A Flexible Partitioning Tool for Large Ontologies

Anne Schlicht, Heiner Stuckenschmidt
KR and KM Research Group
University of Mannheim
AS, 6 68159 Mannheim, Germany
{anne, heiner} @informatik.uni-mannheim.de

Abstract

The benefits of modular ontologies in terms of easier
creation and maintenance as well as better computational
properties have been recognized by different researchers.
As most real world ontologies, however, are still designed
in a monolithic way, there is a need for methods that parti-
tion an existing ontology into a set of modules. Currently,
existing work suffers from the fact that the notion of mod-
ularization is not as well understood in the context of on-
tologies as it is in software engineering. In this paper we
present a flexible partitioning tool for large ontologies that
can be adapted to the needs of different applications based
on criteria that the resulting modular ontology should sat-

isfy.

1 Introduction

With the increasing use of ontologies in many branches
of science and industry not only the number of available on-
tologies has increased considerably but also many widely
used ontologies have reached a size that overburdens devel-
opment and quality control procedures. It has been argued
that the maintenance of large ontologies would be greatly
facilitated by decomposing large ontologies into smaller
modules [10] that cover certain subtopics of the ontology.
Using such models it would be much easier to avoid incon-
sistencies and semantic defects in the creation and mainte-
nance when the part of the ontology to consider for modifi-
cation is clearly defined [6].

While there is a clear need for modularization, there are
no well-defined and broadly accepted ideas about the cri-
teria that define a good module. As a result, several ap-
proaches have been recently used to partition ontologies
into modules, each of them implementing its own intuition
about what a module should contain and what should be its
qualities [5, 2, 10].

Finding an appropriate modularization tool for a given

application is difficult. Testing candidate tools with the ap-
plication is time consuming, as the characteristics of differ-
ent modularizations have to be compared manually. Fur-
thermore, some applications requirements are not met by
any available tool. We address this problem by proposing a
flexible modularization tool that can be adapted to require-
ments of an application and gives comprehensive support
for automatical configuration.

1.1 Outline and Contribution

In the following, we investigate the partitioning of large
ontologies into a set of interconnected modules based on
structural quality criteria using the PATO tool. The approach
is based on previous work on structure-based ontology par-
titioning reported in [10]. We extend this work in following
way:

1. We present a method for automatically selecting op-
timal parameters for the algorithm that maximize the
quality of the result. The method is an extension of the
work that was briefly presented in [7].

2. We show that the criteria can be adapted according to
application needs using two scenarios: a distributed
reasoning application that requires an ontology mod-
ularization that minimizes communication cost and a
visualization application that requires the reduction of
the ontology to a small set of comprehensive modules.

All methods described in this paper have been implemented
in the PATO system, a tool for partitioning OWL ontologies
that is available online'.

The paper is structured as follows. In the next section, we
briefly present a revised version of the structure-based par-
titioning algorithm from [10]. In section 3 we propose a
set of graph measures that can be used as structural qual-
ity criteria for modular ontologies. Section 4 discusses the
problem of automatic parameter optimization based on the

Uhttp://webrum.uni-mannheim.de/math/Iski/Modularization/pato.htm]



criteria presented in section 3. In section 5, we show results
of applying the partitioning method to real world ontologies
according to different criteria. We conclude with a discus-
sion of the approach and future work.

2 Partitioning Algorithm

In the following, we review the structure-based partition-
ing algorithm proposed in [10, 9] and describe a number
of optimizations developed in the meantime. The resulting
enhanced partitioning algorithm provides the basis for the
work on criteria-driven ontology partitioning described in
the subsequent sections.

2.1 Basic Method

The basis for the work reported in this paper is the par-
titioning method presented in [10]. It consists of a basic
algorithm for splitting up ontologies based on an encod-
ing of dependencies between elements in the ontology in
a graph structure and finding sets of strongly related nodes.
To this basic method we added partition realization, i.e. the
creation of a distributed ontology from the partitioned set
of ontology elements. Before we turn to the criteria-based
optimization, we briefly describe the three steps of the par-
titioning method: First a graph is created from the ontology,
second this graph is partitioned and third the partitioning is
realized by distributing the ontology.

Step 1: Create Dependency Graph: In the first step, a
graph structure is created that represents the depen-
dencies between elements in the ontologies. For RDF
and OWL ontologies, nodes in the graph are values of
“rdf:label” or “rdf:ID” depending on the configuration.
Edges can be created for subclass relations, classes that
use the same property, terms that appear in the same
definition and similar names (based on substring and
edit distance). Details can be found in [11].

