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Abstract Smart environments with ubiquitous sensing technologies are a promis-
ing perspective for reliable and continuous healthcare systems with reduced costs.
A primary challenge for such assisted living systems is the automated recognition
of everyday activities carried out by humans in their own home. In this work, we
investigate the use of Markov Logic Networks as a framework for activity recogni-
tion within intelligent home-like environments equipped with pervasive light-weight
sensor technologies. In particular, we explore the ability of MLNs to capture tempo-
ral relations and background knowledge for improving the recognition performance.

1 Introduction

Simple daily tasks are usually accomplished effortlessly. However, solving them
might present a hard struggle for elderly people and individuals with disabilities
or cognitive impairments. Due to the rapid population aging, there is an urgent
need for more efficient methods towards reliable and continuous healthcare systems
with reduced costs. Smart environments with ubiquitous sensing technologies are
a promising perspective in this context. A primary challenge for such Ambient As-
sisted Living (AAL) systems is the automatic recognition of the activities carried out
by the human at their domicile. This allows to anticipate and to provide the needed
services at home and in time. Current approaches to this problem can be classified
according to (1) the learning paradigms used, (2) the relevance of temporal infor-
mation in the recognition model, and (3) whether the model is linked to real sensor
data or simulated data. The current main learning paradigms applied are roughly
data-driven or knowledge-based. The work presented in [2] and [13] are two exam-
ples that apply knowledge-driven learning algorithms. In their models, a prior rule
base is mandatory to react to the incoming information. A formal ontology of the
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user’s intentions is used in [13] to enrich the current domain knowledge und reduce
uncertainty. Some recent work emphasizing the importance of the temporal con-
text proposes a novel approach to recognize human activity with constraint-based
temporal reasoning framework (OMPS) [8]. Starting from general predefined rules,
the system’s procedure performs a search in the space of Decision Networks for
a set of synchronizations that is applicable given the current state of the Decision
network [8]. However, to obtain high level activities, the system resorts to hetero-
geneous sensor data like a stereo camera on the ceiling with a tracking system. The
use of such tracking systems implies some privacy and costs issues which we would
like to avoid.
Most of the current approaches to our problem are, nonetheless, data-driven. How-
ever, they seldom integrate temporal constraints in their systems. The majority use
supervised learning methods like Hidden Markov Models (HMM) to recognize hu-
man activities. Obtaining substantial amounts of labelled data is often a bottle-neck
for these approaches [3]. On another side, recent efforts to explore unsupervised
learning methods have been developed. In [4], web mining is used to automatically
extract the probabilities of the co-occurrence of some activities and the used objects.
These probabilities assemble a HMM capable of recognizing activities in traces of
object data. Increasing interest can be noticed concerning weakly supervised learn-
ing like multi-instance learning [3] and semi-supervised learning methods. We con-
jure that combining both paradigms, i.e. data-driven and knowledge-based, is an
appealing direction to solve such non-Markovian problems and capture a rich tem-
poral context. Similar to [5], our work also suggests to use both probabilistic models
and relational information to transform the raw sensor data into higher-level descrip-
tions of people’s behaviours and activities. In [5] all of the ontology-based methods,
web mining and HMM are used to produce a richly structured dataset describing
people’s daily patterns of activities. Due to the limited HMM temporal dependen-
cies, however we opt for Markov Logic Networks (MLN). Indeed, MLN does not
restrict the temporal context to some predefined range and can reason with variably
long user’s behavioral history. Furthermore, both logical statements as well as prob-
abilistic ones are easily united in one single framework. This allows, for example,
to flexibly integrate the existing domain knowledge, which reduces the amount of
training data needed(see Section 2). To summarize, many existing approaches rely
on manually constructed sets of rules for recognizing activities and/or rarely take
temporal knowledge into account. This makes successful recognition of interrupted
activities and activities engaging multiple actors rather out of reach. The purpose of
this work is to investigate the use of MLN as a framework for activity recognition
based on information from pervasive light-weight sensor technology. In particular,
we want to test the ability of MLNs to capture temporal relations and background
knowledge for improving the recognition performance. To this aim, we address daily
human activities within intelligent home-like environments equipped with pervasive
light-weight sensor technologies [14].
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2 Markov Logic Networks for Activity Recognition

