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ABSTRACT
We present a framework for probabilistic Information Pro-
cessing on the Semantic Web that is capable of represent-
ing ontologies, deductive databases, uncertain mappings be-
tween them, results of statistical instance classification and
ontology learning. Our framework is built on a knowledge
representation formalism called Bayesian Description Logic
Programs because it is a probabilistic extension of Descrip-
tion Logic Programms and a fragment of Bayesian Logic
Programs. We show in this paper how to perform infor-
mation integration and retrieval within our framework by
means of integrated reasoning.

1. INTRODUCTION
So far, the languages for the Semantic Web were domi-

nated by traditional views on metadata models and logic-
based knowledge representation. The major languages cur-
rently prevalent on the Semantic Web are RDF [1, 2] for rep-
resenting metadata and the Web Ontology language OWL
[3] for representing terminological knowledge in terms of on-
tologies basing on the Description Logics paradigm. Re-
cently, the need for rule languages on the Semantic Web has
been recognized. Rule languages enable e.g. property chain-
ing which is not possible in the Description Logics on which
OWL-Lite and OWL-DL are basing on. Thus, several rule
language proposals for the Semantic Web have emerged, e.g.
the Semantic Web Rule Language SWRL [4] and the Web
Rule Language WRL [5]. However, all of these are logical
languages with a model-theoretic semantics that makes a
statement either true or false.

There are many arguments, why approaches that solely
rely on traditional logics are not adequate. In an open
environment such as the Semantic Web, we are frequently
faced with uncertain, unreliable or contradicting informa-
tion. Using traditional logics for representing this infor-
mation will often lead to inconsistencies or wrong conclu-
sions. We believe that probabilistic extensions of Semantic
Web languages are needed to better address the challenges
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of web-based knowledge representation and to adequately
model the uncertainty inherently present in web-based in-
formation. In particular, we see three sources of uncertainty
on the Semantic Web that require probabilistic methods if
we want to take advantage of these sources:

Document Classification:. Today, a major part of the in-
formation on the web is stored in documents (Web Pages,
PDF Documents, etc.). A common way of linking docu-
ments to knowledge encoded in ontologies is to assign each
document to one or more concepts representing its content.
Different machine learning techniques have been applied to
this problem [6]. Examples are näıve Bayes classifiers that
estimate the probability of a document belonging to a topic
based on the occurrence of terms in sample documents.

Ontology Learning:. The manual creation of ontologies
has been identified as one of the main bottlenecks on the
Semantic Seb. In order to overcome this problem, methods
for learning ontologies from texts are investigated. Existing
approaches normally use a combination of NLP and text
mining techniques [7]. The result of the mining process can
be interpreted in terms of a probabilistic judgement of the
correctness of the learned relation.

Ontology Matching:. Normally, different sources use dif-
ferent ontologies to organize their information. In order to
be able to access information across these different sources,
semantic correspondences between the ontological entities in
different ontologies have to be determined and encoded in
mappings. A number of approaches for automatically de-
termining such mappings have been proposed [8]. Normally,
numbers are computed representing the similarity between
ontological entities. These numbers represent the confidence
that a matching holds and can be interpreted and used prob-
abilistically.

1.1 An Example Scenario
We illustrate the need for probabilistic approaches by con-

sidering a retrieval scenario where different peers provide
information about publications based on different biblio-
graphic ontologies. Our example is based on the ontologies
used in the ontology alignment evaluation challenge1. As-
sume a situation where a user is looking for publications
about AI based on one local ontology O1 which is specified

1The complete ontologies can be found at
http://oaei.ontologymatching.org/



by the following axiom:

Publication v ∀keyword.Topic u (1)

∀author.Person (2)

A query for publications about AI takes the following
form:

Publication(x) ∧ keyword(x, AI). (3)

There are techniques for answering such conjunctive queries
over local description logic ontologies (e.g. [9]). The situa-
tion becomes more complicated, if we also want to include
results from other sources. First of all, these sources may
use a different ontology for describing publications. Publi-
cations could for example be described in another external
ontology O2 in the following way:

Publication v Resource (4)

Report v Publication (5)

> v ∀author
−

.Resource (6)

> v ∀author.Person (7)

The first complication is that the second ontology O2 talks
about publications and authors but not about topics covered
in the publications. This means that we might have infor-
mation about certain publications like the two ones below,
but no evidence whether they are relevant or not.