Step 2: Graph Partitioning In the second step, the notion
of a line island [1] (a set of nodes of given minimal
and maximal size for which the strength of the con-
nection between the nodes inside the set is higher than
the strength of any connection to nodes outside the
set) is used to determine sets of ontology elements that
should be in one module.

Step 3: Partition Realization Finally, a distributed ontol-
ogy is created based on the graph partitioning. In par-
ticular, a namespace is created for each ontology mod-
ule and the namespace of each ontology element is
changed accordingly. Depending on the users prefer-
ences, the algorithm outputs either a set of ontology
files or one ontology file with adapted namespaces. If

redundancies in the distributed representation of the
ontology are allowed, each axiom may be copied to
different modules to increase the degree of indepen-
dency between the modules.

Note that each step of the algorithm depends on param-
eters that can be set to adapt the resulting partitioning to
given requirements. Examples include the following:

e In step 1, it has to be decided on what basis links be-
tween nodes in the dependency graph are created. Nor-
mally this means deciding between the options men-
tioned in the description above. In principle, these op-
tions can also be combined.

e In step 2, the most important parameter is the maximal
size of a line island that determines how many nodes
are allowed to end up in the same module. Reducing
this parameter forces the algorithm to split up more
tightly connected nodes.

e In step 3, the maximal amount of redundancy can be
used to determine the amount of axioms that are copied
to other modules to reduce interactions

The optimal choice of these parameters heavily depends
on the applications and more specifically on the criteria that
determine the quality of the resulting partitioning with re-
spect to that application. The core idea of this work is to
determine the optimal parameter set based on information
about quality criteria for a given application of the parti-
tioning method. We discuss these quality criteria in the fol-
lowing section.

3 Structural Quality Criteria

In order to judge whether a given modularization is a
good one with respect to the goals of the distribution, we
define a number of structural quality criteria that indicate
whether a given modularization is likely to be adequate for
a given scenario. We base these criteria on the following
abstract model of an ontology: we consider an ontology to
be a set of axioms {Aj, -, A,}. These axioms can for
instance be rules, concepts definitions in description logics
or axioms in any other logical language. We consider the
number of axioms n to be the size of the ontology. The
task of partitioning an ontology O can now be described as
the process of splitting up the set of axioms into a set of
modules {Mj, -+, My} such that

e cach M; is an ontology
k
i=1

This definition leaves room for a large variety of different
ontology languages and usage scenarios.



3.1 Size Distribution

The first set of criteria implemented in the PATO Tool
addresses the assignmnet of axioms to the modules. These
are standard graph measures, that can be used and combined
to form new criteria.

Number of Modules The most obvious criterion of a par-
titioning is the number of modules it consists of.

Average Module Size If the partitioning is non-redundant,
the average module size is the size of the ontology di-
vided by the number of modules.

Variance of Sizes The variance is the sum of the squares of
the derivations of each module size from the average
size.

Size Balance Balance is computed by dividing the size of
the largest module by the average size. If this value is
close to 1, the sizes are well balanced.

While these criteria might be sufficient in some cases, for
instance if the goal is to split up the ontology into a fixed
number of modules with a maximal size for visualization
purposes, many applications ask for criteria that cannot be
determined on the basis of the assignment alone.

3.2 Links Between Ontology Elements

Based on implicit or explicit relations between elements
in different modules (i.e. relations such as the ones encoded
in the dependency graph created in step 1 of the partitioning
algorithm) additional graph measures are applied.

We define the module graph to be obtained from the de-
pendency graph and allocation of nodes (i.e. ontology ele-
ments) to modules by merging nodes allocated to the same
module. Edges with identical source and target node are
ignored. The resulting graph can be used as the basis for
defining additional criteria such as the following.

Edge Cut The weighted sum of the edges in the module
graph.

Relative Edge Cut Dividing the edge cut by the weighted
sum of the edges in the dependency graph gives the
relative edge cut.

Cut Balance Similar to the size balance, edge balance is
the highest occurring weight in the module graph di-
vided by the average weight.

These criteria are also based on standard notions in graph
theory, depending on the nature of the edges in the module
graph, however, they become meaningful with respect to
certain applications. In a distributed reasoning scenario, for

example, edges representing overlap of terms in different
axioms indicate the need for communication between mod-
ules and therefore provide an adequate basis for minimizing
communication costs by a suitable partitioning.

