge is dis-
tributed a priori 3) decreases runtime by parallel computation, trading off the overhead
caused by communication.

In previous work [15] we proposed a distributed resolution method for ALC. The exten-
sion to ALCHZ Q is complex because the ordered resolution calculus we used for ALC
cannot handle the equality literals introduced by number restrictions. A resolution cal-
culus that decides ALCHZ Q is much more sophisticated and requires a more involved
strategy for exchanging axioms between reasoning peers. The paper is structured as
follows: In the next section we address the distribution principles and distributed reso-
lution in general. Section 3 reviews the idea proposed in [15] and presents the details
of our distributed reasoning method. In Section 4 we investigate the properties of the
method with respect to number of derivations, communication effort and degree of par-
allelization and show that these parameters are promising.



2 Distributing Logical Resolution

2.1 Distribution Principles

There are various options for distributing the process of logical reasoning. Many of
these options have been investigated in the field of automated theorem proving for first-
order logics [4,3]. In the following we discuss these options and their pros and cons
with respect to the requirements and goals defined in the introduction. In particular, we
have to make two choices:

1. We have to choose a reasoning method that is sound and complete for description
logics and permits distribution.

2. We have to choose a distribution principle that supports local reasoning and mini-
mizes reasoning and communication costs.

Concerning the reasoning method, analytic tableaux are the dominant method for im-
plementing sound and complete inference systems for description logics [8]. It has been
shown, however, that sound and complete resolution methods for expressive description
logics can be defined [16, 9]. We exclude other existing methods such as a reduction of
DL reasoning to logic programming from our investigation because these approaches
are not sound and complete for the languages we are interested in. Because tableaux-
based as well as resolution-based methods meet our requirements with respect to lan-
guage coverage and completeness, the decisive factor is their suitability for distributed
reasoning.

The survey [3] discusses different strategies for parallelizing logical inference. In par-
ticular, the authors distinguish between parallelism at the term-, clause and the search
level where paralellism at the search level is further distinguished into multi-search and
distributed search approaches. Parallelism at the term- and clause level is not suitable
for our purposes as it speeds up basic reasoning functions such as matching or unifi-
cation using a shared memory. The idea of multi-search approaches is to try different
heuristics or starting points in parallel and require the complete logical model to be
available to all reasoners. The distributed search paradigm naturally fits the distributed
storage of parts of the model and therefore represents a paradigm that fits the goals of
our research as it allows to assign the part of the search space relevant for a specific
model to a local reasoner instance that interacts with other local reasoners if necessary.
The choice of the distributed search paradigm has consequences for the choice of the
reasoning method. In particular, it has been shown that distributed search can be used in
combination with ordering-based methods [6, 2] to support parallel execution of logical
reasoning. We build on top of these results by proposing distributed reasoning methods
based on the principles of resolution. Our proposal extends beyond the state of the
art in distributed theorem proving as it addresses specific decidable subsets of first-
order logics that have not yet been investigated in the context of distributed theorem
proving. Furthermore, existing strategies for assigning inference steps to reasoners such
as the ancestor-graph criterion [2] cannot avoid redundancy. We propose a method based
on ordered resolution that takes advantage of the special structure of clauses in the
description logic ALCHZ Q for efficiently deciding satisfiability in a distributed setting.



2.2 Resolution Theorem Proving

Before describing our distributed resolution method for ontologies, we first briefly re-
view standard resolution reasoning and present the basic idea for distributed resolution.
Resolution is a very popular reasoning method for first order logic (FOL) provers. As
description logics are a strict subset of first order logic, resolution can be applied to de-
scription logic ontologies as well [17]. For this purpose the DL ontology is transformed
into a set of first order clauses as defined in Section 3.2. This translation can be done
on a per axiom basis independently of other parts of the model. It can be shown that the
ontology is satisfiable if and only if the set of clauses is satisfiable. The set of clauses is
satisfiable iff exhaustive application of the rule standard resolution with factoring does
not derive an empty clause.

