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ABSTRACT
In this paper, we present a novel approach for information
integration usable in many different web and network envi-
ronments. The knowledge representation formalism of De-
scription Logic Programs (DLPs) is well known in the Se-
mantic Web community as a qualified Information Integra-
tion language. This is due to its property of being the in-
tersection between the established knowledge representation
formalisms of Description Logics and Logic Programming.
In this paper, we take the DLPs a step further and extend
them with probabilities. Furthermore, we suggest a frame-
work for Information Integration by using these so-called
Bayesian Description Logic Programs (Bayesian DLPs). As
most ontology mapping tools are inexact, a knowledge repre-
sentation formalism that considers the uncertainty of map-
pings enhances the automatism of information integration
and overcomes the worst bottleneck in Information Integra-
tion, namely the need for human intervention.
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D.I.2.4 [Knowledge Representation Formalisms and
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General Terms
Languages, Theory

Keywords
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1. INTRODUCTION
Information Integration is crucial for an effective and ef-

ficient utilization of the huge amount of information that
is available in the World Wide Web. The representation of
information provided by web sites and databases connected
to the Internet is not bound to a specific representation lan-
guage or representation structure, and similar or even the
same information might be represented in different systems.
These different representations need to be aligned in order to
enable the utilization of this information in a coherent man-
ner. Thus, the heterogeneity of the systems connected to
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the internet and the heterogeneity of information represen-
tations available herein necessitates good means for Infor-
mation Integration. As ontologies capture the semantics of
data and thus the information inside, they are not only very
useful for representing information in general but also very
promising for semantically integrating information distrib-
uted on the web or within heterogeneous ontology networks.

The languages that can be found currently in the World
Wide Web context range usually around the Description
Logics and Logic Programming knowledge representation
paradigms. While OWL which represents the Description
Logics paradigm (OWL-Lite and OWL-DL closely corre-
spond to SHIF(D) and SHOIN (D), respectively, cf. [8])
is already a W3C recommendation [1], Logic Programming
paradigms gain more and more attention and support by
the community. Some examples for Logic Programming lan-
guages intended for the usage on the World Wide Web are
Rule-ML Logic Programs1, WRL2 and TRIPLE [3]. There
is also a W3C working group charter which works on a rule
interchange format3 which shows the huge amount of inter-
est to use Logic Programming for the specification of infor-
mation for the Internet.

Hence, the ontologies that need to be integrated are ex-
pected to be represented mainly by some Description Logics
or some Logic Programming variants. In [7], a knowledge
representation formalism called Description Logic Programs
(DLPs) has been introduced to the Semantic Web commu-
nity. The knowledge representation formalism of DLPs rep-
resents the expressive intersection between Description Log-
ics and Logic Programming. This language is therefore well-
suited for information integration purposes. Information In-
tegration can be performed by means of Description Logic
Programs by translating the heterogeneous ontologies to be
integrated into the knowledge representation formalism of
DLPs. Note that such a translation requires the parts be-
ing translated to be syntactical variants of DLPs, i.e. lying
semantically in the intersection of LP and DL. The parts
of the ontologies that lie outside of this intersection can-
not be translated and can therefore not be integrated. If
the ontologies are represented syntactically within the same
knowledge representation formalism, they can be queried by
reasoning formalisms developed for the knowledge represen-
tation formalism at hand.

After translating the ontologies into the same knowledge
representation formalism, in our case Description Logic Pro-

1http://www.ruleml.org
2http://www.w3.org/Submission/WRL/
3http://www.w3.org/2005/rules/wg



grams, mappings between the entities of the ontologies can
be more easily discovered. It is beneficial to have mappings
between the entities of the ontologies represented within the
same knowledge representation formalism like the ontologies
themselves because the mappings and the ontologies can be
unified into one big ontology and fed into a reasoner. In the
ideal case, the mappings should be discovered by means of an
automatic mapping discovery tool. Most current approaches
for ontology mapping (discovery) are semi-automatic and
require human intervention (cf. [11]). The need for human
intervention does not scale for the purpose of Information
Integration within the setting of the World Wide Web with
its huge amount of resources. Thus, a knowledge representa-
tion formalism that takes into account uncertainty helps to
overcome the worst bottleneck of Information Integration,
the need of human intervention.

In this paper, we present a probabilistic extension of DLPs.
This extension is a subset of a knowledge representation for-
malism called Bayesian Logic Programs (BLPs) [13]. We
define a restriction of BLPs which is usable for Informa-
tion Integration of information represented by heterogeneous
networks of Description Logics and Logic Programming on-
tologies. We call this knowledge representation formalism
Bayesian Description Logic Programs (BDLPs) and provide
a framework for integrating ontologies by means of BDLPs.