BDLP : Report, (8)

BN : Report, (9)

(BN, Judea) : author (10)

(BDLP, Livia) : author, (11)

(BDLP, Heiner) : author (12)

We can overcome this problem by using machine learning
techniques for classifying documents according to certain
topics such as AI, logic and probability and to learn the
hierarchical relations between these topics.

Another problem is the heterogeneity of the representa-
tions used for the different ontologies that require ontology
matching techniques for determining which concepts, rela-
tions and instances of the different ontologies correspond to
each other in each way. In our example scenario, Reports in
O2 might have to be regarded as Publications in O1 as well2,
and there might have to be defined the relation between be-
ing about a certain topic and having a certain keyword.

1.2 Outline and Contribution
In this paper, we propose a framework for probabilistic

information integration and retrieval based on an extension
of existing Semantic Web languages with the ability to han-
dle probabilistic information arising from the sources men-
tioned above. In order to be compatible with description
logic-based languages such as OWL as well as rule-based ap-
proaches for knowledge modeling and deductive databases
that naturally base on the logic programming as well, we

2However, this is not evident, as it might be the case that
publications only refer to officially published papers, but not
to technical reports in the local ontology

take Description Logic Programs [10] (DLPs) as a starting
point and extend them with probabilistic information. We
call the resulting language Bayesian Description Logic Pro-
grams (BDLPs) because it is a subset of Bayesian Logic
Programs as introduced in [11]. This enables us to build
on known inference methods for Bayesian Logic Programs
when reasoning with probabilistic information on the web.

This paper provides a substantial extension of [12] where
the idea of Bayesian Description Logic Programs has been
firstly proposed as a language that enables to integrate the
logic programming and the description logics paradigm prob-
abilistically. In this paper, we concretize the idea of inte-
grating logic programming and description logics knowledge
bases by means of BDLPs further and discuss integrated
reasoning in more detail. Furthermore, we show how to per-
form probabilistic information retrieval within our frame-
work. For this purpose we extend the BDLPs semantics to
handle nonground queries. We exemplify how different kinds
of tasks involving uncertainty when being performed auto-
matically like document classification, ontology learning and
ontology matching can be integrated within our framework
with ontologies and logic programs or deductive databases
that have been made accessable by peers in the Semantic
Web. As discussed in section 5, such a framework has not
been proposed yet.

The rest of the paper is organized as follows. We briefly
introduce DLPs in section 2. In section 3, we describe
Bayesian Description Logic Programs as a basis for our for-
malism. In section 4, we explain how this fomalism can be
used for information retrieval and integration across hetero-
geneous ontologies. In section 5 we discuss related work.
Finally, we present our conclusions in section 6.

2. REPRESENTING ONTOLOGIES AND
QUERIES: DESCRIPTION LOGIC
PROGRAMS

Description Logic Programs (DLPs) [10] lie in the expres-
sive intersection of the knowledge representation formalisms
of Description Logics (DL) [13] and of Logic Programming
(LP) [14]. DLPs can be represented in a DL or an LP
syntax. In this paper, we present the Logic Programming
syntax of DLPs and look at them from the viewpoint of
Logic Programming: The DLP language corresponds to a
subset of Datalog without negation and without equality.
Correspondingly, a Description Logic Program consists of
a set of rules and a set of facts. Each rule has the form
H ← B1 ∧ . . . ∧Bm, where H and the Bi are atomic for-
mulae and m ≥ 0. An atomic formula consists of a predi-
cate symbol p followed by a bracketed n-tuple of terms ti,
p(t1, . . . , tn) with n ≥ i ≥ 0. A term can be either a con-
stant (i.e. an instance) or a variable (i.e. a placeholder for
an instance). If all terms in an atomic formula are constants,
the atomic formula is called a ground atom. The left hand
side of a rule, H, is called head and the right-hand side of a
rule, B1 ∧ . . . ∧Bm, is called body. All variables in rules are
universally quantified, although this is not explicitly writ-
ten. For i = 0, the rule is called a fact. Only ground atoms
are allowed in facts. In the DLP language, the predicates
are only allowed to be 2-ary and the variable graph of the
body of each rule is connected and acyclic.