3.3 User Defined Criteria

Because we cannot foresee all possible applications
where partitioning will be used and the corresponding cri-
teria adequate for the respective application, the ability to
define new quality criteria is needed. We support the easy
integration of such user defined criteria by providing a sim-
ple Interface for plugging in new criteria. The user only
needs to implement a Java interface that contains two meth-
ods, one for setting the input and one for getting the result.
If the name of the interface implementation and the new
criteria is declared in the configuration file, the new class is
used automatically without recompiling PATO.

4 Criteria-Based Optimization

As already mentioned the criteria for determining
a “good” partitioning depend heavily on the concrete
application. For enabling adjustment to different applica-
tion requirements, the parameters that influence the final
partitioning can be adjusted to produce various resulting
partitionings. A basic problem in this context is the fact that
the relation between the parameters that can be modified
to influence the result and the degree of fulfilment of the
quality criteria is far from being evident. We addressed
this problem by extending PATO to automatically respond
to given criteria. Thus, the user does not need to un-
derstand the parameters used in the configuration of our
tool. Instead, the user can specify relevant criteria for the
application at hand. Based on this information, the system
systematically applies different parameter configurations
and selects the configuration that maximizes the quality of
the resulting partitioning based on the parameters specified
by the user.

Without this support for criteria-based optimization,
a user would have to try different configurations, find
parameters that influence the partition quality for his
application and test how these parameters have to be
adjusted to improve the partitioning. The first step towards
automatical configuration is to try different configurations
automatically and assess the resulting partitioning with
respect to the needs of the application.

PATO automates this process by choosing a configuration
P of parameters that maximizes the weighted sum of a set
of criteria values v, , using the following formula:



max g We * Vep

eC
peConfi 225

Here C' is a set of criteria and w, is the weight given to
a criterion ¢ € C. A basic problem associated with this
approach is the determination of appropriate weights to be
used in the formula above.

4.1 Weight Determination

While the partition criteria for an application can nor-
mally be determined by the user, it is more sophisticated
to determine the relative importance of criteria and assign
weights accordingly.

Some criteria directly correspond to expense factors of
an application, for example, in distributed reasoning there
is a trade off between communication cost (caused by sepa-
ration) and benefits from parallelization. It is not that clear
however how the expenses caused by an additional link be-
tween modules compares to the costs of increasing the size
of the largest module by 2%. In many applications, criteria
are only known to have positive or negative influence on the
performance and the weight is not determined.

In this case, a solution is to make use of boolean criteria.
A boolean criterion bool has values vpoor,, € {0, —00} cor-
responding to {¢rue, false}. In particular, it makes sense
to apply at most one non-boolean criterion (i.e. the user
chooses one criterion that is maximized and specifies a
range of acceptable values for each other criterion). Then
the best configuration is one that complies with all boolean
criteria and maximizes the non-boolean criterion.

In cases where a criterion is used that precisely measures
the quality of a partitioning for a given application but is
costly to compute (e.g. the runtime of an algorithm that
uses the partitioning), it can be approximated by combining
other criteria. Here the weights are determined by first test-
ing a small sample of configurations and determining the
best configuration based on the exact criterion. Then the
weights we are looking for (w1, ws, ..., w,) = W are vec-
tors that solve the inequation (E - ¥ — V) - w > 0 where
T = (v1,v2, . ..,v,) are the criteria values of the best con-
figuration, the matrix V' consists of the criteria value vectors
for each sample configuration and E is a n X m matrix of
ones.

4.2 Dependency Visualization

When relative weights are not determined and accept-
able criteria ranges are given instead, the result of criteria
maximization is a set of acceptable configurations.

For choosing from these configurations PATO generates
tables of the relevant criteria and parameters that can be read
into Matlab or Scilab for visualization. Figure 1 gives an

example of this visualization which is created by a single
Scilab statement®. Furthermore, the pareto-optimal config-
urations can be determined using the Scilab or Matlab.

4.3 Advanced Search

Currently, PATO chooses the optimal configuration from
a set of configurations that were performed before. This is
the basis for implementing an optimization mechanism that
chooses the configuration to determine the best configura-
tion for a new problem based on the previous results. Start-
ing with a default configuration, it is improved step by step
according to the given criteria performing a greedy strategy:
The neighboring configurations, i.e. the configurations with
one parameter increased or decreased, are tried and the best
of these is chosen, then the neighbors of the current best
configuration are tested.

Performance of this optimization strategy can be im-
proved by applying binary search instead of stepwise in-
creasing/decreasing parameters. If increasing the value of
parameter p from 4 to 5 improved the result, the maximal
value pmax for p is tried next, then the median of pmax and
5 is tried. For criteria that do not decrease/increase mono-
tonically when one parameter is changed, random configu-
ration changes are performed to avoid getting stuck in local
criteria maxima (random walk strategy).

5 Example Applications

We tested the criteria-based partitioning method de-
scribed above in two example applications that have rather
different reuirements with respect to the resulting modules.
The first application example is concerned with support-
ing distributed reasoning about description logic ontolo-
gies. As an example ontology we used the Aminoacid on-
tology, a rather expressive description logic ontology from
the biomedical domain 3. This application requires a parti-
tioning to reason efficiently on a knowledge base which ba-
sically requires minimizing communication costs between
modules. The second example application is concerned
with visualizing the content of a very large ontology in a
survey style. As a basis for this application, we use the NCI
ontology, a very large ontology from the medical domain.
In this second application, the goal is to produce a limited
number of modules that can be displayed in a single image
for showing major topics and relations between modules. In
the following, we describe the applications in more details
and discuss the use of criteria-based partitioning introduced
above.

2surf (heightthreshold, maximumislandsize, edgecut,

(sizebalance<=2) .* (nrOfModules>=3)) ;
3http://www.co-ode.org/ontologies/amino-acid/2006/05/18/amino-
acid.owl



5.1 Reasoning

Modularization is a way to support efficient reasoning
about very large ontologies as it supports distributed and
partially parallelized reasoning methods that promise to
scale better than existing centralized reasoning approaches.
If the ontology to be reasoned upon is not already provided
in a modular way, partitioning is necessary before the rea-
soning can be performed. In previous work, we have devel-
oped a sound and complete distributed reasoning method
for large ontologies specified in ALC - a significant subset
of logic underlying the Web Ontology language - based on
resolution [8].

In this reasoning method an ontology is first translated
into first order clauses which are subsequently distributed
based on a partitioning of the ontology terms. Based on this
partitioning, every clause is mapped to specific module and
inference is restricted to local reasoning. l.e., for a rule to
be applicable the premises have to be present in the same
module. In our experiments, we used the PATO System to
determine a partitioning of the terms in the ontology that
improves distributed reasoning by reducing the communi-
cation between modules necessary to achieve completeness.
The requirements of the reasoning application are:

e Communication cost should be as low as possible.

e Computation load should be distributed uniformly
among the modules.

e There should be a significant number of modules in or-
der to profit from the distribution. In the experiments,
we arbitrarily determine such a significant number to
be at least 4.

The experiments were executed using the AMINOACID*
ontology, a relatively rich ALCF ontology. Because our
reasoning method can currently not handle functional prop-
erties we approximated the ontology by removing the two
functional type statements.

In the reasoning methods, communication between two
models is necessary if terms of the ontology that are placed
in different modules occur in the same axiom. To model
this, the ontology graph creation was set to include an edge
between every pair of ontology terms that occur in the same
axiom. Taking the module graph as a basis the requirements
mentioned above can be modeled using the following built-
in criteria:

e weight - edge cut = -1
e range - size balance = [—, 2]

e range - number of modules = [3, —]

“http://www.co-ode.org/ontologies/amino-acid/2006/05/18/amino-
acid.owl

This means that we consider all partitioning where the
size balance is smaller than 2 and the number of modules is
larger than 3 and let PATO chose a parameter configuration
that minimizes the edge cute. This setting is reasonable,
because the edge cut approximates the communication cost
and should be minimized, therefore the weight is set to a
negative number.

The result is shown in Figure 1. The graph in this figure
depicts the value of edge cut for the parameters maximum
island size and height threshold. The bright surface color
indicates that for the corresponding configurations both bal-
ance and number of modules are in the specified range.
Hence, a good configuration is a bright and low point on
the surface.

400
300

200

edge cut

100

a0 g B threshold

Figure 1. Evaluation graph for the distributed
reasoning application depicting the value of
the edge cut criterion.

In order to verify the hypothesis that edge cut is indeed a
good indicator for our communication cost we implemented
an application specific criterion using the corresponding in-
terface described above. The new criterion is determine by
wrapping the actual distributed reasoner, that is called with
the current partitioning and returns the resulting communi-
cation effort. Figure 2 shows that the actual communica-
tion is not exactly proportional to the edge cut values, but
the best configurations detected by the edge cut criterion
are also the best ones determined by the actual communica-
tion (the corresponding communication value is 733). This
means that it is reasonable to use the edge cut criterion for
determining optimal parameter settings for partitioning on-
tologies as a basis for distributed reasoning.

For judging the quality of the partitioning created by
PATO we compared it to a partitioning method that directly
minimizes communication cost. The latter method first
performs a test reasoning task on a completely distributed
ontology (each ontology term is placed in a separate mod-



2500

2000

1500

1000

communication

500

ma Island size
10 a0 threshald

Figure 2. Evaluation graph for the distributed
reasoning application depicting the value of
the communication criterion.

ule) and records each axiom that is propagated from one
module to another. Based on this reference communication
the initial modules were merged to reduce communication
using the graph algorithm provided by METIS>. We com-
pared the communication results of the PATO partitioning
on the same reasoning task the communication-based
partitioning was optimized for.

The results depicted in Table 1 show that the PATO parti-
tioning is comparable to communication-based partitioning.
For 3 and 4 modules, the number of derivations and com-
municated clauses is smaller using the PATO partitioning,
while for 2 and 5 modules communication-based partition-
ing performs better. Communication-based partitioning is
not optimal, because in addition to minimizing the commu-
nication the algorithm forces the modules to perform about
the same number of derivations. For measuring the distribu-
tion of computation load we use the balance value defined
by the number of axioms derived in the most active module
devided by the average number of derivations per module.
Note that performing the test reasoning task is only possible
in our simulation. In realistic distributed reasoning applica-
tions, the ontologies are much too large to be handled by a
single reasoner (otherwise centralized reasoning would be
more efficient). Hence, performing a test reasoning task
is not feasible. As these experiments show, using PATO in
such situations is reasonable as it comes close to the inac-
cessible optimal solution.

Shttp://glaros.dtc.umn.edu/gkhome/views/metis/

number of modules 2 3 4 5

PATO

derived 6686 6701 6701 9042
communication 703 733 782 1512
com. /derived 1% 11% 12% 17%
balance 1.07 160 213 1.80
Com.-based

derived 6173 7184 7156 8261
communication 650 1167 1293 1437
com. /derived 11% 16% 18% 17%
balance 1.02 1.21 1.19 1.40

Table 1. Comparision of communication ef-
fort in the distributed reasoning application
using PATO partitioning and communication-
based partitioning.

5.2 Visualization

To substantiate our claim that the PATO System can be
adapted to applications with very different needs, we ap-
plied it in a second scenario that is substantially different
from the distributed reasoning application described above.
This second scenario is concerned with supporting the user
in the exploration of a very large ontology by creating suit-
able visualizations of subparts of the ontology.

For producing a useful visualization of the whole ontol-
ogy, the number of modules should be about 30 as this is
a number of modules that can still be shown on a single
display without overwhelming the user. Furthermore very
large modules should be avoided. Therefore the criteria re-
quirements are set to

e range - number of modules = [28, 32]
e range - size balance = [—, 4]

We demonstrate this using PATO on the NCI ontology
a very large OWL Ontology containing about 26.000 con-
cepts [4]. In order to make this ontology more accessible
to the user, we used PATO to partition the ontology into
smaller modules and visualized the resulting module graph
using the Pajek®, a tool for large network analysis. The net-
work shown in figure 3 displays the module graph, the size
of each vertex corresponding to the number of terms in the
module. In addition to visualization, we used Pajek for de-
termining the module labels. In particular, a module is la-
beled by the vertex with the highest betweenness’, a central-

Shttp://vlado.fmf.uni-1j.si/pub/networks/pajek/
"The betweenness of a vertex v € V is the percentage of shortest paths

this vertex lies on: betweenness(v) = Y s tev gst(v)
) sEv£t st )
were ot is the number of shortest paths between the vertices s and ¢, and

ot (v) is the number of shortest paths between s and ¢ that v lies on.



ity measurement defined by [3] for social networks. Based
on the criteria shown above, PATO chooses a configuration
that results in the partitioning depicted in Figure 3.