Definition 1 (Standard Resolution). For clauses C' and D and literals A and —B,
standard resolution with factoring is defined by the rule
CVAvV---VA, DV-B

CoV Do

where the substitution o is the most general unifier of A1, ..., A, and B.

Standard Resolution with Factoring

2.3 Distributed Resolution

The implementation of a resolution algorithm is described in [18]. For an input set of
clauses, it systematically applies resolution rules to appropriate pairs of clauses and
adds the derived new clauses to the clause set. If an empty clause is derived or no new
and non-redundant clause can be derived, the algorithm terminates. An essential part of
a resolution prover and the most time consuming component [18] are reduction rules
that delete clauses that are not necessary for the decision process. Without reduction,
the number of clauses generally increases infinitely and it may be impossible to saturate
even a small set of clauses.

As described in [15], a standard resolution algorithm can be modified to support dis-
tributed reasoning. In particular, the inferences can be distributed across different rea-
soners by separating the set of input clauses and running provers on separate parts of
the set:

— Every reasoner separately saturates the clause set assigned to it.
— Newly derived clauses are propagated to other reasoners if necessary.

Instead of adding every clause that is derived to the local set of clauses, some new
clauses are propagated to other reasoners and deleted locally.

Definition 2 (Allocation). An allocation for a set C of clauses and a set of ontology
modules M is a relation a € (C x M) such that

VeeC:3m e M: a(e,m)
The set of modules a clause c is allocated to by the allocation a is defined by
a(c) :=={m e M | a(c,m)}

If the allocation relation is functional we may omit the parenthesis and write a(c) = m.



In addition to the propagation of clauses we have to add a second modification to the
algorithm to turn it into a distributed resolution algorithm. In contrast to the centralized
case, a reasoner that has saturated the local clause set may have to continue reasoning
once a new clause is received from another reasoner. The whole system of connected
reasoners stops if the empty clause is derived by one of the reasoners or all are saturated.
After this intuitive description of a distributed resolution algorithm, we define dis-
tributed resolution formally:

Definition 3 (Distributed Resolution Calculus). A distributed resolution calculus R(a)
is a resolution calculus that depends on an allocation relation a: C — M such that
each rule r of R(a) is restricted to premises P C C with

Im e M:Ve e P: a(e,m)
We call this restriction allocation restriction.

Hence, the rules of a distributed resolution calculus are restricted to premises allocated
to the same module. A distributed calculus can be obtained from any resolution calculus
by defining an allocation relation and adding the allocation restriction to each rule of
the calculus.

Obviously, termination of the underlying calculus is preserved by distribution if it does
not depend on reduction rules. In the worst case, each inference of the original calculus
is performed once in every module of the distributed calculus. The results presented in
Section 4 also indicate that local reduction (i.e. deleting clauses that are redundant with
respect to the reasoner they are processed by) is sufficient in practice.

Preserving completeness without allocating each clause to every reasoner is more dif-
ficult, we have to make sure the allocation restriction never excludes inferences that
are possible in the original calculus. For standard resolution, a given clause C has to be
propagated to any reasoner whose clause set contains a clause with a literal that matches
(i.e. is unifiable and of opposite polarity) any of the literals in C'. This would lead to a
substantial communication overhead and potentially redundant inference steps.

To avoid redundancy, we aim at allocating every clause to only a single reasoner. A
functional allocation guarantees that the same resolution step is never carried out twice,
because equivalent clauses are always assigned to the same unique reasoner which takes
care of avoiding local redundancy.

3 Distributed Resolution for Description Logic

As we have seen above, the ability to define a sound and complete distributed reasoning
method relies on two requirements: (1) the existence of a sound and complete resolution
calculus and (2) the ability to find a corresponding allocation that satisfies the allocation
restriction. In this section, we show that for the case of ontologies defined in ALCHZ Q
both of these requirements can be satisfied leading to a sound and complete distributed
resolution method. We do not address reduction rules in this section because reduction is
not necessary to guarantee the theoretical properties of the proposed calculus. However,
for efficient reasoning reduction is essential and hence the practical effects distribution
has on reduction are discussed in the experimental section.



Ontology A Ontology B

(1) —A:C(x)VA:V(x) —B:Hy(xz)VA:V(z) (1)
2) —AC(x)VaAe(z,y1)V-Ae(z, y2)Vyr = Yo “B:Hy(x)V fi(z) # f2(z) ()
383 —~B:Hy(z)VA:e(z, f1(z)) _ “B:Hy(z)VAe(z, f1(z)) 3)
@4BY —B:Hy(x)VAe(z, f2(x)) “B:Hy(x)VA:we(z, fa(z)) )

) B:Hy(a) (5)
- Qe ey (6)

= A:C(2) V ~B:Hy(z)V fi(x) = fa(z) (749)
—A:C(x)V-B:Hy(z) 8%7)
— —A:Cle) (9°%)

(58%)  A:C(a)
(62’3’4) AClx

R A e

/I\

(787) =A:C(a)
@7 O

Fig. 1. Distributed refutation example. The designer of ontology B from Example 1
wants to check satisfiability of the concept ”B: HybridCar M A:Car” and adds the
the appropriate query. Since the concept is unsatisfiable, an empty clause is derived.
Predicates are abbreviated to simplify presentation, derived clauses are noted below
the dashed line, arrows denote propagation of a clause. Literals that are not resolvable
literals are grayed out (assuming predicates from B precede predicates from A and
A:V > A:C). Clauses that are striked out are locally deleted on propagation.

3.1 Distribution Principle

The idea for our distributed reasoning approach is to take advantage of the restrictions
description logic imposes on first order logic. In particular, we identify a property that
holds for many efficient resolution calculi and use it for defining a distribution principle.
The important property of a resolution calculus is, that each clause contains only one
resolvable literal. I.e. for every possible inference the resolvable literal (or a subterm
of it) is unified with a literal of another premise, the other literals are (possible with
substituted variables) passed to the conclusion. Formally, the resolvable literal and its
uniqueness are defined as follows:

Definition 4 (Resolvable Literal). A literal lit of a clause C'V lit is a resolvable literal
of C'V lit with respect to a calculus R and logical language L iff there is a clause
DV lit' € L, such that R can be applied to the premises C' V lit and D V lit’ deriving
the clause (C'V D V lit")o with appropriate substitution o and literal lit"".

In standard resolution all literals of a clause are resolvable literals, but more advanced
calculi restrict the applicability of resolution rules such that there is only one resolvable
literal in each clause. In particular, for the ordered resolution calculus defined in [11] for
ALC description logic, each clause contains an unique resolvable literal [15]. Based on
the uniqueness of the resolvable literal and an allocation of symbols to reasoners we can
define an allocation function that allocates every clause to one module of the networked
ontology. Note that for ontologies linked by import statements, the namespaces define
the allocation of symbols. For distributed reasoning on a single ontology, the ontology
is first partitioned into linked modules as described in [14].

! For ordered resolution /it is false and may be omitted.



Definition 5 (Allocation a(c)).
a(c) := {alloc(topSymbol(lit)) | lit is resolvable literal of c}

where topSymbol of a possibly negated predicate literal (—)P(ty,...,t,) is P.

If all clauses have unique resolvable literals, then the allocation a is functional, too.
For determining where (and if) a derived clauses is propagated, we first pick the unique
resolvable literal of the clause, then the top symbol of this literal and finally the reasoner
this symbol is allocated to. If a symbol s is allocated to a module m we say that module
m is responsible for s. Figure 1 illustrates distributed resolution on the ontologies from
Example 1. In [15] we showed that ordered resolution with this allocation function is
a complete distributed method for deciding ALC satisfiability because the inferences
are the same for distributed and centralized resolution. However, for supporting more
expressive ontologies, a more complex calculus is required and the allocation function
defined above is not sufficient to guarantee completeness.

3.2 Preliminaries

Before presenting the calculus our distributed method is based on, we define the descrip-
tion logic we use and the translation of description logic axioms to first order clauses.