In [10], it has been shown how to perform the so-called
DLP-fusion, i.e. the bidirectional translation from the DL



syntax of the DLP language to the LP syntax. and vice
versa. This means that DLPs provide a basis for achieving
interoperability on the language-level. Although the DLP
language has a restricted expressivity, it has several advan-
tages. First, it has been shown that a large amount of exist-
ing Description Logic ontologies lie within the DLP fragment
[15]. Furthermore, reasoning in the DLP language is decid-
able and has a much lower complexity than DL reasoning
not only in theory but also in practice.

It turns out that the ontologies in our example scenario
can be translated to DLP without loss of information. The
definitions in the local ontology translate to the following
rule set:

Topic(y) ← Publication(x) ∧ keyword(x, y) (13)

Person(y) ← Publication(x) ∧ author(x, y) (14)

In the same way, the ontology and the instances of the
external source can be translated to DLP resulting into the
following DLP representation:

Resource(x) ← Publication(x) (15)

Publication(x) ← Report(x) (16)

Resource(y) ← author(x, y) (17)

Person(x) ← author(x, y) (18)

Report(BDLP ) ← (19)

Report(BN) ← (20)

author(BDLP, Livia) ← (21)

author(BDLP, Heiner) ← (22)

author(BN, Judea) ← (23)

The uniform representation of local and external informa-
tion in DLP now allows us to represent complex mappings
between the different sources in terms of datalog rules thus
building upon successful work in view-based schema inte-
gration [16].

3. REPRESENTING PROBABILISTIC
INFORMATION: BAYESIAN
DESCRIPTION LOGIC PROGRAMS

We identify Bayesian Description Logic Programs (BDLPs)
[12] as the subset of Bayesian Logic Programs (BLPs) [11]
that is a straightforward probabilistic extension of DLPs.
We chose a subset of BLPs for representing probabilistic
information because they allow a smooth representation of
probabilistic information on top of logic programs and to use
existing tools for probabilistic reasoning in Bayesian Net-
works as a basis for answering queries. DLPs are a knowl-
edge representation formalism corresponding to an extension
of Bayesian Networks [17] to Description Logic Programs.

3.1 The Language of BDLPs
The syntax of BDLPs is similar to DLPs. A Bayesian De-

scription Logic Program consists of rules and facts that are
built in the same way like with DLPs. However, one differ-
ence is that instead of the arrow ←, the symbol “|” is used
in order to hint at the idea a of conditional probability den-
sities. Another difference is that each rule has a probability

distribution attached that specifies the probability for each
state of the head atom given the states of the body atoms.

Another important difference between BDLPs and DLPs
is that the atoms p(t1, . . . , tn) are bayesian which means
that they are not necessarily boolean but can be associated
to an arbitrary finite domain D(p). To each predicate pi of
the BDLP, a unique domain D(pi) is associated. All ground
atoms inherit the domain that belongs to their predicate.
This means that a ground atom can have a state from the
domain D(p) that belongs to its predicate p. Hence, besides
logical predicates whose domain consists of the truth values,
BDLPs can also represent predicates with discrete or even
continuous domains and assign probabilities to the different
values in this domain. In the context of semantic web ap-
plications, non-logical predicates can for example be used to
express uncertainty about datatype properties of a concept.

3.2 Semantics of BDLPs
A BDLP encodes a Bayesian Network (BN) in the sense

that each ground atom in the model of the BDLP corre-
sponds to a node in the network. Furthermore, if r is a rule
in a BDLP:

r : h(th1, . . . , thn)|b1(t11, . . . , t1n), . . . , bn(tn1, . . . , tnn).
and D(h) = {h1, . . . , hm} is the domain that the ground
atoms containing the predicate h are associated to, then, for
each combination of states the ground body atoms (e1, . . . ,
en) ∈ D(b1) × . . . × D(bn) can have and each state of the
ground head atom hi there is a function cpd(r)(hi|e1, . . . , en) :
D(h) 7→ [0, 1]. This function is the conditional probability
density of each of the random variables that are represented
by the direct influence relationship between ground atoms
encoded by such a rule. In terms of a Bayesian Network,
each of these functions is translated to links connecting the
node representing the possible instantiations of the head
with the nodes representing the instantiations of the differ-
ent atoms in the body. Note that rules with empty bodies
are facts and for a fact f , the a-priori probability density is
given in the same way.

A BDLP defines the structure of a Bayesian Network and
provides a complete specification of the probability distri-
bution the network encodes (The proofs for the correspon-
dance of BLPs to Bayesian Networks which can be found
in [11] hold for BDLPs as proper subset of BLPs as well).
When a ground atom can be deduced by just one rule, the
conditional probability is given by the distribution attached
to the BLP rule. If, however, we have e.g. 2 rules with
the same head predicate that can deduce the same ground
head atom, then, the conditional probability density of the
random variable that corresponds to the ground head atom
needs to consider the possible states of all body atoms at
once. For this purpose, so-called combining rules are used
to generate a joint conditional distribution from the individ-
ual ones of the rules involved.

A combining rule is an algorithm that maps a finite set
of conditional probability densities {p(hi|ai1, . . . , aini)|m ≥
i ≥ 1, ni ≤ 0}, m ≥ 1, to the conditional probability densi-
ties p(h|b1, . . . , bn) with {b1, . . . , bn} ⊆ ∪m

i=1{ai1, . . . , aini}.
As explained above, the combining rules are important to
ensure that random variables that get e.g. by means of a
reasoning process more direct parents, get also a valid condi-
tional probability density. Combining rules can be different
algorithms. [11] mentions as most simple combining rule
e.g. the usage of the maximum of the former probability



densities. More sophisticated ways of combining distribu-
tions are provided by variations of the noisy-or model. In
this paper, we will use the previously mentioned combining
rule maximum as it fullfils our purposes.

3.3 Querying a BDLP
The processing of queries posed to a BDLP B consists of

two steps of a so-called knowledge-based model construction
policy. If we consider the BDLP B without probability den-
sities attached and substitute all occurences of the symbol
| by the symbol ←, we have a logic program B′ which is
called the corresponding logic programm of B. In the first
step, the least Herbrand model H of B′ is deduced by means
of a Logic Programming Reasoner. In [11], a method is pro-
posed that does not deduce the whole Herbrand Model, just
the part of it that can be deduced by answering the query by
means of SLD resolution. The Bayesian Network that cor-
responds to B can be created by means of the ground atoms
in the Herbrand model. The part of the Bayesian Network
which might be relevant to the query can be constructed by
the ground atoms deduced by a top-down proof procedure
for the query.

We briefly sketch how to construct the Bayesian Network
or its part that is relevant to the query: For each fact f
of B a node in the Bayesian Network is created and the
probability density of f is attached to the node. For each
rule r that has been used for properly deriving a (ground)
fact in the head h, there are two possibilities:

• a node which corresponds to h does not exist in the
BN:
Then, such a node is created and for each body atom
of the rule, an arc from the corresponding nodes in
the BN3 to the newly created node is created. The
probability density of this rule in B is attached to this
node.

• a node which corresponds to h exists in the BN:
Then, for each body atom in the rule which has a cor-
responding node in the BN but no arc from this node
to the node that corresponds to the head atom, such
an arc is created. Afterwards the combining rule is
applied to the probability density of r and the node
corresponding to h. Thus, the node corresponding to
h is equipped with a probability density which con-
siders the probability densities of r and the rules that
already have derived the same head atom h.

The resulting Bayesian Network BN can be used for query-
ing for any probabilistic query. Analogously to probabilistic
BLP queries, a probabilistic BLDP query is an expression of
the form ?−Q1, . . . , Qn|E1 = e1, . . . , Em = em. This expres-
sion queries for the conditional probability p(Q1, . . . , Qn|E1 =
e1, . . . , Em = em), i.e. the probability that the ground
atoms Qi are true given that we know some other ground
facts Ej are each in the state ej . BLP queries are only de-
fined for the occuring query atoms, Qi, and evidence atoms,
Ei, beingt ground atoms that belong to the least Herbrand
model H.

We extend the kinds of queries allowed in BLPs to al-
low also non-ground atoms as query atoms. Such queries
3Each time a rule can derive a new head atom, the body
atoms have been unified with ground atoms already iden-
tified as being in H and therefore for each of these ground
body atoms, a node in the Bayesian Network already exists.

ask for the probability of each valid grounding of the query.
They are processed by first deducing all valid groundings of
the query by means of a LP reasoner and afterwards asking
for the probability of each grounding in the corresponding
Bayesian Network. Queries with nonground query atoms
can be used for Information Retrieval where the probabili-
ties are used for ranking.

