
Towards scalable ontological reasoning
using machine learning

Daniel Ruffinelli

Research Group Data and Web Science
University of Mannheim, Germany

daniel@informatik.uni-mannheim.de

Abstract. Ontological reasoning has become a very useful technique for sev-
eral different applications. However, the use of large knowledge bases has shown
that reasoning can be a very resource intensive task which does not scale well.
The goal of this work is to explore the development of scalable reasoning ap-
proximation methods based on machine learning. Our most important concern
is determining in which contexts would such methods be more convenient than
currently available approximate reasoning techniques. For this purpose, we will
study the use of currently available approximation approaches, and we will de-
velop new machine learning based methods to compete with them. Our prelim-
inary results already provide evidence that this is possible. However, there are
several questions that need to be answered, e.g. what reasoning tasks can be ef-
ficiently approximated, or what is the appropriate feature representation for such
purposes. Finally, it will be important to determine the degree of completeness
and correctness of such methods based on machine learning, and compare them
with approximate methods based on standard reasoning.

1 Problem statement

Ontologies are commonly used to represent and reason about knowledge in a certain
domain. Examples of this are the Gene Ontology [1] which provides a vocabulary to
describe genes and their relations, or the Semantic Web which has contemplated the use
of ontologies since its conception [2]. However, reasoning over large knowledge bases
is very resource demanding. For example, reasoning is in the worst case NExpTime-
complete for OWL-DL [13].

One way to address the issue of scalability is to use less expressive languages which
allow for more efficient reasoning. Such is the purpose of languages like OWL-EL or
OWL-RL [13], all of which have reasoning procedures which are complete within the
scope of the language. The problem with this approach is that real world knowledge
cannot be limited to such languages, as evidenced by the existence of more expressive
and widely used ontologies, e.g. schema.org or the upper level ontology DOLCE. As a
consequence, when applied to more expressive datasets, the result is faster but incom-
plete reasoning. This is usually referred to as approximate reasoning, and it may be
convenient for use cases with a high performance requirement or in real time applica-
tions, such as information retrieval [18].



While approximate methods are indeed more efficient than using sound and com-
plete reasoning, they come with the intrinsic limitation with which they were designed.
This means that their accuracy depends more on the expressiveness of the dataset to
which they are applied. Consequently, what we propose in this work is the use of ma-
chine learning methods to approximate ontological reasoning in a more flexible way.
More specifically, we propose to represent reasoning tasks as supervised learning prob-
lems, which require the use of a reasoner to label the training data. Our preliminary
results already show that ABox consistency checking can be effectively represented as
a binary classification problem [15]. However, we have also found that approximate
methods based on standard reasoning are efficient for the same task [10].

All of this leads us to our main research questions: is it possible to approximate
ontological reasoning with machine learning methods? And if so, in what context are
machine learning methods more convenient than other existing approximate methods?
This proposal elicits several further questions, both theoretical and practical, which we
will address in more detail in the following sections. We hope that the feedback from the
Doctoral Consortium can help us direct our efforts towards answering some of them.

2 Related work

There is already a considerable amount of research done in search of more efficient
ways to reason with ontologies. There are early approaches where the deduction process
is approximated by simplifying the inference algorithm [17]. However, some of these
methods have been found to be ineffective in practical situations [6].

More recently, the use of less expressive languages has been a widely explored ap-
proach. An example of this is the DL-Lite family of description logics, which allow for
the definition of basic ontological languages while providing reasoning tasks in polyno-
mial time [3]. As mentioned before, other examples of this are the OWL profiles [13].
Other approaches achieve more efficient reasoning by relying on assumptions which
are context specific, e.g. the SnoRocket reasoner which is designed to reason with the
SNOMED CT biomedical ontology [11].