A Markov logic network combine first-order logic and undirected probabilistic mod-
els. It is essentially a set of weighted first-order logic formulae. The formulae and
their weights can be automatically learnt as proposed in [16] for instance. The real-
valued weights represent the confidence one has that each of these formulae hold.
Probabilistic inference is performed over the joint probability distribution over all
ground atoms. The formulae can be divided into soft and hard constraints. Hard con-
straints are required to always hold whereas soft ones can be violated in a solution.
These weights can be learnt if training data is available. Thus, soft constraints will
model the uncertainty of the events and the corresponding activities. Two examples
of such soft rules are depicted below, where the predicates activity and sensor model
daily activities and sensor events, respectively, at timestep t.

∀timestept : activity(settingthetable, t) → activity(eating, t +1) (1)

sensor(Oven, t) → activity(cooking, t) (2)

Hard constraints allow integrating existing common-sense knowledge, which can
reduce the amount of needed training data. An example of such a hard constraint
would be that a person cannot eat while sleeping. It can also express relevant phys-
ical and temporal constraints like the fact that a person cannot be present at two
different places at the same time. Unlike other modelling methods such as HMM,
MLN do not require a predefined number of states. They also offer the flexibil-
ity to reason with variably long user’s behavioral history. Thus, it permits to cover
different temporal contexts and explore its effect on the system’s recognition and
prediction accuracy. MLNs are applied for activity recognition in [6] and [7]. Un-
like our framework, however, both approaches rely on video data. Compared to [6],
we aim at an expanded set of more complex daily activities, addressing concurrent
ones, as well as a richer temporal context. As proposed in [7], missing sensory data
is an interesting aspect to be handled. Exploiting common-sense knowledge for a
better model is another similarity to our proposed work. The authors, yet, limit their
work to simple activities with no explicit consideration of the temporal context.

3 Activity Recognition Framework

The long term goal of this work is a framework towards proactive ambient health-
care systems. The approach applies MLN and relies on lightweight sensor data with
real-world deployment. We expect our system to offer a good opportunity to explore
the effect of different temporal contexts on the system’s recognition and prediction
accuracy. We intend to extend the framework to the case of more than one actor
and to investigate the viability of the system under limited availability of sensor
data. The system can eventually be applied for the case of anticipation and preven-
tion of certain diseases based on behavioral-symptoms such as depression [14]. To
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achieve these expected contributions, many challenges have to be addressed. Indeed,
activities of daily living are usually non sequential. They are often overlapping, al-
ternating or even interrupted. Moreover, most of them share a large subset of sensors
and objects. The activation of these sensors do not always follow the same temporal
pattern for the same activity. We propose to integrate background knowledge cover-
ing many aspects. These can be categorized in three dimensions: Information about
the user, about the environment and about time. Table 1 offers a refined overview of
the model’s background knowledge. In the proposed framework, low level signals

Table 1 Background knowledge for activity recognition using MLN

User Environment Time

Indoors (sensors) Outdoors

ID ID Weather Timestamp
Location Type Temperature Part of the day
Mental state (drivesa) State Day of the week

Season of the year
Holidays and special occasions

a The drives correspond to natural needs like sleep, hunger. The sensor’s states reflect whether a
sensor is on or off for example.