3.4 Our Example as BDLP
In our example scenario, we can represent uncertain infor-

mation as follows. As mentioned in the introduction, there
are two sources of uncertainty, the first is in the missing in-
formation about the topic of the papers in the external ontol-
ogy. Using document classification techniques, we could for
example determine the probability that the report is about
logic and about probabilities with a certain degree of uncer-
tainty. These facts can be represented as facts in a BDLP
using the Boolean predicates aboutLogic and aboutProba-
bility.

P (aboutLogic(BDLP ) = true)
0.8← (24)

P (aboutProbability(BDLP ) = true)
0.9← (25)

Further, the probability that a publication is about AI if
it is about logic or probability, respectively, which we could
determine using relational learning methods can be repre-
sented as rules of a BDLP. Below, we give the probability
for the head being true given the states of the body atom
in parantheses: the first number indicates the probability
given the body is true and the second number indicates the
probability given the body is false.

O2 : aboutAI(x)
(0.7,0.2)← O2 : aboutLogic(x) (26)

O2 : aboutAI(x)
(0.6,0.1)← O2 : aboutProbability(x) (27)

In a similar way, we can use BDLPs to represent mapping
rules between the two ontologies in terms of probabilistic
rules. The use of rules for representing mappings is quite
a natural approach that has successfully been used in the
database area. The use of probabilities for representing the
degree of confidence in the correctness of the rules deserves
a closer look. First of all, we can use probabilistic ontology
matching tools such as Glue [18] or Caiman [19] that directly
assign a probability to each mapping. In order to smoothly
integrate the results of these tools into the system, we have
to annotate the Boolean predicates that represent ontology
elements with information about which of the models they
belong to. In the example, we aim at querying O1 and gather
mappings from O2 to O1. The result could look as follows:

O1 : Publication(x)
(0.9,0.1)← O2 : Publication(x) (28)

O1 : Publication(x)
(0.75,0.2)← O2 : Report(x) (29)

Further, we can also assign subjective probabilities to
manually created mappings. Then, the probability that a
mapping is correct is judged by the person who created the
mapping. Although it has been argued that people are of-
ten inconsistent in their judgement of probabilities, using
subjective probabilities is still more accurate than forcing



people to use a Boolean judgement. Thus we can also repre-
sent manually created mappings as rules in a Bayesian Logic
program:

O1 : keyword(x, AI)
(0.9,0.01)← O2 : aboutAI(x) (30)

We assume that we also decide to add manually a rule
P (O1 : author(x, y)=true |O2 : author(x, y)=true) = 1.0. In case,
we do not want to think about an appropriate probability for
this rule given the body atom is false, we can compute it by
the formula P (O2 : author(x, y) = true) − P (O1 : author(x, y) =

true|O2 : author(x, y) = true) = P (t : author(x, y) = true|O2 :

author(x, y) = false). Then, however, it has to hold that
O1 : author(x, y) depends only on O2 : author(x, y) and we need
to first asses the apriori probability P (O1 : author(x, y) = true)

which can be done e.g. by counting within a sample. Let’s
assume that we yield in our example:

O1 : author(x, y)
(1.0,0.4)← O2 : author(x, y) (31)

4. PUTTING IT ALL TOGETHER:
BAYESIAN DESCRIPTION LOGIC PRO-
GRAMS

As we have argued above, BDLPs are a suitable knowl-
edge representation framework for representing and reason-
ing about probabilistic information which is the result of
automatic ontology mapping and document classification as
it allows to reason across different ontologies and combine
different sources of evidence in a sound formal framework.
The step that is still missing is the integration with non-
probabilistic information contained in the ontologies of the
different sources.

In order to integrate deterministic ontological knowledge
into the framework, we extend the corresponding DLP state-
ments with probabilities basing on the assumption that ev-
erything which is true in the knowledge base is only true and
not false as long as the knowledge base is consistent. There-
fore, all facts in the knowledge base get a probability 1.0 for
the state “true” and 0.0 for the state “false”. For rules, it
holds that if the body atoms are true, the rule will fire and
the head atom becomes true as well. Thus, the head atom is
true if all body atoms are true as well and it is false, if one
of them is false. Note that this way to deal with rules is the
same in all kinds of processing techniques typically used in
the logic programming setting with languages without nega-
tion and without equality. E.g., the same holds here if we
do not consider the forward-chaining processing technique
but the backward-chaining one.

