
Towards Distributed Ontology Reasoning for the Web

Anne Schlicht, Heiner Stuckenschmidt
Knowledge Representation and Knowledge Management Research Group

Computer Science Institute
University of Mannheim

{anne, heiner}@informatik.uni-mannheim.de

Abstract

The use of description logics as one of the primary logi-
cal languages for knowledge representation on the Web has
created new challenges with respect to reasoning in these
logics. In order to support the vision of a semantic web
of interrelated ontologies, reasoning procedures have to be
highly scalable and able to deal with physically distributed
knowledge models. A natural way of addressing these prob-
lems is to rely on distributed inference procedures that can
distribute the load between different solvers, thus reducing
potential bottlenecks both in terms of memory and computa-
tion time. In this paper, we propose a distributed resolution
approach that solves the problem by local resolution and
propagation of derived axioms between different reasoners.
The method is complete for first order logic, terminates for
ALC ontologies and avoids duplication of axioms and in-
ferences. The work can be seen as a building block for a
large scale distributed reasoning infrastructure for the se-
mantic web as envisioned in recent activities such as the
Large Knowledge Collider (LarKC) project.
Keywords: Semantic Web, Web Reasoning/Inference En-
gines

1 Introduction

Currently, almost all the work on description logic rea-
soning still assumes a centralized approach where the com-
plete terminology has to be present on a single system and
all inference steps are carried out on this system. This cen-
tralization of reasoning is in conflict with the idea of the se-
mantic web that ontological knowledge is created and main-
tained in a distributed fashion. OWL - the de facto stan-
dard for representing ontological knowledge on the web ex-
plicitly allows the unrestricted use of terms and - via the
owl:import statements - their definitions from remote
ontologies. Researchers in Knowledge Representation and
reasoning have addressed this problem by proposing logics

for representing import relations and providing distributed
reasoning methods that perform reasoning mostly local and
communicate when necessary to ensure completeness. Ex-
amples are DDL [1], ε-connections [2], P-DL [3] and Se-
mantic Import [5]. All of these approaches rely on the fact,
that knowledge is already distributed in a specific way1. Our
goal is to exploit the benefits of distributed reasoning – inde-
pendently of whether a specific distribution of knowledge is
given – by distributing necessary inference steps over mul-
tiple available reasoners.

2 Distributing Standard Resolution

Before describing our distributed resolution method for
ontologies, we first briefly review standard resolution rea-
soning and present the basic idea for distributing resolu-
tion. Resolution is used by most successful first order logic
(FOL) provers. As Description logics are a strict subset
of first order logic, resolution can be applied to ontolo-
gies as well by transforming the DL ontology into a set
of first order clauses. For example, the input clauses in
Figure 1 are obtained from the DL axioms Pair v Set,
Pair v ∀part.¬Set, Set v ∃part.Set, Pair(a). The
function f is a skolem function that substitutes the existen-
cial quantified variable y. Translation to FOL can be done
on a per axiom basis independently of other parts of the
model. An ontology is unsatisfiable if and only if the set of
clauses is satisfiable which can be decided by an exhaustive
application of the standard resolution rule.

Definition 1 (Standard Resolution) For clauses C and D
and literals A and ¬B, standard resolution is defined by the
rule

Standard Resolution
C ∨A D ∨ ¬B

Cσ ∨Dσ

where σ is the most general unifier of A and B.

1In particular, the expressiveness of links between distributed parts of
the model is often restricted



Module A (hosts Set) Module B (hosts part, Pair)
(1) Set(f(x4)),¬Set(x4) ¬part(x2, x3),¬Set(x3),¬Pair(x2) (1)
(2) Set(x1),¬Pair(x1) part(x4, f(x4)),¬Set(x4) (2)

Pair(a) (3)

(B 3) ¬Set(f(x4)),¬Set(x4),¬Pair(x4) ← ¬Set(f(x4)),¬Set(x4),¬Pair(x4) (4 1,2)
(1,3 4) ¬Set(x4),¬Pair(x4)
(2,4 5) ¬Pair(x4) → ¬Pair(x4) (5 A)

� (6 3,5)

Figure 1. Example of Distributed Ordered Resolution.