are received as periodic events with a timestamp. Those and the available back-
ground knowledge (see Table 1), are described using the corresponding model’s
predicates. The low level events could be aggregated into actions such as “using the
oven” or “entering the bedroom” as examples. The well defined activities of daily
living, which we intend to recognize, are then inferred at a higher level. To address
the temporal context, we propose to cover both of the qualitative and quantitative
aspects. For the latter, we can introduce time intervals of the different events, ac-
tions and activities, which also captures their duration. A tolerance range can also
be assigned to the start- and end-time. An average window-length can be calcu-
lated for each activity and be used as an additional feature during the recognition
process [9]. Another option would be to cluster the different durations into classes
like “very short, short, long and very long” instead of giving an explicit value. Two
components, which can be either an event, an action or an activity, can be distinct,
overlapping or alternate. The latter case is a special one of distinct components. To
capture those possible relations between two intervals, i.e. the qualitative temporal
aspect, the framework can be extended with a subset of the thirteen Allen’s base
relations. Indeed, for distinct activities we propose to use the relations: “before”,
and “meets”. For the overlapping activities we limit our relations to “overlaps” and
“during” (see [10]). Covering the temporal dimension is not only expected to help
improve the expressiveness of the model and its recognition accuracy but could also
be a good information for some user’s states. Indeed, the rapidity of increase in car-
rying out some activity could be an indicator of its urgency. As already mentioned,
there are events, actions and activities that entail the need to assert decisions on
other components based on predefined common sense rules as well as physical and
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temporal constraints (see above). These relationships must be synchronized (propa-
gated) to be kept compatible with the recognized activities. A simple instance would
be that the activity “clear the table” entails that “set the table” must have taken place
anteriorly. Hard constraints are a good option to express them in our framework.
Hence, MLN use those predefined hard constraints and the obtained weighted rules
to infer the current activity (see 2). As a beginning to our work, we decided to use
a reduced set of sensors that only label some objects in the assisted living home.
The activities to be recognized are restricted to one at a time. We do not address the
qualitative temporal aspect of the actions and we only consider two temporal qual-
itative relationships, namely next and a f ter: For two activities, actions, or events a
at a timestamp t and b at timestamp d:

t +1 = d ⇔ next(b, a) ; t +1 > d ⇔ a f ter(b, a) (3)

3.1 Experiments

In this section we present some preliminary experiments verifying the viability of
the proposed approach for activity recognition. We defined two predicates to de-
scribe the events and the activities. These are sensor(sensor-id, timestamp) and
act(activity-id, timestamp). The possible model uses two soft formulae:

∀s1,a1, t : sensor(s1, t) → act(a1, t) (4)

∀a1, a2, t : act(a1, t) → act(a2, t +1) (5)

The training data consists of the periodic events labelled with their correspond-
ing activities [1], which are considered as the item sets of our rules mining. The
sensor-activity and the activity-activity pairs having a given support are extracted
and related, as weights to the rules defined above. Formula 4 models the conditional
probability of activity a1 given sensor s1. Formula 5, on the other hand, captures
the probability of activity a2 being carried out at time step t + 1 given that activity
a1 occurred at time step t. Since we restrict our activity recognition to one activity
at a time in those experiments two more hard constraints have to be added. In the
first experiment, the first hard constraint exclude parallel activities. The second rule
expresses that at least one activity should take place at each time step. Considering
sensor data as observation and the current activity as hidden in our MLN, the system
reasons based on the current state as well as the previous ones.

3.2 Dataset and Setting

To train the described system, we considered the publicly available dataset RFID
Data[1]. This was collected in a lab outfitted with 60 RFID tag, placed on the differ-
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ent objects involved in performing the set of eleven fine-grained activities: “Using
the bathroom”, “Making oatmeal”, “Making soft-boiled eggs”, “Preparing orange
juice”, “Making vanilla latte”, “Making tea”, “Making or answering a phone call”,
“Using the door”, “Setting the table”, “Eating breakfast” and “Clearing the table”.
The user wore two RFID gloves that detected the RFID tag within 2 inches. The
collection covered 30 min per day, during ten days. The data is provided in form
of timely ordered events relating the sensor ID and the activity being carried out
for each timestamp. For the implementation of the proposed activity recognition
framework, we used “TheBeast” [15]. The weights of the soft formulae are pre-
computed to ensure a faster recognition process. This was achieved by applying an
efficient algorithm for learning association rules [11]. Since we tried to extract as
much itemsets as possible, we provided very low support and confidence values of
10−9 and 10−2, respectively. The MLN inference task has been performed by the
ILP solver SCIP [12]. The first day was kept as test data and the remaining ones was
used to train the system.