The rest of the paper is organized as follows. We present
a short survey on Description Logic Programs in section 2.
In section 3, we introduce Bayesian Description Logic Pro-
grams by first surveying Bayesian Logic Programs in section
3.1 which are a formal probabilistic and logical formalism on
which Bayesian Description Logic Programs are grounded.
Then we introduce Bayesian Description Logic Programs in
section 3.2. Afterwards, in section 4, we present a framework
for information integration by means of Bayesian Descrip-
tion Logic Programs. In section 5 we discuss related work.
Finally, we present our conclusions in section 6.

2. DESCRIPTION LOGIC PROGRAMS
Semantically, the knowledge representation formalism of

Description Logic Programs (DLPs) [7] is the expressive in-
tersection of the knowledge representation formalisms of De-
scription Logics (DL) [2] and of Logic Programming (LP)
[16] which are the prevalent logical formalisms used within
the Semantic Web community. Syntactically, the DLP lan-
guage corresponds to Datalog without negation and without
equality. The difference between Datalog and function-free
definite clause logic (i.e. the function-free Horn-Logic frag-
ment of First-Order Logic) is that only fact-form conclusions
can be drawn. Thus, the DLP fragment is called the expres-
sive f-subset of equality-free and function-free definite clause
Logic. This means that it is a mild weakening regarding
entailment power as it permits only fact-form conclusions.
In [7], this mild weakening concerning entailment power is
called f-weakening.

Syntactically and semantically, DLPs correspond to Dat-
alog without negation and without equality. Correspond-
ingly, a Description Logic Program consists of a set of rules
and a set of facts. The set of facts is usually called exten-
sional database or EDB. The set of facts that can be derived
only by the rules are called intensional database or IDB. The
union of the EDB and the IDB is the least Herbrand model
of the DLP.

Each rule has the form H ← B1 ∧ . . . ∧Bm, where H and

the Bi are atomic formulae and it holds that m ≥ 0.
An atomic formula consists of a predicate symbol p fol-

lowed by a bracketed n-tuple of terms ti, p(t1, . . . , tn) with
n ≥ i ≥ 0. A term can be either a constant (i.e. an instance)
or a variable (i.e. a placeholder for an instance). If all terms
in an atomic formula are constants, the atomic formula is
called a ground atom. The left hand side of a rule, H, is
called head and the right-hand side of a rule, B1 ∧ . . .∧Bm,
is called body. All variables in rules are universally quanti-
fied, although this is not explicitly written. For i = 0, the
body is empty and the arrow is omitted. Such a rule with
an empty body is called a fact. We allow only ground atoms
as facts.

In [7], it has been shown how to perform one direction
of the so-called DLP-fusion, i.e. the bidirectional mapping
from the DLP fragment of DL to LP and vice versa from
the DLP fragment of LP to DL. Only the translation from
Description Logics ontologies to DLP ontologies has been
detailed. As DLPs resemble syntactically rather the LP for-
malism, the translation of DL to LP has been detailed. How-
ever, as can be seen later in our framework for Information
Integration, we need only the translation from DL ontolo-
gies into the DLP fragment of LP. The Bayesian Description
Logic Programming formalism which we present in the next
section, is built on definite clause logic. Furthermore, we
agree with the authors of [7] that the LP community pro-
vides much more mature, efficient and scalable algorithms
and systems for reasoning than the DL community. We be-
lieve also, that in the Information Integration setting, we
rather need support for queries that are typical for the LP
paradigm and that are much better supported by LP reason-
ing engines. Such queries correspond to ABox reasoning in
DL terminology. ABox reasoning with DL reasoning engines
is not fast4.

Bear in mind that information specified within the lan-
guage difference sets of Description Logics and Logic Pro-
gramming ontologies is lost and cannot be integrated be-
cause there is no means to translate information specified in
either of them. Another knowledge representation formal-
ism that would be well-suited for Information Integration is
the least superset containing the union of the DL and the LP
knowledge representation formalisms. However, currently it
is not yet clear how to combine the Description Logics par-
adigm (in which negation is monotonic) with the Logic Pro-
gramming paradigm (in which negation is nonmonotonic).
Furthermore, reasoning with the much less expressive DLP
language is decidable and has a much lower complexity than
a knowledge representation formalism which is so expressive
that it unifies DL and LP. As function symbols are common
in the LP paradigm, it can be expected that the knowledge
representation formalism unifying LP and DL will be at least
semi-decidable.