The Description Logic SHZQ A SHZQ ontology is a set O of axioms « of the
following syntax in BNF:

a==CC C|C = C|C(z)|R(x, x) n ==number
|Trans(R)|RC R A ::=concept_name

C :=T| L|A|-C|C 1 C|3R.CIVR.C R ::=role_namel|lnv(role_name)
|3<»R.C|3>,R.C z =individual_name

The signature of an ontology Sig(©) is the disjoint union of concept names, role names
and individual names.

Normalization The resolution calculus we apply requires first order clauses as input,
hence the first order formulas obtained from an ontology are translated to clauses. To
guarantee termination of the applied resolution calculus, the ontology has to be nor-
malized prior to clausification. This ensures that only certain types of axioms and cor-
responding clauses occur in the reasoning procedure. For simplicity, we assume the
ontology contains only subsumption axioms A T C where A is not a complex con-
cept and no equivalence axioms. Complex subsumptions C' = D are equivalent to
T C =C U D and equivalences C' = D can be replaced by two subsumptions C' = D
and D C (. The definitorial form normalization we use replaces complex concepts C
in the right hand side of an axiom by a new concept name A and adds the axiom A C C
to the ontology. Thus, it splits up nested axioms into simple ones by introducing new
concepts.



Definition 6 (Definitorial Form). For simple subsumptions A T D with atomic con-
cept A the Definitorial Form is defined by

Def(AC D) := {AE D} if all subterms of D are literal concepts

=777 {QLC D|,} UDef(A C D[Q],) if D|, is not a literal concept
where D\, denotes a certain® subterm of D and D[Q), is the term obtained by replacing
this subterm with Q.

Clausification After normalization, the ontology contains only simple axioms that can
be translated to first order clauses as follows:

ACB —A(z) v B(z) AC3<,rB  —A(z) VvV —r(z,yi) Vi = y; V- B(yi)
ACBNC -A(z)V B(z) t=1.n+l1 j=1..2—-1
—A(z) vV C(z) AC3>,mB  —A(x) Vr(z, fi(z)) i=1.n
ACBUC -A@) v B()VC) —A(z) V fi(z) # fi(z) j=1.i—1
—A(z) V B(fi(z))
ALC 3Ir.B —A(z) Vr(z, f(z))
A() v B(f(x) r=e ey
r = Inv(s) -r(z,y) V s(y, x)
ACVrB  —A(z)V -r(z,y) vV B(y)

—s(z,y) vV r(y, z)
The clauses resulting from the ontologies of Example 1 are depicted in Figure 1.

3.3 Distributed Resolution for ACCHZ Q

When an ontology contains qualified(Q) or unqualified(\) number restrictions or func-
tional properties (F), the translation to clauses contains equalities. To deal with these
equalities, a much more sophisticated calculus than ordered resolution is required which
in turn requires a more involved allocation of clauses to ontology modules. Before we
present the necessary adaptions and extensions to the distributed resolution method, we
briefly describe the calculus our method is based on. The DL expressivity that can be
covered with this calculus is ALCHZ Q™ which is SHZ Q without transitive properties
with the additional restriction that number restrictions are only allowed on roles that do
not have subroles. Extension of the method for supporting SHOZ Q(D) is discussed in
the next subsection.

Resolution Calculus for ACCHZ Q~ A complete calculus that terminates on clauses
obtained from ontologies that contain number restrictions is basic superposition [1,9],
an extension of ordered resolution. Like ordered resolution, basic superposition uses
two parameters, a selection function and ordering of literals that restrict applicability of
the resolution rules.

As usual for theories containing equalities, we assume a translation of predicates to gen-
eral function symbols such that all literals are equalities (e.g. the literal P(x) translates

2 The exact definition of | (position) is not relevant in this paper, please refer to [11] for detail.



to P(x) ~ T), we may still write P(x) for readability purpose and call these literals
predicate literals. Clauses are split into skeleton clause C' and substitution o represent-
ing all substitutions introduced by previous unifications. The clause C'o is denoted as
closure C'- o or alternatively a closure is denoted by enclosing non-variable subterms of
Co that correspond to variables in C' in brackets (e.g. P([f(y)]) for P(x)-{z — f(y)}).
For distributing basic superposition, the rules we have to take care of are positive and
negative superposition, the other rules contain only one premise and hence distribution
of the input clauses into separate sets does not restrict application of these rules.

Definition 7 (Superposition).

(CVvsm~t)-p DV(wmwv) p
(CvDVuwtl,=v)-0

Positive superposition

where

o is the most general unifier of sp and wp|, and § = po

t0 % s0 and v0 ¥ wb

in (C'V s = t)- 60 nothing is selected and (s = t) - 6 is strictly maximal
in DV (w & v) - 0 nothing is selected and (w = v) - 0 is strictly maximal
w|, is not a variable.

s =~ t0 ¥ wb ~ vl

SR N

(Cvsmt)-p DV(wsv) p

Negative superposition (CV DVl #v) -0

where
1. o is the most general unifier of sp and wp|, and 0 = po
2. t0 % s and v8 F wh
3. in (CV s ~t)- 0 nothing is selected and (s = t) - 0 is strictly maximal
4. (w % v)-0 is selected or maximal and no other literal is selected in DV (w % v) -6
5. wlp is not a variable.

In addition to the superposition rules, two rules with only one premise are necessary to
deal with equalities (see [9] for details). Ordered resolution is a special case of positive
superposition, where w|, = w, i.e. p is the root position. A sequence of ordered reso-
lution inferences can be combined into a ordered hyperresolution inference by deleting
intermediate conclusions. We assume that ordered hyperresolution and not ordered res-
olution is applied to clauses containing multiple resolvable literals (see derivation of
clause A6 in Figure 1).

Definition 8 (Resolution Calculus R [9]).

Rg is the calculus with 1) rules positive and negative superposition, reflexivity reso-
lution and equality factoring, 2) selection of every negative binary literal, 3) the term
ordering = is a lexicographic path ordering (LPO, [12]) based on a total precedence
> of function, constant and predicate symbols with f > ¢ > P > T for every function
f constant c and predicate P.



Literals containing different variables are >¢-incomparable because otherwise the or-
dering would depend on the substitution. Literals that contain a function symbol are
ordered first to avoid substituting the arguments of functions with function terms. Lim-
ited nesting depth of literal terms is necessary to guarantee termination of the calculus, it
makes sure only the types of clauses depicted in Table 1 occur when basic superposition
is applied to clauses obtained from an ALCHZ Q ontology (i.e. the set of ALCHZQ
closures is closed under basic superposition).

1 =R(z,y) V Inv(R)(z,y)

2 —R(wy) Vv S(z,y)

3 Pix)VR(z,(f(z))

4 Pf(x)VR([f(z), )

5 Pi(z) VP2((f(2)) vV V(fi(z)) =/% (f;(z))

6  Pi(z)VP2(g(2)]) vVPs((flg(2)]) vV V(t:) ~/% (L))

7 Pau(x) vV Rz, yi) Vs Pa(y) VVIL v Ry
8 R((a), (b)) VP((t)) vV V(t:) =/% (t;)

P(t), where t is a term, denotes a possibly empty disjunction of the form (—)P;(¢t)V -V (=) Py (¢).
P (f(x)) denotes a disjunction of the form P1 (f1(z)) V- - -V P (fm ()). Note that this definition allows
each P;(f;(z)) to contain positive and negative literals. (t) denotes that term ¢ may but need not be marked
(i.e. has been introduced by a previous unification), & /% denotes a positive or negative equality predicate. For
clauses of type 6 ¢; and t; are either of the form f([g()]) or of the form x and the clause contains at least one

term f(g(x)).
Table 1. The 8 types of ALCHZQ closures [9]

Because the set of clause types is finite and the set of symbols is finite for every given
ontology, the number of clauses that can be derived is finite, too and hence basic super-
position terminates for ALCHZ Q input[9].

Allocation for ALCHZ Q The first consideration for distributing basic superposition
is the number of resolvable literals. A close look to Definition 7 reveals that the resolv-
able literals s ~ ¢t - p and w ~ /% v - p are necessarily either selected or maximal.
Furthermore, the ALCHZ Q closures of types 3-6 and 8 are totally ordered and types 1
and 2 contain exactly one selected literal. Only closures of type 7 may contain multiple
resolvable literals, but since all resolvable literals have the same top symbol, the allo-
cation from Definition 5 is still functional. Before allocating ALCHZQ closures, we
have to extend the definition of topSymbol to equality literals:

Definition 9 (Top Symbol).
The top Symbol of an equality literal f(t1) /% g(t2) is [ if f(t1) = g(t2).

Note that arguments of equalities that are resolvable literal of an ALCHZQ clause are
always comparable. With this extended definition, we could use the allocation func-
tion a for distributed resolution on ALCHZ Q. Unfortunately, this calculus would not
be complete, because some inferences of basic superposition are prevented in the dis-



tributed setting. We illustrate this problem on an example inference:

Vf@)~g(@) DVP(f(y)
CV DV P(g(x))

Positive superposition

Here, f(x) is unified with f(y) but f is not the top symbol of the resolvable literal
P(f(y))- Hence, if f and P are allocated to different ontology modules, the rule is not
applied and the clause C'V D V P(g(z)) is missing in the reasoning process. Due to
superposition of equalities into predicate literals, we have to extend the allocation to
guarantee completeness of the decision procedure.

Definition 10 (Allocation for ALCHZ Q). The clause allocation a (c) for the dis-
tributed calculus Ro(a.y) is defined by a (c) :== a(c) U af(c) with

ay(c) := {alloc(funSymbol(lit)) | lit is resolvable literal of c}

where

— funSymbol(lit) := f for every literal lit = (=) P(f(¢)) orlit = (=) P(f(z), z) or
lit = (=) P(x, f(x)) with unary or binary predicate symbol P. For other literals
funSymbol(lit) is null.

- alloc: Sig(O) — M is an allocation of the signature symbols of the input on-

tology O, including concepts introduced by the definitorial form transformation.
alloc(null) :== 0

Note that resolvable literals of closures of type 7 never contain function symbols, hence
for all ALCHZ Q closures c the allocation a ¢ (c) is a function and the set a (c) consists
of at most two modules. The allocation a4 solves the problem of the example depicted
above. But, it remains to be proved that no other pair of premises that could be resolved
in a basic superposition inference is allocated to different ontology modules and hence
completeness of the calculus for ALCHZQ is preserved by distribution.

Theorem 1 (Completeness of Distributed Resolution for ALCHZ Q). The distributed
resolution calculus Rg (a4 ) decides ALCHZ Q satisfiability.

Since Rg decides ALCHTQ, it remains to be shown that every inference in the origi-
nal calculus is performed in the distributed calculus, too. Let us first consider superpo-
sition into root position (i.e. w|, = w). In this case, basic superposition is equivalent
to ordered resolution, both premises are allocated to the same module because the two
resolvable literals have the same top symbol. Superposition at other positions is only
possible for function equalities into predicate literals i.e. s ~ t is an equality literal
f(z) ~/% g(z) and w ~ /% v is a predicate literal (—)P(f(z)) or (—)R(z, f(z)).
Variable equations are never selected or maximal and hence no resolvable literals. If
s &2 t is a predicate literal or w &2/% v is an equality, superposition is only possible at
root position, otherwise unification is impossible or w would be a variable which is not
allowed according to Definition 7.

Hence, for every application of a rule in R, the allocation a ensures all premises
meet in one module. A clause is allocated to at most two modules, local saturation of



the local clause sets is enough to guarantee completeness of the method. Note that only
clauses are duplicated, duplication of inferences can be avoided by restricting basic
superposition such that only the module responsible for the top symbol of s ~ ¢ in
Definition 7 performs the inference.