3.3 Results

Our system has been evaluated using precision, recall and the F-measure. First, we
only modeled the “next” temporal relationship and used a simple set of two soft
rules(see 4 and 5) along with two hard constraints. Those ensure that at each times-
tamp exactly one activity takes place. An intuitive consequence is that the three
mentioned measures will coincide. To avoid redundancy, we only mention the pre-
cision value while reporting our results. This first model reached a value of 0.77.
The system tried to optimize over the whole test data with a combination of more
than 1300 time steps, 10 activities and 59 sensors. Since we are more concerned
with the recognition of current activity, we applied time-windows with some length
n to our test data. Thus, the model infers using the last n events which, we claim,
can alleviates and improve the recognition accuracy, even it reduces the available
context. The length of the time window has been chosen experimentally after com-
paring different values. We fixed n to roughly twice the mean length of an activity,
i.e. 160 time steps. The accuracy results with the corresponding activities are de-
picted in Figure 1. A significant accuracy deterioration is observed starting from the
5th window. This corresponds to activities sharing a large set of common sensors.
Indeed, “setting the table”, “eating breakfast” and “clearing the table” can hardy be
distinguished with provided rules. To address this ambiguity, we insert three hard
constraints as a sample common-sense knowledge. Using the “a f ter” temporal re-
lationship introduced in Section 3, we state the following: (a) “clear the table” after
“eating breakfast”; (b) “eating breakfast” after “setting the table”; and (c) “clear the
table” after “setting the table”. The model with these hard constraints raises the ac-
curacy from 0.57 to 0.81 over the second half of the test data (see Table 2) . The
overall accuracy was also improved and attained an accuracy of 0.87.
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Fig. 1 Inserting time windows generally improves the recognition accuracy. A significant accuracy
deterioration is observed starting from the 5th window. This corresponds to activities sharing a
large set of common sensors: “setting the table”, “eating breakfast” and “clearing the table”.

Model 1 Model 2

Accuray over the first Time window 0.91 0.90

Accuray over the second Time window 0.57 0.81

Overall accuracy 0.77 0.87

Table 2 Comparing The recognition accuracy of the two proposed models. Model 1 only imple-
ments the next time-relationship and bases on two soft rules and two hard constraints. Model 2
expands Model 1 with the a f ter temporal-relationship encoded into three new hard constraints.

4 Discussion and Conclusion

MLN offer a high flexibility to expand and to richly describe domain knowledge.
They also combine it with learnt probabilistic rules for an adaptive behaviour. Those
features make them an appealing approach to activity recognition. In this work, we
have presented our preliminary experiments that showed the viability of MLN for
this task and their ability to capture and integrate the temporal aspect of the activity
for a better inference. Our experiments also showed that the temporal context is a
crucial feature that highly influences the recognition accuracy. Indeed, we proposed
two simple models. The second covers more temporal relationships than the first
and outperformed it over the whole data as one single time window as well as in the
case of splitting the test data into two time windows. However, it deteriorated the
accuracy from 0.51 to 0.4 when applied to a reduced time window covering the last
160 time steps. The activities coinciding with this time slice are those that share a
large set of common sensors.

Future work will focus on a the temporal aspect including the quantitative one.
We hypothesize that capturing the order of the activities into the soft rules can im-
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prove the recognition model. For example, we merely state that “eating breakfast”
can not occur before “setting the table” in the current models and overlook the aspect
that the activity following “setting the table” is most probably “eating breakfast”.
This is obviously absent in the current models since the majority of activities spread
over a large number of time steps so the weights captured by second soft rule (see
Rule 5) strictly cover the case that the same activity will most probably take place
at the following time step. The first soft rule can also be a subject to improvement,
if we cluster the sensors into classes. For example two distinct spoons bearing two
different IDs can be grouped under the type spoon. This will lead to a more realistic
association between activities and sensors types.
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