3. BAYESIAN DLPS
In [13], the knowledge representation formalism Bayesian

Logic Programs (BLPs) have been introduced. BLPs are a
knowledge representation formalism with a formal semantics
that extends definite clause logic with probabilities. They

4Note that KAON2 which translates DL ontologies into dis-
junctive Datalog outperforms other common DL reasoners
in ABox reasoning [18]. However, KAON2 has not been
compared yet with common LP reasoners.



also correspond to an extension of Bayesian Networks [10]
to first-order definite clause logic. As Bayesian Networks
correspond to a probabilistic extension of sentential defi-
nite clause logic, BLPs extend them in a natural way to
first-order logic. We chose BLPs for the purpose of Infor-
mation Integration because they unify the paradigms of def-
inite clause logic and Bayesian Networks in a complete and
coherent manner. Both definite clause logic and Bayesian
Networks are subsets of BLPs. We can therefore easily de-
fine a subset of BLPs that extends DLPs with probabilities.

In subsection 3.1, we provide an overview on BLPs and
how inference can be done with BLPs. In subsection 3.2,
we define the subset of BLPs that correspond to a proba-
bilistic extension of DLPs that can be used for Information
Integration on the Web and within networks of DL and LP
ontologies.

3.1 Bayesian Logic Programs
Bayesian Logic Programs (BLPs) have been introduced

in [13]. The knowledge representation formalism of BLPs
combines the principle of Logic Programming with Bayesian
Networks (BN) [10]. Bayesian Networks are a very impor-
tant, efficient and elegant framework for representing and
reasoning with probabilistic models. Thus, there are mature
and efficient inference engine implementations for Bayesian
Networks available that can be exploited also for Informa-
tion Integration purposes. A Bayesian Network is a directed,
acyclic graph where the nodes correspond to random vari-
ables and the arcs correspond to direct influences. To each
node in the Bayesian Network, a conditional probability den-
sity is attached which specifies the probability of each of
the states of the random variable corresponding to the node
given each of the states of it’s immediate parents.

In section 3.1.1, we provide a short survey on BLPs and
in section 3.1.2, we describe how queries to Bayesian Logic
Programs are processed and answered. For a more detailed
description of BLPs, we refer the interested reader to [13].

3.1.1 The Logical Formalism of BLPs
Bayesian Logic Programs unify first-order definite clause

logic with Bayesian Networks. To each rule, a conditional
probability density is attached that specifies the probability
of the head atom given the body atoms. A fact is asso-
ciated with an a-priori probability. If the (conditional or
a-priori) probability densities are not considered, the BLP
corresponds to a common Prolog program without nega-
tion and without equality. In [13], the set of logical definite
clauses corresponding to the set of clauses in a Bayesian
Logic Program B is called the corresponding logic program
B̃.

Compared to DLPs, the logical language used to build
up the corresponding logic programs matches to Descrip-
tion Logic Programs, extended with the addition of function
symbols in term composition. This means that in BLPs,
terms can be built recursively in a more complex manner
with constants being valid terms, variables being valid terms
and function symbols followed by a bracketed n-tuple of
terms ti (f(t1, . . . , tn) with n ≥ i ≥ 0) are also valid terms.
I.e. they correspond rather to Prolog without negation and
without equality than to Datalog like DLPs do. Another
difference is that instead of the arrow, the symbol “|” is
used in order to hint at the idea of conditional probability
densities.

If additionally to the language of the corresponding logic
programs the (conditional or a-priori) probability densities
are considered as well, a BLP B can be seen to encode a
Bayesian Network in the same way, a set of clauses in first-
order definite clause logic encodes a set of clauses in senten-
tial definite clause logic. Hence, BLPs can be seen from two
perspectives, one corresponding to pure definite clause logic
and one corresponding to pure Bayesian Networks.

Another important difference between BLPs and DLPs is
that the atoms p(t1, . . . , tn) are bayesian which means that
they are not boolean but are associated to an arbitrary fi-
nite domain D(p). To each predicate pi of the BLP, a unique
domain D(pi) is associated. All ground atoms inherit the
domain that belongs to their predicate and this basically
means that a a ground atom can have a state from an arbi-
trary set of states, the domain D(p) that belongs to its pred-
icate p. Seen from the perspective of Bayesian Networks, a
ground atom corresponds to a random variable and thus to
a node in the Bayesian Network. Hence, a non ground atom
in a Bayesian Logic Program can be called bayesian atom
and generically represents a set of random variables.

We introduce now the probabilistic aspect in BLPs. As
mentioned above, each rule and fact that is contained within
a BLP has a conditional or a-priori probability density at-
tached. The probability of each of the possible states of the
head atom is conditioned on each of the states of the body
atoms. Seen from the perspective of a Bayesian Network,
a clause with a nonempty body in a BLP encodes a direct
influence relationship, i.e. if the clause is ground and valid,
each atom corresponds to a node in the Bayesian Network
and there is an arc from each of the body atoms to the head
atom.

Let r be a rule in a BLP: r : h(th1, . . . , thn)|b1(t11, . . . , t1n),
. . . , bn(tn1, . . . , tnn). Let D(h) = {h1, . . . , hm} be the do-
main that the ground atoms containing the predicate h are
associated to. