
The Role of Reasoning for RDF Validation

Thomas Bosch
GESIS - Leibniz Institute for

the Social Sciences, Germany
thomas.bosch@gesis.org

Erman Acar
University of Mannheim,

Germany
erman@informatik.uni-

mannheim.de

Andreas Nolle
Albstadt-Sigmaringen
University, Germany

nolle@hs-albsig.de

Kai Eckert
Stuttgart Media University,

Germany
eckert@hdm-stuttgart.de

ABSTRACT
For data practitioners embracing the world of RDF and
Linked Data, the openness and flexibility is a mixed bless-
ing. For them, data validation according to predefined con-
straints is a much sought-after feature, particularly as this
is taken for granted in the XML world. Based on our work
in the DCMI RDF Application Profiles Task Group and in
cooperation with the W3C Data Shapes Working Group, we
published by today 81 types of constraints that are required
by various stakeholders for data applications. These con-
straint types form the basis to investigate the role that rea-
soning and different semantics play in practical data vali-
dation, why reasoning is beneficial for RDF validation, and
how to overcome the major shortcomings when validating
RDF data by performing reasoning prior to validation. For
each constraint type, we examine (1) if reasoning may im-
prove data quality, (2) how efficient in terms of runtime val-
idation is performed with and without reasoning, and (3) if
validation results depend on underlying semantics which dif-
fers between reasoning and validation. Using these findings,
we determine for the most common constraint languages
which constraint types they enable to express and give di-
rections for the further development of constraint languages.

Categories and Subject Descriptors
F.4.3 [Mathematical Logic and Formal Languages]:
[formal languages]; I.2.4 [Artificial Intelligence]: Knowl-
edge Representation Formalisms and Methods; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence

General Terms
Languages

Keywords
RDF Validation, RDF Constraint Types, Data Quality, Rea-
soning, OWL, Linked Data, Semantic Web

1. INTRODUCTION
Recently, RDF validation as a research field gained speed
due to common needs of data practitioners. A typical ex-
ample is the library domain that co-developed and adopted
Linked Data principles very early. For libraries, the com-
mon description of resources are key business and they have
a long tradition in developing and using interoperable data
formats. While they embrace the openness of Linked Data
and the data modeling principles provided by RDF, the data
is still mostly represented in XML and this is unlikely to
change soon. Among the reasons for the success of XML
is the possibility to formulate fine-grained constraints to
be met by the data and to validate the data according to
these constraints using powerful systems like DTDs, XML
Schemas, RELAX NG, or Schematron. A typical exam-
ple is the definition of a library record describing a book.
There are clear rules which information has to be available
to describe a book properly, but also how information like
an ISBN number is properly represented. Libraries seek to
make their own data reusable for general purposes, but also
to enrich and interlink their own data. Checking if third-
party data meets own requirements or validating existing
data according to new needs for a Linked Data application
are among common use cases for RDF validation.

In 2013, the W3C invited experts from industry, govern-
ment, and academia to the RDF Validation Workshop1,
where first use cases for RDF constraint formulation and
data validation have been discussed. Two working groups
that follow up on this workshop are established in 2014 to
develop a language to express constraints on RDF data: the
W3C RDF Data Shapes Working Group2 and the DCMI
RDF Application Profiles Task Group3. To formulate con-
straints and to validate RDF data, several languages exist or
are currently developed like Shape Expressions (ShEx), Re-
source Shapes (ReSh), and Description Set Profiles (DSP).
The Web Ontology Language (OWL) in its current version
OWL 2 is also used as a constraint language. With its direct
support of validation via SPARQL, the SPARQL Inferencing
Notation (SPIN) is very popular and certainly plays an im-
portant role for future developments of constraint languages.

1http://www.w3.org/2012/12/RDF-val/
2http://www.w3.org/2014/rds/charter
3http://wiki.dublincore.org/index.php/
RDF-Application-Profiles

SPIN is particularly interesting as a means to validate ar-
bitrary constraint languages by mapping them to SPARQL
[4]. As there is no clear favorite and none of the languages
is able to meet all requirements raised by data practitioners,
further research and development is needed.

1.1 Motivation and Overview
Within the DCMI working group, we initiated a collabo-
ratively curated database of RDF validation requirements
which contains the findings of the working groups based
on various case studies provided by data institutions [3].
The database, which is publicly available and open for fur-
ther contributions4, connects requirements to use cases, case
studies, and solutions. Based on our work in the DCMI and
in cooperation with the W3C working group, we published
by today 81 requirements to validate RDF data and to for-
mulate RDF constraints that are required by various stake-
holders for data applications. Each of these requirements
corresponds to a constraint type from which concrete con-
straints are instantiated to be checked on RDF data. Re-
quirements/constraint types are uniquely identified by al-
phanumeric technical identifiers. Minimum qualified cardi-
nality restrictions (R-75), e.g., is a constraint type which
corresponds to the requirement R-75-MINIMUM-QUALIFIED-

CARDINALITY-ON-PROPERTIES . We recently published a
technical report [5] (serving as appendix of this paper) in
which we explain each requirement/constraint type in de-
tail and give examples for each represented by different con-
straint languages. These constraint types form the basis to
investigate the role that reasoning and different semantics
play for RDF validation.

Validation and reasoning are closely related. Reasoning is
beneficial for RDF validation as (1) it may resolve constraint
violations, (2) it may cause valuable violations, and (3) it
solves the redundancy problem. A major shortcoming when
validating RDF data is redundancy. Consider that a publi-
cation must have a publication date which is a typical con-
straint. When defining books, conference proceedings, and
journal articles as sub-classes of publication, one would re-
quire to assign the concerned constraint explicitly to each
sub-class, since each of them should have a publication date.
Reasoning is a promising solution as pre-validation step to
overcome this shortcoming. Reasoning in Semantic Web
refers to logical reasoning that makes implicitly available
knowledge explicitly available. When performing reasoning
one can infer that books must have a publication date from
the facts that books are publications and publications must
have a publications date. We remove redundancy by associ-
ating the constraint with the super-class publication.

Users should be enabled to select on which constraint types
to perform reasoning before data is validated and which con-
straint types to use to ensure data accuracy and complete-
ness without reasoning. As reasoning is beneficial when val-
idating RDF data, we investigate the effect of reasoning to
the validation process of each constraint type, i.e., we exam-
ine for each constraint type if reasoning may be performed
prior to validation to enhance data quality either by resolv-
ing violations or by raising valuable violations (Section 2).

4Online available at http://purl.org/net/rdf-validation

For each constraint type, we investigate how efficient in
terms of runtime validation is performed with and without
reasoning. By mapping to description logics (DL) we get an
idea of the performance of each constraint type in worst case,
since the combination of DL constructs needed to express
a constraint type determines its computational complexity
(Section 2). For this reason, the appendix of this paper con-
tains mappings to DL to determine which DL constructs are
needed to express each constraint type. Thus, the knowledge
representation formalism DL, with its well-studied theoreti-
cal properties, provides the foundational basis for constraint
types.

Validation and reasoning assume different semantics which
may lead to different validation results when applied to par-
ticular constraint types. Reasoning requires the open-world
assumption (OWA) with the non-unique name assumption
(nUNA), whereas validation is classically based on the closed-
world assumption (CWA) and the unique name assumption
(UNA). Therefore, we investigate for each constraint type
if validation results differ (1) if the CWA or the OWA and
(2) if the UNA or the nUNA is assumed, i.e., we examine
for each constraint type (1) if the constraint type depends
on the CWA and (2) if the constraint type depends on the
UNA (Section 3).

Using these findings, we are able to determine for the five
most common constraint languages which constraint types
they enable to express (see Table 1) The evaluation is ex-
plained in detail in the appendix of this paper [5].

Table 1: Expressivity of Constraint Languages

CT (81) R (46) R (35)
SPIN 100.0 (81) 100.0 (46) 100.0 (35)
OWL2-DL 67.9 (55) 45.7 (21) 97.1 (34)
ShEx 29.6 (24) 26.1 (12) 34.3 (12)
ReSh 25.9 (21) 15.2 (7) 40.0 (14)
OWL2-QL 24.7 (20) 19.6 (9) 31.4 (11)
DSP 17.3 (14) 13.0 (6) 22.9 (8)

We use CT to refer to the whole set of constraint types, R
to abbreviate the 35 constraint types for which reasoning
may be performed before actually validating and R to de-
note the 46 constraint types for which reasoning does not
improve data quality in any obvious sense. For OWL 2,
we differentiate between the sub-languages OWL 2 QL and
OWL 2 DL as they differ with regard to expressivity and ef-
ficiency in performance. Table 1 shows in percentage values
(and absolute numbers in brackets) how many CT , R, and
R constraint types are supported by listed constraint lan-
guages. Although, OWL 2 is the only language for which
reasoning features are already implemented, R constraint
types are also expressible by other languages.

Having information on the constraint type specific expressiv-
ity of constraint languages enables validation environments
to recommend the right language depending on the users’ in-
dividual use cases. These use cases determine which require-
ments have to be fulfilled and therefore which constraint
types have to be expressed to meet these use cases. The
finding that SPIN is the only language which supports all
reasoning constraint types underpins the importance to im-

plement reasoning capabilities by SPIN (or plain SPARQL).
The fact that all R and R constraint types are representable
by SPIN emphasizes the significant role SPIN plays for the
future development of constraint languages. Another im-
portant role may play OWL 2 DL with which 2/3 of all,
nearly 1/2 of the R, and almost all R constraint types can
be expressed. Even though, some R constraint types corre-
spond to OWL 2 DL axioms, we cannot use them directly to
validate RDF data since OWL 2 reasoning and validation
assume different semantics which may lead to differences in
results.

The contributions of this paper are: (1) We identified by
today 81 types of constraints that are required by various
stakeholders for data applications. (2) We work out the
role that reasoning plays in practical data validation, why
reasoning is beneficial for RDF validation, and how to over-
come the major shortcomings when validating RDF data
by performing reasoning prior to validation. (3) For each
constraint type, we examine if reasoning may improve data
quality, how efficient in terms of runtime validation is per-
formed with and without reasoning, and if validation results
depend on the CWA and on the UNA. (4) We determine
for the most common constraint languages which constraint
types they enable to express and give directions for the fur-
ther development of constraint languages. (5) We provide
open source validation and reasoning implementations of
constraint types to be used to drive the further development
of constraint languages (Section 4).

2. REASONING
OWL 2 is an expressive language for which DL provides
the foundational basis and which offers knowledge represen-
tation and reasoning services. Validation, however, is not
the primary purpose of its design which has lead to claims
that OWL 2 cannot be used for validation. In practice,
however, OWL 2 is well-spread and RDFS/OWL 2 con-
structs are widely used to tell people and applications about
how valid instances should look like. In general, RDF doc-
uments follow the syntactic structure and the semantics of
RDFS/OWL 2 ontologies which could therefore not only be
used for reasoning but also for validation.

In this section, we investigate the role that reasoning plays
in practical data validation and how to overcome the ma-
jor shortcomings when validating RDF data by performing
reasoning prior to validation. As reasoning is beneficial for
validation, we investigate the effect of reasoning to the vali-
dation process for each constraint type. Reasoning is benefi-
cial for validation as (1) it may resolve constraint violations,
(2) it may cause useful violations, and (3) it solves the redun-
dancy problem. Consider the following DL knowledge base
K - a DL knowledge base is a collection of formal statements
which correspond to facts or what is known explicitly:

K � t
Book � Publication , Book � @ author.Person , Book � D title.J
Book(Huckleberry-Finn) , Book(Hamlet) ,
author(Huckleberry-Finn, Mark-Twain) ,
title(Huckleberry-Finn, The-Adventures-of-Huckleberry-Finn) ,
title(Huckleberry-Finn, Die-Abenteuer-des-Huckleberry-Finn) }

As we know that books can only have persons as authors

(Book � @ author.Person), Huckleberry-Finn is a book
(Book(Huckleberry-Finn)), and Mark Twain is its author
(author(Huckleberry-Finn, Mark-Twain)), we conclude that
Mark Twain is a person. As Mark Twain is not explicitly de-
fined to be a person, however, a violation is raised. Reason-
ing may resolve violations (1. benefit). If we apply reasoning
before validating, the violation is resolved since the implicit
triple Person(Mark-Twain) is inferred and therefore made ex-
plicitly available. Reasoning may cause additional violations
needed to enhance data quality when these violations are
resolved (2. benefit). As books are publications (Book �

Publication), constraints on publications are also validated
for books which may result in further valuable violations. As
each publication must have a publisher, e.g., a book is a pub-
lication, Huckleberry-Finn is a book, and Huckleberry-Finn
does not have a publisher, a violation occurs. This violation
would not have been raised without reasoning before actu-
ally validating and thus data quality would not be increased
in case the violation is tackled. The major shortcoming of
classical constraint languages is redundancy. If a particular
constraint should hold for multiple classes, it is required to
assign the concerned constraint explicitly to each class. The
redundancy problem is solved (3. benefit) by associating the
constraint with the super-class of these classes and applying
OWL 2 reasoning (see second paragraph in Section 1.1).

Validation environments should enable users to select which
constraint types to use for completing data by reasoning and
which ones should be considered as constraint types about
data accuracy and completeness which could be checked over
the data once completed using reasoning. As reasoning is
beneficial for validating RDF data, we investigate the effect
of reasoning to the validation process of each constraint type,
i.e., we examine for each constraint type if reasoning may
be performed prior to validation to enhance data quality
either (1) by resolving violations or (2) by raising valuable
violations. We denote the whole set of constraint types with
CT which we divide into two disjoint sets:

1. R is the set of constraint types for which reasoning
may be performed prior to validation (especially when
not all the knowledge is explicit) to enhance data qual-
ity either by resolving violations or by raising valuable
violations. For R constraint types, validation is exe-
cuted by query answering with optional reasoning prior
to validation. 35 (43.2%) of the overall 81 constraint
types are R constraint types.

2. R denotes the complement of R, that is the set of
constraint types for which reasoning cannot be done or
for which reasoning does not improve data quality in
any obvious sense. For R constraint types, validation
is performed by query answering without reasoning.
46 (56.8%) of the overall 81 constraint types are R
constraint types.

If a journal volume has an editor relationship to a person,
then the journal volume must also have a creator relation-
ship to the same person (editor � creator), i.e., editor
is a sub-property of creator. If we use sub-properties (R-
54/64) without reasoning and the data contains the triple
editor (A+Journal-Volume, A+Editor), then the triple cre-

ator (A+Journal-Volume, A+Editor) has to be stated explic-
itly. If this triple is not present in the data, a violation
occurs. If we use sub-properties with reasoning, however,
the required triple is inferred which resolves the violation.
Sub-properties is an R constraint type since reasoning may
be performed prior to validation to improve data quality
by resolving the violation. Literal pattern matching (R-44)
restricts literals to match given patterns:

1 ISBN a RDFS:Datatype ; owl:equivalentClass [a RDFS:Datatype ;
2 owl:onDatatype xsd:string ;
3 owl:withRestrictions ([xsd:pattern "^\d{9}[\d|X]\$"])] .

The first OWL 2 axiom explicitly declares ISBN to be a
datatype. The second OWL 2 axiom defines ISBN as an
abbreviation for a datatype restriction on xsd:string. The
datatype ISBN can be used just like any other datatype such
as in the universal restriction Book � @ identifier.ISBN which
ensures that books can only have valid ISBN identifiers, i.e.,
strings that match a given regular expression. Literal pat-
tern matching is an R constraint type since reasoning cannot
be done.

For each constraint type we investigate how efficient in terms
of runtime validation is performed with and without reason-
ing. By mapping to DL we get an idea of the performance
of each constraint type in worst case, since the combina-
tion of DL constructs needed to express a constraint type
determines its computational complexity

2.1 Constraint Types with Reasoning
R is the set of constraint types for which reasoning may be
performed prior to validation to enhance data quality either
by resolving violations or by causing useful violations. For
R constraint types, different types of reasoning may be per-
formed which depends on the language used to formulate
the constraint type. 11 of 35 R constraint types are repre-
sentable by the less expressive but better performing OWL
2 QL. 23 R constraint types, in contrast, are not expressible
by OWL 2 QL and therefore the more expressive but less
performing OWL 2 DL is used. Some of the R constraint
types, however, are also representable by classical constraint
languages (e.g., 40% are representable by ReSh). OWL 2
profiles are restricted versions of OWL 2 that offer different
trade-offs regarding expressivity vs. efficiency in reasoning.
OWL 2 QL, based on the DL-Lite family of DL [2, 6], is an
OWL 2 profile which focuses on reasoning in the context of
query answering with very large size of instance data. OWL
2 DL was standardized as a DL-like formalism with high
expressivity, yet maintains decidability for main reasoning
tasks. As a result of its expressive power, OWL 2 DL al-
lows a large variety of sophisticated modeling capabilities
for many application domains. The drawback of its expres-
sive power results as a lack of computational efficiency in
performance. With regard to the two different types of rea-
soning we divide R into two not disjoint sets of constraint
types: RQL � RDL (OWL 2 DL is more expressive than
OWL 2 QL).

1. RQL is the set of R constraint types for which OWL 2
QL reasoning may be performed as they are express-

ible by OWL 2 QL. 11 of 35 R constraint types are
RQL constraint types.

2. RDL stands for the set of R constraint types for which
OWL 2 DL reasoning may be executed as OWL 2 QL
is not expressive enough to represent them [11]. 34 of
35 R constraint types are RDL constraint types.

2.1.1 OWL 2 QL Reasoning.
Reasoning may resolve violations which improves data qual-
ity. The Property Domain (R-25) constraint D author.J �

Publication ensures that only publications can have au-
thor relationships (in OWL 2 QL: author rdfs:domain Pub-

lication). Without reasoning, the triple author(Alices-

Adventures-In-Wonderland, Lewis-Carroll) leads to a vio-
lation if it is not explicitly stated that Alices-Adventures-
In-Wonderland is a publication. With reasoning, on the
contrary, the class assignment rdf:type(Alices-Adventures-

In-Wonderland, Publication) is inferred which prevents the
violation to be raised.

Reasoning may cause valuable violations which increase data
quality in case the violations are taken into account. The
existential quantification (R-86) Publication � D pub-

lisher.Publisher restricts publications to have at least one
publisher:

1 [a owl:Restriction ;
2 owl:onProperty publisher ;
3 owl:someValuesFrom Publisher ;
4 rdfs:subClassOf Publication] .

If reasoning is executed on the triples publisher (A+Conference-

Proceedings, A+Publisher) and rdf:type (A+Publisher, Pub-

lisher), it is inferred that A+Conference-Proceedings is a
publication. Now, all constraints associated with publica-
tions are also validated for A+Conference-Proceedings - e.g.,
that publications must have at least one author. Without
reasoning, in contrast, the fact that A+Conference-Proceedings
is a publication is not explicit in the data which is the rea-
son why constraints on publications are not validated for
A+Conference-Proceedings. Hence, additional violations, which
may be useful to enhance data quality, do not occur.

RDF validation with reasoning corresponds to performing
SPARQL queries. As OWL 2 profiles are based on the DL-
Lite family, OWL 2 QL is based on DL-LiteR, and query an-
swering in OWL 2 QL is performed in LogSpace (or rather
in AC0) [6], the same complexity class applies for validation
by queries with reasoning. As TBox reasoning in OWL 2
QL is performed in Ptime [6], complete query rewriting as
well as reasoning and subsequent querying (combined com-
plexity) is carried out in Ptime [2, 6].

2.1.2 OWL 2 DL Reasoning.
Universal quantifications (R-91) are used to build anony-
mous classes containing all individuals that are connected
by particular properties only to instances/literals of certain
classes/data ranges. Publications, e.g., can only have per-
sons as authors (Publication � @ author.Person):

1 [a owl:Restriction ;
2 owl:onProperty author ;

3 owl:allValuesFrom Person ;
4 rdfs:subClassOf Publication] .

When performing reasoning, the triples author(The-Lord-Of-

The-Rings, Tolkien) and rdf:type(The-Lord-Of-The-Rings,

Publication) let a reasoner infer that Tolkien is a person
which satisfies the universal quantification. In case reason-
ing is not executed, a violation is raised since it is not ex-
plicitly stated that Tolkien is a person. As a consequence,
constraints on persons are not checked for Tolkien which
prevents further validation.

With OWL 2 DL, the more expressive profile than OWL
2 QL, reasoning is executed in N2exptime [11] which is
a class of considerably higher complexity than Ptime, the
complexity class for OWL 2 QL reasoning. As we consider
ontological reasoning, complexity classes are assigned to sets
of constraint types according to well-established complexity
results in literature on reasoning of DL languages. There-
fore, the classification also includes complex logical interfer-
ences between TBox axioms.

2.2 Constraint Types without Reasoning
R is the set of constraint types for which reasoning cannot be
done or for which reasoning does not improve data quality in
any obvious sense. Context-specific exclusive or of properties
(R-11) is a R constraint type with which it can be defined
that an individual of a certain class can either have property
A or property B, but not both. Identifiers of publications,
e.g., can either be ISBNs (for books) or ISSNs (for periodical
publications), but it should not be possible to assign both
identifiers to a given publication:

K � t
Publication � (A [B) \ (A [B) ,
A � D isbn.xsd:string , B � D issn.xsd:string

This constraint can be represented by OWL 2 DL by build-
ing an anonymous class for each exclusive property:

1 Publication owl:disjointUnionOf (C1 C2) .
2 C1 rdfs:subClassOf [a owl:Restriction ;
3 owl:onProperty isbn ;
4 owl:someValuesFrom xsd:string] .
5 C2 rdfs:subClassOf [a owl:Restriction ;
6 owl:onProperty issn ;
7 owl:someValuesFrom xsd:string] .

Exactly the same constraint can be expressed by ShEx more
intuitively and concisely:

1 Publication { (isbn xsd:string | issn xsd:string) }

It is a common requirement to narrow down the value space
of properties by an exhaustive enumeration of valid values
(R-30/37: allowed values). Reasoning on this constraint
type does not change validation results and therefore does
not improve data quality. Books on the topics Computer
Science and Librarianship, e.g., should only have Comput-
erScience and Librarianship as subjects. The corresponding
DL statement Book � @ subject.{Computer-Science,Librarian

ship} is representable by DSP and OWL 2 DL:

1 [a dsp:DescriptionTemplate ;
2 dsp:resourceClass Book ;
3 dsp:statementTemplate [
4 dsp:property subject ;
5 dsp:nonLiteralConstraint [
6 dsp:valueURI ComputerScience, Librarianship]]] .
7

8 subject rdfs:range [owl:equivalentClass [a owl:Class;
9 owl:oneOf (ComputerScience Librarianship)]] .

RDF validation without reasoning corresponds to perform-
ing SPARQL queries. It is known that performing SPARQL
queries is carried out in Pspace-Complete [14]. Table 2 gives
an overview over the complexity of validation with and with-
out reasoning. The higher the complexity class the worse
the performance. The order of the complexity classes is the
following[1]:

LogSpace � Ptime � Pspace-Complete � N2exptime

Table 2: Complexity of Validation According to Reasoning

Validation Type Complexity Class

R Pspace-Complete

RQL
Ptime

RDL
N2exptime

We do not consider OWL 2 Full due to its high worst case
complexity (undecidability) and as all (except of one) R
constraint types are already expressible either by OWL 2
QL or OWL 2 DL.

3. CWA AND UNA DEPENDENCY
RDF validation and reasoning assume different semantics.
Reasoning in OWL 2 is based on the open-world assump-
tion (OWA), i.e., a statement cannot be inferred to be false
if it cannot be proved to be true which fits its primary de-
sign purpose to represent knowledge on the WWW. As each
book must have a title (Book � D title.J) and Hamlet is
a book (Book(Hamlet)), Hamlet must have at least one ti-
tle as well. In an OWA setting, this constraint does not
cause a violation, even if there is no explicitly defined title,
since there must be a title for this book which we may not
know (K is consistent). As RDF validation has its origin
in the XML world many RDF validation scenarios require
the closed-world assumption (CWA), i.e., a statement is in-
ferred to be false if it cannot be proved to be true. Thus,
classical constraint languages are based on the CWA where
constraints need to be satisfied only by named individuals.
In the example, the CWA yields to a violation since there
is no explicitly defined title for the book Hamlet. OWL 2 is
based on the non-unique name assumption (nUNA) whereas
RDF validation requires that different names represent dif-
ferent objects (unique name assumption (UNA)). Although,
DLs/OWL 2 do not assume UNA, they have the constructs
owl:sameAs and owl:differentFrom to state that two names
are the same or different. If validation would assume OWA
and nUNA, validation won’t be that restrictive and therefore
we won’t get the intended validation results. This ambiguity
in semantics is one of the main reasons why OWL 2 has not

been adopted as a standard constraint language for RDF
validation in the past.

RDF validation and reasoning assume different semantics
which may lead to different validation results when applied
to particular constraint types. Hence, we investigate for each
constraint type if validation results differ (1) if the CWA or
the OWA and (2) if the UNA or the nUNA is assumed, i.e.,
we examine for each constraint type (1) if the constraint
type depends on the CWA and (2) if the constraint type
depends on the UNA.

We classify constraint types according to the dependency on
the CWA and on the UNA which leads to four sets of con-
straint types: (1) CWA denotes the set of constraint types
which are dependent on the CWA, i.e., the set of constraint
types for which it makes a difference in terms of validation
results if the CWA or the OWA is assumed. Minimum quali-
fied cardinality restrictions (R-75) is a CWA constraint type,
i.e., depends on the CWA. Publications, e.g., must have at
least one author (Publication � ¥1 author.Person). In a
CWA setting, a publication without an explicitly stated au-
thor violates the constraint, whereas, with OWA semantics,
a publication without an explicitly stated author does not
raise a violation as the constraint entails that there must be
an author which we may not know. (2) CWA is the com-
plement of CWA and thus includes constraint types which
are independent on the CWA. Nothing can be a book and
a journal article at the same time (Book [JournalArticle

� K). For the constraint type disjoint classes (R-7), it
does not make any difference regarding validation results if
the CWA or the OWA is taken, as if there is a publication
which is a book and a journal article a violation is raised in
both settings, i.e., additional information does not change
validation results.

(3) UNA denotes the set of constraint types which are de-
pendent on the UNA. For Functional properties (R-57/65),
it makes a difference with regard to validation results if UNA
or nUNA is assumed. As the property title is functional
(funct (title)), a book can have at most one distinct title.
UNA causes a clash if the book Huckleberry-Finn has more
than one title. For nUNA, however, reasoning concludes that
the title The-Adventures-of-Huckleberry-Finn must be the
same as the title Die-Abenteuer-des-Huckleberry-Finn which
resolves the violation. (4) UNA, the complement of UNA,
denotes the set of constraint types which are independent
on the UNA. Literal value comparison (R-43) is an example
of a UNA constraint type which ensures that, depending on
property datatypes, two different literal values have a spe-
cific ordering with respect to an operator like <, <=, >, and
>=. It has to be guaranteed, e.g. that birth dates are be-
fore (<) death dates. If the birth date and the death date of
Albert-Einstein is interchanged (birthDate(Albert-Einstein,

"1955-04-18"), deathDate(Albert-Einstein, "1879-03-14")),

a violation is thrown. The literal value comparison con-
straint type is independent from the UNA as the violation
is not resolved in case there are further resources (e.g. Al-
bertEinstein, Albert Einstein) which point to correct birth
and death dates and which may be the same as the violating
resource when nUNA is assumed.

We evaluated for each constraint type if it is dependent on

the CWA and on the UNA (for a detailed analysis we re-
fer to the appendix of this paper [5]). The result is that
we distinguish between 46 (56.8%) CWA and 35 (43.2%)
CWA and between 54 (66.6%) UNA and 27 (33.3%) UNA
constraint types. Hence, for the majority of the constraint
types it makes a difference in terms of validation results if
the CWA or the OWA and if the UNA or the nUNA is as-
sumed. For the CWA and the UNA constraint types, we
have to be careful in case we want to use them for reason-
ing and for validation as in both usage scenarios we assume
different semantics which may lead to different results.

4. IMPLEMENTATION
We use SPIN, a SPARQL-based way to formulate and check
constraints, as basis to develop a validation environment5

to validate RDF data according to constraints expressed by
arbitrary constraint languages by mapping them to SPIN 6

[4]. The SPIN engine checks for each resource if it satisfies
all constraints, which are associated with its classes, and
generates a result RDF graph containing information about
all constraint violations. We provide implementations to
validate constraints of all constraint types expressible by
OWL 2 QL, OWL 2 DL, and DSP as well as constraints of
major constraint types representable by ReSh and ShEx6.
By means of a property ranges (R-28, R-35) constraint it can
be restricted that author relations can only point to persons
(DL: J � @ author.Person, OWL 2 DL: author rdfs:range

Person.). There is one SPIN construct template for each
constraint type, so for the constraint type property ranges:

1 owl2spin:PropertyRanges a spin:ConstructTemplate ;
2 spin:body [a sp:Construct ; sp:text """
3 CONSTRUCT {
4 _:cv a spin:ConstraintViolation [...] . }
5 WHERE {
6 ?OP rdfs:range ?C . ?x ?OP ?this . ?this a owl:Thing .
7 FILTER NOT EXISTS { ?this a ?C } . } """ ;] .

A SPIN construct template contains a SPARQL CONSTRUCT
query generating constraint violation triples which indicate
the subject, the properties, and the constraint causing the
violations and the reason why violations have been raised.
Violation triples, which are associated with a certain level
of severity (informational, warning, error), may also give
some guidance how to fix them. A SPIN construct tem-
plate creates violation triples if all triple patterns within
the SPARQL WHERE clause match. If Doyle, the au-
thor of the book Sherlock-Holmes (author(Sherlock-Holmes,

Doyle)), e.g., is not explicitly declared to be a person, all
triple patterns within the SPARQL WHERE clause match
and the SPIN construct template generates a violation triple.

Property ranges is an R constraint type, i.e., a constraint
type for which reasoning may be performed prior to vali-
dation to enhance data quality. Therefore, validation en-
vironments should enable users to decide if reasoning on
constraints of the property ranges constraint type should be

5Online demo available at http://purl.org/net/rdfval-demo,
source code available at: https://github.com/boschthomas/
rdf-validator
6SPIN mappings available at: https://github.com/
boschthomas/rdf-validation/tree/master/SPIN

executed before RDF data is validated. If a user decides
to use reasoning on the property ranges constraint type, the
triple rdf:type(Doyle, Person), whose absence caused the
violation, is inferred before data is validated which thus re-
solves the violation. Validation environments should enable
users (1) to select individual resources for which reasoning
should be performed on R constraints before they are vali-
dated, (2) to select R constraint types for which reasoning
should be executed, and (3) to globally determine if for all
R constraint types reasoning should be done. All resources,
for which reasoning should be performed prior to validation,
are automatically assigned to the class Reasoning during a
pre-reasoning step. There is one SPIN rule for each R con-
straint type, so for the R constraint type property ranges:

1 owl2spin:Reasoning spin:rule [a sp:Construct ; sp:text """
2 CONSTRUCT { ?this a ?C . }
3 WHERE { ?OP rdfs:range ?C . ?x ?OP ?this . ?this a owl:Thing .
4 FILTER NOT EXISTS { ?this a ?C } . } """ ;] .

The SPIN rule is executed for each resource of the class
Reasoning. A SPIN rule contains a SPARQL CONSTRUCT
query which generates triples if all triple patterns within the
SPARQL WHERE clause match. In case Doyle is not de-
fined to be a person, all triple patterns match and the triple
rdf:type(Doyle, Person) is created. As a consequence, the
violation on Doyle is not raised. We implemented reasoning
capabilities for all R constraint types for which OWL 2 QL
and OWL 2 DL reasoning may be performed6.

5. RELATED WORK
Tao [17] suggested an OWL 2 DL extension to support in-
tegrity constraints which enables to use OWL 2 as a con-
straint language for validation under the CWA by conjunc-
tive query answering. Tao also provides a solution to ex-
plain and to repair integrity constraint violations. Siren
and Tao [16] proposed an alternative semantics for OWL
2 using the CWA so that it could be used to validate in-
tegrity constraints. They examined integrity constraint se-
mantics proposed in the deductive databases literature and
adopted them for OWL 2 by reducing the validation of in-
tegrity constraints to SPARQL query answering by means of
reasoners. Although, the alternative semantics for OWL 2
is implemented in the Stardog database7, it has never been
submitted to a standards organization such as the W3C.

In DL, reasoning tasks like query answering or detection of
inconsistencies require the consideration of knowledge that
is not only defined explicitly but also implicitly. To do so
there are two different ways called forward- and backward-
chaining. The first method implies a materialized knowledge
base, where the original knowledge base is extended by all
assertions that can be inferred. State-of-the-art DL or OWL
reasoners following this approach are FaCT++ [18], Pellet
[15], RacerPro [8], or HermiT [9].

On the second approach, the original knowledge base is kept
in its original state. Before queries are evaluated against the
knowledge base, queries are rewritten such that the rewrit-
ings also consider the implicit knowledge in the result set.

7http://stardog.com/

Approaches following this way are PerfectRef given by Cal-
vanese et al. [6] or TreeWitness proposed by Kontchakov et
al. [10], which are both implemented in the –ontop– frame-
work8 for ontology-based data access. The first solution is
applied on local knowledge bases whereas the second is more
appropriate for federative environments like in [12, 13].

6. CONCLUSION AND FUTURE WORK
Based on our work in the DCMI and in cooperation with the
W3C working group, we published by today 81 constraint
types [5] which form the basis to investigate the role that
reasoning and different semantics play for RDF validation.

The conclusions of this paper clearly show that validation
results differ depending on whether validation is based on
the closed-world assumption (CWA) or on the open-world
assumption (OWA) and whether the unique name assump-
tion (UNA) or the non-unique name assumption (nUNA)
is underlying. Equally, using or not using reasoning has
serious impact on which constraints are considered to be vi-
olated or fulfilled. Obviously, these findings are not new and
should be clear to everyone working with RDF and Seman-
tic Web technologies. According to our experience, however,
the topic data validation is yet far too often reduced to the
selection of suitable constraint languages which may be re-
lated to the obvious but yet inaccurate comparison of RDF
with XML as basis technology to represent data. With this
paper, we want to make clear that it depends on more than
just the constraint language when validating RDF data and
when developing appropriate systems. Therefore, in order
to realize interoperable solutions for data validation, three
components are needed: (1) An adequate constraint lan-
guage is required that allows to represent the desired con-
straints. (2) The underlying semantics have to be specified,
be it open or closed world, particularly if constraints are used
that depend on the choice of the semantics. (3) It must be
determined if reasoning should be involved in the validation
process or not. Necessary reasoning steps have to be prede-
fined to allow the correct interpretation of the constraints,
e.g., when constraints are defined on super-classes to avoid
redundancy.

We investigated the role that reasoning plays in practical
data validation and how to overcome the major shortcom-
ings when validating RDF data by performing reasoning
prior to validation. Reasoning is beneficial for validation
as (1) it may resolve violations, (2) it may cause valuable
violations, and (3) it solves the redundancy problem. Users
should be enabled to select on which constraint types reason-
ing should be performed before data is validated and which
constraint types to use in order to ensure data accuracy and
completeness without reasoning. Therefore, we investigated
for each constraint type if reasoning may be performed prior
to validation to enhance data quality either by resolving vi-
olations or by raising valuable violations. For 43.2% of the
constraint types, reasoning may be performed before vali-
dating to improve data quality. For 56.8% of the constraint
types, however, reasoning cannot be done or does not im-
prove data quality in any obvious sense (Section 2).

For each constraint type, we examined how efficient in terms

8http://ontop.inf.unibz.it

of runtime validation is performed with and without reason-
ing in worst case. By mapping constraint types to descrip-
tion logics, we were able to determine their computational
complexity (Section 2). Validation and reasoning assume
different semantics which may lead to different validation
results when applied to particular constraint types. OWL 2
reasoning requires the OWA with the nUNA, whereas val-
idation is based on the CWA and the UNA. Therefore, we
investigated for each constraint type (1) if it depends on the
CWA and (2) if it depends on the UNA. For the majority of
the constraint types, it makes a difference in terms of vali-
dation results if the CWA or the OWA and if the UNA or
the nUNA is assumed (Section 3).