3.4 Extension to SHOZQ(D)

The expressivity that can be handled by basic superposition while guaranteeing termi-
nation is ALCHZ Q~ which is ALC Q plus role hierarchies and inverse roles, with the
restriction that number restrictions are only allowed on roles that do not have subroles.
For extending the expressivity to ALCHZQ the decomposition rule has to be added
to the calculus[9]. Decomposition is an reduction rule that is applied to newly derived
clauses eagerly. Since the decomposition rule has only one premise, it can be added to
our approach without restricting the possible inferences.

Transitivity axioms contained in a SHZ Q ontology can be eliminated by a well known
transformation, reducing the expressivity to ALCHZ Q. Hence, with some preprocess-
ing we can decide satisfiability of a SHZ Q ontology. The transformation is polynomial
in the size of the input, but the adaption to the distributed setting is not trivial. In con-
trast to the transformation of description logic axioms to first order clauses mentioned
so far, the translation of transitivity depends on the whole ontology and not only on the
transitivity axioms. Hence, the linked ontologies cannot be transformed independently.
Nominals are concepts with a single instance, e.g. the concept {Erdds} with instance
Erdés is used in the concept description JeoauthorO f{Erdos}. Nominals are replaced
by common concepts for many applications: Each nominal {nom} is replaced by a new
concept Nom and the axiom Nom(nom) is added to the ontology. The restriction that
Nom may not contain another instance is not expressible in description logic without
nominals. However, it can be expressed by the first order clause “Nom(z) V& = nom.
Datatypes (D) can be eliminated without changing the semantics by moving the data-
types into the abstract domain. In practice, sorts (datatype and abstract) are handled
different from the other predicates to speed up reasoning. Built-in datatype predicates
can be added to support e.g. the greater relation between integers.

4 Experiments

Our distributed resolution implementation is based on the first order prover SPASS?
[19]. A number of different resolution strategies including ordered resolution and ba-
sic superposition are supported, precedence and selection are specified in the input file.
We implemented definitorial form normalization and clausification in a separate tool.
Clauses are stored in separate files for each ontology and include precedence and selec-
tion in every input file. Apart from compliance to the requirements of Ro (Definition 8)
the precedence was random. The applied reduction rules include forward and backward
subsumption reduction*. For turning SPASS into a distributed reasoner (i.e. adding the

3 http://www.spass-prover.org

* The complete configuration for Spass is: Distributed=1 Auto=0 Splits=0 Ordering=1 Sorts=0
Select=3 FullRed=1 IORe=1 [OFc=1 IEmS=0 ISoR=0 IOHy=0 RFSub=1 RBSub=1 RInput=0
RSSi=0 RObv=1 RCon=1 RTaut=1 RUnC=1 RSST=0 RBMRR=1 RFMRR=1



Query # Parts Runtime/ms # Derivations # Propagations Busy Factor

Satisfiability 1 230 608 - 100%

13 146 610 432 20%
Subsumption 1 132 154 - 100%
(positive) 13 36 578 252 60%

Table 2. Results of tests on the chem ontology from SWEET project.

”Distributed” option) we added support for sending and receiving clauses. A set of re-
ceived clauses is treated like a set derived from a given clause, i.e. it is forward and
backward reduced with respect to the local worked off clause list before adding the
non redundant received clauses to the usable list. All reasoners are connected at startup,
clause communication is performed in separate processes to avoid the local reasoning
being blocked on sending a clause. The priority of the reasoning and communication
processes is adjusted such that while not saturated locally, a clause is only send to an-
other reasoner if this destination reasoner messages that it is idle. New clauses are only
received when the local clause set is completely saturated. Startup and shutdown of the
system is initialized by a central control process. In a fully decentralized P2P system
this job is performed by the peer that receives a query. The control process starts the
separate machines on their respective input clauses files. Apart from passing clauses
between each other, the reasoners send status messages whenever they are locally sat-
urated, when they continue reasoning on newly received clauses and when they derive
an empty clause. When one reasoner finds a proof or all reasoners are saturated for
an interval longer than the maximal time necessary for clause propagation the query is
answered and the reasoners are shut down.