I_Organiem_Anatomical_Cancaps.
nal_Atiibute

B A==
/\g/ e~

///Fug ndDis

/B Pt Necslam

/

‘Ch moterapy_Regimen

) uodsnel Carcinome
\
mdrome / N\
/ olorectal_intsepithelia_Neoplssia
oL adminstetve_concepts /
/ Serion_ Hai_Folls_Nocplesm
L Sy — /

“Bronchiolo-Alvecler_Lung_Carcinoma

Figure 3. The module graphs displays the
connections between modules. For each
module the name of the vertex with the high-
est centrality value labels the module.

As the image shows, using PATO to partition a very large
ontology like the NCI ontology and visualizing it with the
Pajek system provides a good first impression on the con-
tents of the ontology. For instance, we can see that the ma-
jority of the ontology is about different kinds of diseases.
Further, we see that organisms, chemicals and drugs as well
as anatomy and biological processes are also important top-
ics covered in the ontology. Further, we can find out more
about the different topics by loading the different modules
created by PATO into an OWL editor for further inspection.

6 Conclusion

We presented a partitioning method for large ontologies
that semi-automatically adapts to given requirements. In
developing this method, we respond to the fact that differ-
ent application scenarios come with different requirements
concerning the desired nature of the modularization. The
greatest challenge in providing a flexible approach to par-
titioning is to establish a link between the requirements of
the application and the right choice of parameters for the
partitioning method that promises to provide the best result.
We addressed this problem by providing a semi-automated
mechanism that determines the best parameter configura-
tion based on a definition of a number of criteria defined
over the resulting modular ontology. We implemented a
number of generally useful criteria and provided the pos-
sibility of introducing user-defined criteria. While this is
a big step towards a general purpose partitioning method,

identifying the right criteria for a given situation is still a
challenge and requires a deeper understanding of the appli-
cation and graph theoretic notions currently used as crite-
ria. An obvious limitation of the approach with respect to
applications that require some form of reasoning with the
knowledge encoded in the ontology that is partitioned is the
fact, that the criteria used are purely syntactical. Other re-
searchers have investigated logical criteria for partitioning
ontologies that provide certain guarantees about the com-
pleteness of reasoning in the partitioned ontology. Intro-
ducing such logical criteria (e.g. the notion of conservative
extensions for description logics) as Boolean Criteria for
partitioning into the system could further improve the ap-
proach.

References

[1] V. Batagelj. Analysis of large networks - islands. Presented
at Dagstuhl seminar 03361: Algorithmic Aspects of Large
and Complex Networks, August/September 2003.

[2] B. Cuenca Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Mod-
ularity and web ontologies. In Proceedings of the 10th In-
ternational Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR2006), 2006.

[3] L. C. Freeman. A set of measures of centrality based on
betweenness. Sociometry, 40(1):35-41, 1977.

[4] J. Golbeck, G. Fragoso, F. Hartel, J. Hendler, J. Oberthaler,
and B. Parsia. The national cancer institute’s thesaurus and
ontology. Journal of Web Semantics, 1(1), 2003.

[5] B. MacCartney, S. Mcllraith, E. Amir, and T. Uribe. Prac-
tical partition-based theorem proving for large knowledge
bases. In Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence (IJCAI-03), 2003.

[6] A. Rector. Modularisation of domain ontologies imple-
mented in description logics and related formalisms includ-
ing OWL. In Proceedings of the 16th International FLAIRS

Conference. AAAI, 2003.

[7]1 A.Schlicht and H. Stuckenschmidt. Criteria-based partition-
ing of large ontologies. In Proceedings of the International
Conference on Knowledge Capture (K-CAP), 2007. Poster
Contribution.

[8] A. Schlicht and H. Stuckenschmidt. Distributed resolution
for ALC - first results. In Workshop on Advancing Reason-
ing on the Web: Scalability and Commonsense ESWC, 2008.

[9] H. Stuckenschmidt. Network Analysis as a Basis for Par-
titioning Class Hierarchies. In Workshop on Semantic Net-

work Analysis ISWC, 2006.

[10] H. Stuckenschmidt and M. Klein. Structure-based partition-
ing of large concept hierarchies. In S. A. Mcllraith, D. Plex-
ousakis, and F. van Harmelen, editors, Proceedings of the
Third International Semantic Web Conference (ISWC 2004),
pages 289-303, Hiroshima, Japan, nov 2004.

[11] H. Stuckenschmidt and M. R. Menken. Tool Support for
Dependency-Based Partitioning of OWL Ontologies. Tech-
nical report, 2005.

This work was partially supported by the German Science Foundation
in the Emmy-Noether Program under contract Stu 266/3-1.