Using these findings, we determined for the five most com-
mon constraint languages which constraint types they en-
able to express. By revealing which constraint types are
not covered by existing languages, we give directions and
emphasize the significant role SPIN and OWL 2 DL play
for the future development of constraint languages (Section
1.1). SPARQL is generally seen as the method of choice to
validate data according to certain constraints [7], although,
it is not ideal for their formulation. In contrast, constraint
languages, which may be placed on top of SPARQL, are
comparatively easy to understand and constraints can be
formulated more concisely. We use SPIN, a SPARQL-based
way to formulate and check constraints, as basis to develop a
validation environment5 to validate RDF data according to
constraints expressed by arbitrary constraint languages by
mapping them to SPIN 6 [4]. We provide open source val-
idation and reasoning implementations of constraint types
to be used to drive the further development of constraint
languages (Section 4).

As part of future work we extend the RDF Validator to pro-
vide a list of languages for which the expressivity is sufficient
to represent constraint types depending on users’ individual
needs. The validation environment may also recommend
one of these languages covering the most of the required
constraint types with the lowest for the user acceptable com-
plexity class. As reasoning may cause high complexity the
validator may show which constraint types from the users’
selections cause the higher complexity class and may pro-
vide solutions how to get to the next lower complexity class.
It would be charming to have an estimation which group of
constraint types demands which complexity class. This is
not an easy question, however, since complexity results are
language specific and operational semantics is involved as
well. Therefore, it is hard to maintain a general complex-
ity result for a constraint type independent of the language
chosen. Yet, providing an estimation for particular cases can
still be straightforward.

7. REFERENCES
[1] S. Arora and B. Barak. Computational Complexity: A

Modern Approach. Cambridge University Press, New
York, NY, USA, 1st edition, 2009.

[2] A. Artale, D. Calvanese, R. Kontchakov, and
M. Zakharyaschev. The dl-lite family and relations. J.
Artif. Int. Res., 36(1):1–69, Sept. 2009.

[3] T. Bosch and K. Eckert. Requirements on rdf
constraint formulation and validation. Proceedings of
the DCMI International Conference on Dublin Core

and Metadata Applications (DC 2014), 2014.

[4] T. Bosch and K. Eckert. Towards description set
profiles for rdf using sparql as intermediate language.
Proceedings of the DCMI International Conference on
Dublin Core and Metadata Applications (DC 2014),
2014.

[5] T. Bosch, A. Nolle, E. Acar, and K. Eckert. Rdf
validation requirements - evaluation and logical
underpinning. 2015.

[6] D. Calvanese, G. Giacomo, D. Lembo, M. Lenzerini,
and R. Rosati. Tractable reasoning and efficient query
answering in description logics: The dl-lite family. J.
Autom. Reason., 39(3):385–429, Oct. 2007.

[7] C. Fürber and M. Hepp. Using sparql and spin for
data quality management on the semantic web. In
W. Abramowicz and R. Tolksdorf, editors, Business
Information Systems, volume 47 of Lecture Notes in
Business Information Processing, pages 35–46.
Springer Berlin Heidelberg, 2010.

[8] V. Haarslev and R. Müller. RACER system
description. In Automated Reasoning, pages 701–705.
Springer, 2001.

[9] I. Horrocks, B. Motik, and Z. Wang. The HermiT
OWL Reasoner. In Proceedings of the 1st International
Workshop on OWL Reasoner Evaluation (ORE-2012),
Manchester, UK, 2012.

[10] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and
M. Zakharyaschev. The combined approach to
ontology-based data access. In Proceedings of the
Twenty-Second international joint conference on
Artificial Intelligence-Volume Volume Three, pages
2656–2661. AAAI Press, 2011.

[11] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue,
and C. Lutz. Owl 2 web ontology language: Profiles.
Technical report, December 2008.

[12] A. Nolle, C. Meilicke, H. Stuckenschmidt, and
G. Nemirovski. Efficient federated debugging of
lightweight ontologies. In Web Reasoning and Rule
Systems, pages 206–215. Springer International
Publishing, 2014.

[13] A. Nolle and G. Nemirovski. Elite: An
entailment-based federated query engine for complete
and transparent semantic data integration. In
Proceedings of the 26th International Workshop on
Description Logics, pages 854–867. CEUR Electronic
Workshop Proceedings, 2013.

[14] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of sparql. ACM Trans. Database Syst.,
34(3):16:1–16:45, Sept. 2009.

[15] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and
Y. Katz. Pellet: A practical owl-dl reasoner. Web
Semantics: science, services and agents on the World
Wide Web, 5(2):51–53, 2007.

[16] E. Sirin and J. Tao. Towards integrity constraints in
owl. In Proceedings of the Workshop on OWL:
Experiences and Directions, OWLED 2009, 2009.

[17] J. Tao. Integrity Constraints for the Semantic Web:
An OWL 2 DL Extension. PhD thesis, Rensselaer
Polytechnic Institute, 2012.

[18] D. Tsarkov and I. Horrocks. FaCT++ description
logic reasoner: System description. In Automated
reasoning, pages 292–297. Springer, 2006.