Dataset Our implementation is tested on the Semantic Web for Earth and Environmen-
tal Terminology (SWEET [13]), a set of linked ontologies published by the NASA Jet
Propulsion Laboratory. We used the chemical ontology chem’ and the ontologies that
are directly or indirectly imported by chem. In total, our dataset consists of 13 ontolo-
gies liked by 34 import statements. The ontology network describes 480 classes and
99 individuals, translation to first order logic yields 930 clauses. We replaced datatype
properties by object properties and nominals by common concepts because the current
version of our system does not support them. The expressivity of the obtained test on-
tology network is SHZN .

Results For comparing the runtimes in the centralized and distributed setting, we ran
a satisfiability check and tested all 456 positive subsumption queries (i.e. axioms A; C
A, derivable from the ontology network). The runtime of negative queries is in general
similar to the runtime of a satisfiability check [15]. We used standard 1.6GHz desktop
machines with 3GB RAM, the denoted runtimes do not include the time needed for
establishing the TCP connections. For simplicity, we connect all reasoners prior to the
distributed reasoning process, it would be much more efficient to connect the peers only
on demand. The connection time is not relevant for our investigations because it can be

3 http://sweet.jpl.nasa.gov/2.0/chem.owl



expected to increase only linear with the number of ontologies if the network is sparsely
connected. The source code and original and preprocessed dataset is available online®.

The most important result is that distributed resolution is considerably faster than con-
ventional resolution. The runtime for checking satisfiability of the knowledge base is
decreased by one third. Answering a positive subsumption query took only about a
quarter of the runtime when computed in the distributed setting.

The number of derived clauses shows the effect of distribution on application of re-
duction rules. For the satisfiability query, almost all redundant clauses are detected
and deleted also in the distributed setting. However, positive queries cause much more
derivations than necessary. Runtime is not affected by the redundant derivations because
they are performed by reasoners that would have been idle otherwise. The number of
propagation is important when the network connection is slow e.g. due to physical dis-
tance between the reasoning peers.

The most important factor for scalability of our approach is the amount of computation
that is actually performed in parallel. In the worst case, only one reasoning peer is
active at the same time while the others are idle and waiting for new input. For technical
reasons, the timer for computing the busy factor starts when all reasoners are connected.
The busy factor depicted in table 2 is the average (weighted by runtime) percentage of
the runtime each reasoner is active. The first couple of milliseconds all reasoners are
busy, but after local saturation only those that received new clauses continue reasoning.
For some positive queries the busy factor reached 100% because the empty clause is
derived in one reasoner before one of the others is locally saturated.

5 Conclusions

In this paper, we have shown that the principle of distributed resolution as a basis for
reasoning about interlinked ontologies that has been proposed in previous work [15]
can be extended to expressive ontology languages. This result is non-trivial, because
ordered resolution, that has been used as a basis for previous work cannot be applied to
expressive ontology languages due to the existence of equality induced by number re-
strictions. Our work extends previous results both on a theoretical and a practical level.
On the theoretical level, we have developed a distributed version of the basic super-
position calculus presented by [9] and have shown that the distributed version of the
calculus decides satisfiability for ALCHZ Q. On the practical level, we have extended
the implementation of our distributed reasoning engine with this new calculus and have
tested it on a set of expressive real world ontologies. By conducting experiments, we
have shown that the distributed version of the algorithm significantly outperforms cen-
tralized reasoning. Further, we have investigated the ability of the method to support
parallelization with promising results. In summary, we have shown that the principle
of distributed resolution can be applied to expressive ontologies and that distributed
resolution is a real alternative to tableaux-based methods when it comes to distributed
reasoning in the presence of OWL ontologies. In the future, we will investigate opti-
mizations of the methods, primarily in terms of advanced redundancy checking. Further,

® http://ki.informatik.uni-mannheim.de/dire.html



we plan to exploit the advantages of resolution being a bottom-up reasoning method by
investigating the use of our method for supporting incremental reasoning.
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