While machine learning has been used at times in reasoning related environments,
e.g. for ontology learning [20], there is little work in the direction of our research ques-
tion. Specifically, Fanizzi et al. [5] define kernel functions to encode similarity between
individuals in description logic representations, and use it in combination with Support
Vector Machines to generate models for approximate query answering. Similarly, in [4]
the same group approximates instance retrieval and query answering by using a dissim-
ilarity measure to extend the k-Nearest Neighbor algorithm. In more recent work, the
same group adds terminological extensions to Decision Trees and Random Forests [16].

The works cited in the paragraph above use machine learning methods to approxi-
mate reasoning tasks. However, while we may share the approach and could learn from
them, we do not in principle share the motivation. These methods, as well as methods
employed in relational machine learning [14], are aimed at situations where there is
incomplete or uncertain knowledge. We will attempt to develop flexible and scalable
reasoning methods for the classical setting where there are both a complete TBox and
any number of ABoxes.

2



3 Approach

We now describe our proposal (Section 3.1), and our preliminary results (Section 3.2).

3.1 Proposed approach

Our basic idea is that given a reasoning task, a TBox, and a set of ABoxes which use
the vocabulary defined in the TBox, we could use a reasoner with only a portion of the
data and then use this as labelled data to train a machine learning algorithm. This would
result in a model that simulates the reasoning task at hand, which could then be applied
to the whole dataset. Such an approach would free us from using the reasoner on the
whole dataset, which might be considerably more costly.

This idea implies that the reasoning task we want to approximate should be modeled
as a supervised learning problem. Moreover, since machine learning algorithms do not
take DL assertions as input, but rather feature vectors, a crucial aspect of this approach is
the transformation of ontological information into an appropriate feature representation.

As a starting point of this work, and as proof of concept, Paulheim and Stucken-
schmidt [15] were able to successfully model the problem of ABox consistency check-
ing as a binary classification problem, i.e. is the ABox consistent or not [15]. For this
purpose, they used four different real world datasets: the DBpedia ontology [7] and the
YAGO ontology [19] with their respective assertional data, and the Web Data Commons
assertional data [12] with the GoodRelations ontology and the schema.org ontology.
Both the DBpedia and the YAGO ontologies were used in combination with the upper-
level DOLCE-Zero ontology, whose disjointness axioms provided a source for several
of the inconsistencies. For each dataset, the authors transformed their assertional data
into binary feature vectors, and then used standard machine learning algorithms to gen-
erate highly accurate models which behaved as efficient but incomplete reasoners.

An important step in that process was obtaining a number of ABoxes which would
be large enough to train an accurate model. For the datasets which came from the Web
Data Commons corpus, this was as simple as defining that all assertional axioms be-
longing to a single website constituted an ABox. As such, the authors were able to
build as many ABoxes as the number of websites which were a source of this corpus.
This resulted in ABoxes ranging from a small number of assertions to several dozens.
For the DBpedia and YAGO datasets, they had to determine a way to systematically
break down the ABox into small ABoxes. This meant that any inconsistency that in-
volved the information of more than one ABox would not be detected by their method.
For this purpose, the authors defined that an ABox consisted of a relational assertion
along with all the type assertions for its subject and object.

For the transformation of ABoxes into feature vectors, the authors used the notion of
path kernels as defined by Loesch et al. [9]. This meant taking the graph corresponding
to each ABox, and starting from each node, extracting all paths up to a certain length,
such that each path would then become a feature in the feature space. Thus, the feature
representation of an ABox would consist of all paths which are present in said ABox.

The following example illustrates the importance of having the right the feature
transformation procedure in a machine learning based approach. Let A1 be an ABox
made up of the following assertions: A(a), B(b), C(c), P (a, b), S(a, c), A(d), B(d).

3



Figure 1 shows the graph which corresponds to the ABox A1. The transformation
method used in [15] would provide the following feature representation for this ABox:
A, P B, B, S C, C. Here the underscore represents an edge in the graph. These are all
the distinct paths found in the graph of A1 (RDF graphs also represent type assertions as
edges, even though their arity is 1). Consequently, a binary feature vector corresponding
to A1 would have all of these 5 features set to 1, and the rest to 0.

a

A

b

B

c

C

d

A, B
P

S

Fig. 1: Graph of the small ABox A1 with the following assertions: A(a), B(b), C(c),
P (a, b), S(a, c), A(d), B(d)

However, another ABox A2 which consists of all the assertions found in A1 except
for A(d) and B(d) would have almost the same corresponding graph as A1 (the node
d would not exist), but this would still result in the exact same feature representation as
A1. This can be a problem in a setting where the TBox has the axiom A v ¬B, because
if A1 is labelled as inconsistent by a reasoner, a machine learning approach would
classify A1 as inconsistent too, even though that would be incorrect. Consequently,
these are important considerations for reasoners based on machine learning.

In order to compete with [15], we developed another approximate method for ABox
consistency checking which is not based on machine learning [10]. It relies on extending
the clash queries for DL-LiteA proposed by Lembo et al. [8]. This method uses a rea-
soner to build two caches: one which stores assertional patterns of consistent ABoxes,
and one which stores assertional patterns of inconsistent ABoxes. The assumption is
that these assertional patterns would constitute a partial explanation for the inconsis-
tency of the ABox. For every new ABox, some combinations of its assertions were
checked against the caches to determine its consistency. If this was not enough, then a
reasoner was used. This way, the more ABoxes were tested, the larger the caches got,
and the less a reasoner was required. Moreover, the caches could be built by using an
arbitrary number of ABoxes, after which we could stop using a reasoner and instead
rely only on the caches for consistency checking. We tested this method with two of the
datasets used in [15], and compared the results with the clash queries method by Lembo
et al. [8] and the machine learning method in [15].

The results from [10] (detailed below) are useful to illustrate that reasoning based
approximations could be more effective than a machine learning based approach. It also
shows that methods designed for restricted languages could be successful with data
which uses more expressive ontologies. Still, as discussed in Section 4, an inductive
method might have useful advantages over current reasoning approximation methods.

4



3.2 Preliminary results

Table 1 details the average results of running each method ten times, as reported in [10].
The column Training shows the number of ABoxes used for training and for building
the caches. The column under Runtimes show the runtimes required for preprocessing
steps and for the actual inconsistency checking, and the column Accuracy shows the
accuracy of each method. In the case of the caching approach, preprocessing implies the
caching of assertional patterns found in the ABoxes. In the case of the machine learning
method, preprocessing implies the training phase, which includes using the full reasoner
HermiT to label the ABoxes. In the case of HermiT, preprocessing means loading the
TBox. These results were obtained with two datasets, one made up of 100000 ABoxes
created from the DBpedia dataset in combination with the DOLCE-Zero ontology, and
the other made up of 5000 ABoxes from the Web Data Commons corpus and using the
GoodRelations ontology.

Table 1: Accuracy and runtime results of ABox consistency checking using our caching
method, our machine learning method, and the HermiT reasoner

Training
Runtimes

Accuracy
Preprocessing (s) Checking Inc. (ms)

D
B

pe
di

a Caching
1000 77 0.041 98.6%

10000 172 0.043 99.59%
50000 253 0.04 99.84%

ML
1000 98 + 1 0.356 97.62%

10000 984 + 22 0.383 98.46%
50000 4919 + 183 0.525 98.52%

HermiT - 10 98.38 100%

G
oo

dR
el

at
io

ns Caching
50 0 0.318 99.89%
500 1 0.315 99.92%

2500 2 0.321 100%

ML
50 1 + 0 1.483 95.60%
500 12 + 0 1.589 99.87%

2500 61 + 1 1.757 99.9%
HermiT - 2 24.48 100%

The results in Table 1 show that both approximation methods require considerably
lower time to check the consistency of a single ABox when compared with a full rea-
soner, but both require considerably more time for preprocessing the data in order to
train their approximate reasoner. Moreover, while both approximate methods are highly
accurate, the caching method does have an advantage in these datasets.

4 Hypothesis and research questions

Our main research question is to determine whether machine learning can be used to
approximate ontological reasoning. Consequently, we are also concerned with the fol-
lowing more specific questions:

5



1. What feature representation is required in order to accomplish this?
The feature transformation method used in [15] has some limitations as explained
in Section 3. This illustrates the need to find the right way to represent ontological
information as feature vectors, such that reasoning can be approximated efficiently.
For this purpose, we could define that a feature transformation method is reliable if
for any two given ABoxes, one consistent and one inconsistent, it does not generate
the same feature representation for both.

2. What other reasoning tasks can be approximated with machine learning?
Aside from ABox consistency checking, we will try to approximate other reasoning
tasks, e.g. instance retrieval, and study how this relates to the feature representation.

3. In what context do machine learning based approaches work best?
This will require finding real life datasets with different expressiveness in order to
test the performance of each method and the flexibility of machine learning based
approaches. We could also generate artificial settings in order to test the limits of
what the models can learn.

4. What is the relation between the expressiveness of the TBox and the feature repre-
sentation used in machine learning methods for reasoning approximation?
Since the correctness and accuracy of a machine learning based reasoner will largely
depend on the feature representation which is used, exploring different methods for
obtaining feature representations, and studying how these relate to the expressive-
ness of the TBox, will be a key aspect of our research.

5. Is it possible to use standard machine learning methods? Or are modifications re-
quired which allow the learned models to perform better?
As mentioned in Section 2, there have been proposals where standard machine
learning based methods are adapted for the purpose of approximating reasoning.
Consequently, an important question is whether such models are more effective for
this purpose. Moreover, due to the monotonicity of the reasoning tasks, developing
models which consider this property is surely an advantage worth considering.

6. Is it possible to use explanations in order to make these methods more competitive?
Another possible direction would be to consider working with explanations, either
by developing a similar method to the one described in [10] but based on explana-
tions, or by using machine learning algorithms to try to learn explanations and thus
provide a more efficient way of obtaining them.

7. Can we develop machine learning based approaches which require training data
whose size still allows them to be competitive?
All machine learning based methods will require the use of a reasoner for train-
ing. This has a direct effect in the accuracy of the resulting model, but naturally
more training translates to more preprocessing time, which makes these methods
less competitive. As a result, studying the relation between the training data and
the accuracy of the resulting model might be interesting. Moreover, while in prin-
ciple an inductive method might learn different models for different datasets, in
practice there might be a correlation between the expressiveness in the dataset and
the amount of examples required for an inductive method to learn about certain
constructs used in the dataset.

6



Finally, our hypothesis is that ontological reasoning can be approximated by us-
ing machine learning, that machine learning based methods can be at least as efficient
as current methods, and that machine learning based methods can be more flexible by
adapting to each dataset and learning what is required for them. All of this means that
we will explore the use of existing approximation methods, we will develop new meth-
ods based on machine learning, and we will test their strengths and weaknesses.

5 Research plan

As this research is in its very early stages, we propose a reseach plan with two initial
stages. After that, different directions might be considered depending on the results
obtained in the first two stages.

For the first stage, we will continue working with consistency checking as the rea-
soning task to be approximated. In this stage we will focus on studying the role of fea-
ture representation in this context. This implies finding a feature representation which
is adequate for fully representing ontological information, and also compiling a list of
specific examples of assertional data which could be used as benchmarks to see whether
a given feature representation accurately represents them. Additionally, in this stage we
plan on extending our caching method presented in [10] by caching the assertional
elements in the explanations of inconsistencies. This should result in a complete but
less scalable model which we plan to use as baseline. Finally, in this stage we should
find new datasets of different expressiveness and test our current methods in combi-
nation with some new feature transformation methods. We expect this stage to take
about a year, after which a publication could result detailing the findings regarding the
importance of feature representation in this context and their effect in approximating
reasoning in different datasets.

In a second stage, we plan on approximating new reasoning tasks and seeing what
effect this has on the feature representation. Moreover, on this stage we plan to explore
the possibility of generating monotone models, and to consider extensions of standard
machine learning approaches, such as the ones presented in [16]. We expect this stage
to take about a year as well.

Regarding evaluation, if successful our method should be able to be trained on dif-
ferent datasets and learn a model which efficiently approximates specific ontological
reasoning tasks. Moreover, since rather than relying on design restrictions to make it
more efficient, our method would learn what is required for each dataset, it should be
competitive with different approximate methods which may be designed for the specific
datasets which we will use for testing.

Acknowledgments

I would like to thank Prof. Dr. Heiner Stuckenschmidt, Prof. Dr. Heiko Paulheim and
Dr. Christian Meilicke for their guidance and support in the realization of this work.

7



References
1. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,

Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene Ontology: tool for the unification of
biology. Nature genetics 25(1), 25–29 (2000)

2. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Scientific American
284(5), 28–37 (2001)

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. Journal of Auto-
mated reasoning 39(3), 385–429 (2007)

4. d’Amato, C., Fanizzi, N., Esposito, F.: Query answering and ontology population: An induc-
tive approach. In: European Semantic Web Conference. pp. 288–302. Springer (2008)

5. Fanizzi, N., d’Amato, C., Esposito, F.: Statistical learning for inductive query answering on
OWL ontologies. In: International Semantic Web Conference. pp. 195–212. Springer (2008)

6. Groot, P., Stuckenschmidt, H., Wache, H.: Approximating description logic classification for
semantic web reasoning. In: European Semantic Web Conference. pp. 318–332. Springer
(2005)

7. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S.,
Morsey, M., Van Kleef, P., Auer, S., et al.: DBpedia– a large-scale, multilingual knowledge
base extracted from wikipedia. Semantic Web 6(2), 167–195 (2015)

8. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Query rewriting for inconsistent
DL-Lite ontologies. In: International Conference on Web Reasoning and Rule Systems. pp.
155–169. Springer (2011)

9. Lösch, U., Bloehdorn, S., Rettinger, A.: Graph kernels for RDF data. In: Extended Semantic
Web Conference. pp. 134–148. Springer (2012)

10. Meilicke, C., Ruffinelli, D., Nolle, A., Paulheim, H., Stuckenschmidt, H.: Fast ABox consis-
tency checking using incomplete reasoning and caching. In: International Joint Conference
on Rules and Reasoning, RuleML+RR (2017), to appear

11. Metke-Jimenez, A., Lawley, M.: Snorocket 2.0: Concrete domains and concurrent classifica-
tion. In: ORE. pp. 32–38. Citeseer (2013)

12. Meusel, R., Petrovski, P., Bizer, C.: The webdatacommons microdata, RDFa and microfor-
mat dataset series. In: International Semantic Web Conference. pp. 277–292. Springer (2014)

13. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C., et al.: OWL 2 web ontology
language profiles. W3C recommendation 27, 61 (2009)

14. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning
for knowledge graphs. Proceedings of the IEEE 104(1), 11–33 (2016)

15. Paulheim, H., Stuckenschmidt, H.: Fast approximate A-Box consistency checking using ma-
chine learning. In: Extended Semantic Web Conference. pp. 135–150. Springer (2016)

16. Rizzo, G., d’Amato, C., Fanizzi, N., Esposito, F.: Inductive classification through evidence-
based models and their ensembles. In: European Semantic Web Conference. pp. 418–433.
Springer (2015)

17. Schaerf, M., Cadoli, M.: Tractable reasoning via approximation. Artificial Intelligence 74(2),
249–310 (1995)

18. Shah, U., Finin, T., Joshi, A., Cost, R.S., Matfield, J.: Information retrieval on the semantic
web. In: Proceedings of the eleventh international conference on Information and knowledge
management. pp. 461–468. ACM (2002)

19. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a large ontology from wikipedia and
wordnet. Web Semantics: Science, Services and Agents on the World Wide Web 6(3), 203–
217 (2008)

20. Völker, J., Niepert, M.: Statistical schema induction. In: Extended Semantic Web Confer-
ence. pp. 124–138. Springer (2011)

8