Algorithm 1 Resolution Prover
ISSATISFIABLE(KB)

1: Wo ← ∅
2: Us ←KB
3: while Us 6= ∅ and � /∈ Us do
4: Given ← CHOOSE(Us)
5: Us ← Us \ {Given}
6: Wo ←Wo ∪ {Given}
7: New ← RESOLVE(Given,Wo)
8: (Given,Us,New)← REDUCE(Given,Us,New )
9: Us ← Us ∪ New

10: end while
11: if � ∈ Us then return false
12: else return true
13: end if

Algorithm 1 (adapted from [8]) controls the application of
the resolution rule on a set of input clauses. It iteratively
picks a clause, searches for clauses that can be resolved with
this given clause, applies resolution to derive new clauses
and adds the newly derived clauses to its clause set. Be-
fore continuing with a new given clause, reduction rules are
applied to delete redundant clauses and avoid redundant in-
ferences. For recording which clauses have already been re-
solved with each other, the clause set is split into two lists,
the usable (Us) list of clauses that have to be resolved and
the worked off (Wo) list. Clauses in the Wo list are saturated,
i.e. every clause that could be derived from Wo is either al-
ready contained in one of the lists or redundant.
This basic algorithm can bedistributed across different rea-
soners by separating the set of input clauses and running
provers on separate parts of the set: Every reasoner sepa-
rately saturates the clause set assigned to it, newly derived
clauses are propagated to other reasoners if necessary.
The propagation of clauses is added into line 9 of Algo-
rithm 1: instead of directly adding the new clauses to the
local Us list, some of the new clauses may be added to the
Us lists of other reasoners and new clauses may be received
from other reasoners. The system stops if the empty clause
is derived in one of the reasoners or all are saturated. In con-

trast to the centralized case, a reasoner that has saturated the
local clause set may have to continue reasoning once a new
clause is received from another reasoner.
Obviously, an arbitrary distribution of resolution can lead
to inefficiency. For guaranteeing the completeness of the
resolution algorithm in a distributed setting, we have to en-
sure a given clause is resolved with every matching clause
in any of the Wo lists. Hence a given clause C would have
to be propagated to any reasoner whose Wo list contains a
clause with a literal that matches (i.e. is unifiable and of
opposite polarity) any of the literals in C leading to a sub-
stantial communication overhead and potentially redundant
inference steps. To avoid redundancy we define distributed
resolution based on an allocation function, that allocates ev-
ery clause to only a single reasoner.

Definition 2 (Allocation) An allocation function for C is a
total function a : C →M that maps clauses to reasoners.

The allocation function defines the propagation neces-
sary for distributing Algorithm 1. If a newly derived clause
is allocated to the reasoner where it was derived, no propa-
gation is necessary. Otherwise the derived clause is sent to
the reasoner specified by the allocation and the local copy is
deleted2. Based on the notion of an allocation function, we
can now define a distributed resolution method as a com-
bination of a resolution calculus and an allocation function
that satisfies a certain condition.

Definition 3 (Distributed Resolution) A distributed reso-
lution method for a set of clauses C is a tuple (R, a) where
R is a resolution calculus and a is an allocation function
for C such that for every set of clauses CS ⊂ C that can be
the premises in an inference of R the allocation restriction
∃m∀c ∈ CS a(c) = m is satisfied.

The restriction of the allocation function introduced in
Definition 3 guarantees that the distributed version of a
complete resolution method is also complete.

2Strictly speaking, the clause is just marked as deleted to avoid reprop-
agation.



Corollary 1 If a calculus R guarantees completeness (ter-
mination respective) for input C than every distributed rea-
soning method (R, a) for C with a finite set M of reasoners
is complete (terminates).

Completeness and termination are preserved, because we
neither impede nor add any inference by distribution. The
same resolution step is never carried out twice, because re-
solvable clauses are always assigned to the same unique rea-
soner which takes care of avoiding local redundancy.

3 Distributed Resolution for ALC

Due to limited space, we only sketch our method and
demonstrate its application. Refer to [6] for detailed de-
scription and formal definition of distributed resolution for
ALC. As we have seen above, the ability to define a sound
and complete distributed reasoning method relies on two
requirements: (1) the existence of a sound and complete
resolution calculus and (2) the ability to find an allocation
function that satisfies the allocation restriction. Our method
is based on ordered resolution, a calculus that terminates
on input obtained from ALC ontologies (ALC-clauses) if
its parameters selection function and ordering of literals are
set appropriately [7, 4]. We found that – apart from decid-
ing ALC– this parameterization has the effect that in each
ALC-clause there is a unique literal that can be resolved
upon (i.e. the literals A or ¬B in Definition 1) in an ordered
resolution inference. This condition is the bases for defining
an allocation function. In particular, for determining where
(and if) a derived clauses is sent, we first pick the unique
resolvable literal of the clause, then the top predicate of this
literal and finally the reasoner this term is allocated to by
an arbitrary partitioning of the ontology signature. Figure
1 illustrates application of Distributed Ordered Resolution.
Stated clauses are noted above the horizontal line, below
(41,3) means clause (4) was derived from clauses (1) and
(3). The first literal of a clause is the resolvable literal (let
Set > Pair), arrows depict propagation of clauses. Clause
(4) derived in module B is sent to A because the top pred-
icate Set of the resolvable literal ¬Set(f (x4 )) is allocated
to A. From the received clause and clause (1) module A
derives a clause (4) that is not propagated because the top
predicate of the resolvable literal ¬Set(x4 ) is hosted by A.
Clause (5) in module A is propagated again because Pair is
hosted by B.

4 Experiments

In this section we now address some practical proper-
ties of the complete distributed resolution method that de-
termine the usefulness of the method. In particular, we in-
vestigate the overhead of distributed reasoning in terms of

the amount of communication between reasoners as well as
the impact of only performing reduction locally. For this
purpose we implemented the definitorial form normaliza-
tion and modified the resolution reasoner SPASS to only per-
form subsumption deletions when subsumer and subsumee
are assigned to the same reasoner by the allocation function.
Then we started the reasoner with an appropriate configu-
ration that corresponds to the resolution method for ALC
described above to check consistency of the ontology.
For our experiments we used the AMINOACID3 ontology, a
relatively rich ALCF ontology. Because our method can-
not handle functional properties we approximated the ontol-
ogy by removing the two functional type statements. Sub-
sequently, we transformed the ontology into its definitorial
form and then into clauses. The partitioning of ontology
terms was obtained by first running a satisfiability test us-
ing a complete partitioning that allocates every term to a
different module. We encoded the resulting communica-
tion between the modules as a graph and partitioned it us-
ing METIS4 From the resulting partitioning we obtained a
mappings that assign each concept or property name to a
reasoner. These mappings were used to define the modules
in the subsequently reported experiments.

4.1 Percentage of Propagated Clauses

The crucial point for determining performance of dis-
tributed ordered resolution is the number of propagated
clauses as this propagation introduces an additional com-
munication overhead that reduces the usefulness of distri-
bution and can eventually lead to a performance bottleneck
if a large fraction of the clauses have to be propagated be-
cause propagation of a derived clause to another module is
considerably more expensive then just adding it to the local
clause list. Apart from the distance that has to be bridged
over, a received clause requires modification of the local
index structures that are used to manage the clause lists.
Hence, the ratio of derived clauses that have to be propa-
gated to another module is the decisive criterion.
Our hypothesis is that in realistic settings the number of
clauses that have to be propagated is rather small. We tested
this hypothesis on the dataset mentioned above. For com-
puting the percentage of propagated clauses, we recorded
for every ordered resolution derivation the module that per-
formed the derivation (i.e. the module number of the re-
solved literal) and the module to which the derived clause
has been send (i.e. the module number of the resolvable lit-
eral of the derived clause).
The results in Figure 2 show that, as expected, the fraction
of clauses that have to be propagated (the lower part of the
bars) increases with the number of reasoners used. For all

3http://www.co-ode.org/ontologies/amino-acid.owl
4http://glaros.dtc.umn.edu/gkhome/views/metis/



Figure 2. Number of derived and propagated
clauses and size balance for satisfiability test
in different partitionings.

Figure 3. Module graph for the partitioning of
six modules.

tests less than a third of the derived clauses are propagated
to another module. The distribution of computation load
among the modules is measured by the balance value. Bal-
ance is defined as the largest number of clauses derived in
a single module divided by the average number, e.g. for six
modules, the most active module derived 18% more clauses
than the average. Figure 3 illustrates the communication be-
tween the modules, with thickness of arrows corresponding
to the number of propagations and size proportional to the
number of clauses derived in each module. For the six mod-
ule setting we additionally tested all subsumption queries
with positive result and a random subset of 30% of the neg-
ative subsumption queries. The number of derivations range
from 6 to 6208 for positive and 7841 to 8669 for negative
queries of which 0% to 35% respective 16% to 18% have to
be propagated. For negative queries the number of deriva-
tions and propagations needed is higher and almost constant
because the whole model has to be saturated.

4.2 Effect of Restricted Reduction

Reduction rules are essential for efficient resolution rea-
soning. While ordered resolution and factoring are suffi-
cient to guarantee termination for ALC ontologies in the-
ory, additional deletion of redundant clauses is necessary
for practical termination. The most important reduction –
subsumption deletion – is restricted by our method. While
in common resolution, all clauses that are subsumed by an-
other clause can be deleted, our system only deletes clauses

whose subsumer is contained in the same module. For in-
vestigating the effect of this restriction we compared the
number of derived clauses in unrestricted ALC-resolution
versus distributed ALC-resolution. The results depicted in
Figure 2 are encouraging, for distribution to three modules,
there is an increase of 50% in the number of derived clauses
compared to unrestricted resolution in a single module. In-
creasing the number of modules from 10 to 39 affects the
derivations marginally, only the balance of module sizes de-
grades.
Thus, deleting clauses that are redundant with respect to
the reasoner they are processed by seems to be sufficient
in practice.

5 Summary

We have addressed the problem of distributing reason-
ing methods for ontologies across different reasoners on the
web. Our focus was on distributing resolution reasoning and
we showed that resolution can be distributed without losing
completeness if resolvable clauses are always processed by
the same reasoner. Based on this observation, we presented
a sound and complete distributed resolution method for on-
tologies that builds upon existing work on resolution rea-
soning for ALC models. This work can be seen as a first
step towards a highly scalable distributed reasoning archi-
tecture for the semantic web and is in line with recent efforts
in building such a reasoning infrastructure5.

References

[1] A. Borgida and L. Serafini. Distributed description logics:
Assimilating information from peer sources. Journal of Data
Semantics, 1:153–184, 2003.

[2] B. C. Grau, B. Parsia, and E. Sirin. Combining owl ontologies
using e-connections. Journal Of Web Semantics, 4(1), 2005.

[3] B. J., D. Caragea, and V. Honavar. A tableau-based feder-
ated reasoningalgorithm for modular ontologies. In In Proc.
of the IEEE/WIC/ACM International Conference on Web In-
telligence, pages 404–410, 2006.

[4] B. Motik. Reasoning in Description Logics using Resolution
and Deductive Databases. PhD thesis, Universität Karlsruhe
(TH), Karlsruhe, Germany, January 2006.

[5] J. Z. Pan, L. Serafini, and Y. Zhao. Semantic import: An
approach for partial ontology reuse. In Proc. of the ISWC
2006 Workshop on Modular Ontologies, 2006.

[6] A. Schlicht and H. Stuckenschmidt. Distributed resolution for
alc - first results. In ESWC Workshop on Advancing Reason-
ing on the Web, 2008.

[7] T. Tammet. Resolution methods for Decision Problems and
Finite Model Building. PhD thesis, Chalmers University of
Technology and University of Göteborg, 1992.

[8] C. Weidenbach. Combining Superposition, Sorts and Split-
ting, volume II, chapter 27. Elsevier, 2001.

5the Large Knowledge Collider: http://www.larkc.eu/