As Bayesian DLPs are a special case of BLPs, the rea-
soning algorithms devised for BLPs an be used to answer
queries on BDLPs as well. I.e. by means of a Logic Pro-
gramming reasoning algorithm, the least Herbrand Model
can be computed and a Bayesian Network can be created
by means of the applied rules and their conditional prob-
ability densities, the ground atoms of the least Herbrand
Model and their a-priory probability density and the com-
bining rules as described in section 3.3.

In figure 1, the Bayesian Network that corresponds to our
example is shown. The dark blue arcs and nodes originate

from O2, the cyan coloured arcs and nodes have been learned
additionally within O2 and white nodes and black arcs orig-
inate from O1. Red arcs represent mappings.

As first example for query answering, let’s consider the
query example mentioned in section 3.3. Within the Bayesian
Network corresponding to our example setting this query
would yield P (O1 : topic(AI) = true |O2 : aboutLogic(BDLP ) =

true) ≈ 0.83. In contrast, the probability of occurence of the
topic AI in our publication collection without any evidence
amounts to P (O1 : topic(AI)=true) ≈ 0.77.

Our example query where it is asked for publications about
AI, ?−O1 : Publication(x)=true, O1 : keyword(x, AI)=true., from
section 1.1 is a non-ground query. It yields two valid ground-
ings {x/BDLP} and {x/BN}. Querying the Bayesian Net-
work gives

P (O1 : Publication(BDLP )=true, O1 : keyword(BDLP, AI)=true)

= 0.55

P (O1 : Publication(BN)=true, O1 : keyword(BN, AI)=true)

= 0.46

As mentioned above, queries with nonground query atoms
can be used for Information Retrieval where the probabili-
ties are used for ranking. In our example, the publication on
BDLPs has a higher ranking, because it has been identified
to be about both, Logic and Probabilities, with high prob-
ability, while the publication on BNs has been identified to
be rather about probabilities and not about Logic.

5. RELATED WORK
There exists different kinds of probabilistic logics. How-

ever, most of them are not useful in the area of the Semantic
Web as they do not provide a tight formal integration with
a Semantic Web language or a subset thereof. Our inten-
tion with BDLPs is to present an elegant way of integrating
the knowledge representation formalism of DLPs with prob-
abilities. We chose the logic programming syntax of DLPs
because corresponding reasoners allow much more efficient
instance retrieval than Description Logics reasoners. BLPs
lend themselves as a KR formalism that allows a probabilis-
tic extension of the logic programming view of DLPs in a
very straightforward and intuitive way. This is not possible
with other kinds of probabilistic logics. A survey on proba-
bilistic logics that focus on the logic programming and the
relational logic paradigm can be found in [20].

In [21], pDatalog, a probabilistic extension of Datalog has
been presented. One difference to our approach is that Dat-
alog with stratified negation has been extended. In contrast,
BDLPs do not have negation at all because the DLP frag-
ment lying in the Description Logics and Logic Program-
ming paradigm does not contain negation. Another differ-
ence is the probabilistic model behind pDatalog which does
not extend Logic Programming in such a straightforward
way like it is done in BDLPs. E.g. in pDatalog only facts
have a probability attached and the probability of rules is
defined procedurally instead of declaratively like in BLPs
and BDLPs. The semantics of pDatalog considers a set of
possible boolean worlds and a probability distribution on
this set. In contrast, our approach views each ground fact
as a (possibly non-boolean) random variable which can be
either true or false and probabilistic queries are processed
by reasoning algorithms for Bayesian Networks which al-



Figure 1: The Bayesian Network of our example.

low a compact and efficient representation of a probabilistic
domain and thus can be expected to allow more efficient
reaesoning facilities. Note that pDatalog is used in the tool
HySpirit [22] for probabilistic Retrieval of documents.

Within the context of the Semantic Web, a couple of prob-
abilistic formalisms that extend Semantic Web Languages or
subsets thereof have been proposed. However, most of them
do not aim at integration, i.e. neither at the integration
of Logic Programming and Description Logics nor at the
integration of different knowledge bases or ontologies. Ex-
amples of such formalisms are [23, 24, 25]. [25] proposes a
probabilistic extension of a subset of Description Logic Pro-
grams Formalisms basing on pDatalog and is therefore very
much related. However, the authors of this formalism do not
aim at any kind of integration. The formalism is intended
to provide a probabilistic extension of a subset of the DLP
fragment of OWL in order to enable the representation of
uncertain information.

Formalisms that aim at the integration of Description
Logics and Logic Programming have been proposed recently
as well. In [26, 27], a formalism has been proposed that con-
sists of a description logics knowledge base corresponding
to OWL-DL and a disjunctive datalog program with nega-
tion under stratified, well-founded and answer set semantics.
The logic program has been probabilistically extended with
independent choice logic. This formalism is much more ex-
pressive than ours and therefore, reasoning with it has a
much higher complexity. Firstly, it contains a description
logic knowledge base with the same expressivity as OWL-
DL. Secondly, its logic programming component contains
negation with different semantics and, thirdly, its query lan-
guage is more expressive. For reasoning, a linear system has
to be solved.

Formalisms that aim at probabilistically integrating knowl-
edge bases on different peers have only been proposed for
OWL and RDF ontologies as yet. An approach for Ontol-
ogy Mediation by means of Bayesian Networks has been pre-
sented in [28]. However, the authors rather want to enhance
existing mappings (cf. the name of the system Ontology
Mapping ENhancer). They do not provide an integrated
framework on reasoning with the mappings and the ontolo-
gies. Furthermore, the language they use for capturing the
mappings is very simple and similar to RDF Schema. A
probabilistic framework for Information Integration and Re-
trieval on the Semantic Web does not exist at all yet. In
[29], the oMap framework has been presented which aims at
being such a framework. But up to now, the only substan-
tial contribution to such a framework is a tool for learning
mappings consisting of simple pDatalog rules between OWL
ontologies. Ideas on how to reason with the ontologies and
rules are completely missing.

6. CONCLUSIONS
In this paper, we have presented a framework for prob-

abilistic Information Processing on the Semantic Web that
is capable of representing ontologies (to a certain extent)
as well as uncertain mappings and results of statistical in-
stance classification and ontology learning. For this purpose,
we use a formalism that is a probabilistic extension of De-
scription Logic Programs [10]. The formalism is a subset of
Bayesian Logic Programs (BLPs) [11] and can thus resort
to algorithms developed for BLPs. Due to the sacrifice of
some of the expressive power of both, existing ontology lan-



guages and of (Bayesian) logic programs, a simple formalism
has been yielded that can easily be implemented. In future
work, we will further explore the use of more expressive for-
malisms. In particular, we could allow the probabilistic part
of the model to have the full complexity of the datalog frag-
ment of BLPs or even more expressive formalisms.

We also showed in this paper how to perform Information
Retrieval in our framework and extended the semantics of
BDLPs (note that this extension can be applied for BLPs as
well) to enable processing of queries that contain nonground
bayesian atoms. In future work, we want to investigate infor-
mation retrieval in our framework further and test different
probabilistic retrieval models.

Even in the rather simple approach we took in this pa-
per, the complexity of reasoning can be a serious problem.
It is well known that reasoning in Bayesian networks is in-
tractable in the general case (in particular it is in numberP
which is the complexity class for counting solutions to deci-
sion problems lying in the complexity class NP). It can also
happen that in general settings, cycles appear in mappings
and thus the resulting Bayesian Network which makes exact
inference intractable. Further, the size of the model of a
BDLP program and thus the Bayesian network can be ex-
ponential in the size of the knowledge base. These factors
force us to think about possible optimizations. The fact that
parts of the network encode logical rather than probabilistic
information can be exploited for this purpose. In particular,
we will explore the following options

• Pruning techniques such as the one proposed in [30]
might be used to tailor the inference process before
the construction of the Bayesian Network to infer only
the part relevant for answering a certain query and
given certain evidence.

• Approximate inference algorithms have been shown to
have good performance on networks even in the pres-
ence of cycles [31] and modifications thereof might
prove themselves with BDLPs.

• We can try to reduce the computation time by dis-
tributing and parallelizing the computation amongst
the different information sources involved.

In [32] it has been discussed how BLP programs can di-
rectly be learned from example data. This makes our ap-
proach a first step into integrating Semantic Web languages
and deductive databases with machine learning techniques
as we can use the techniques presented in [32] for directly
learning parts of the model thus avoiding the step of trans-
forming the results of other learning approaches into our
framework.
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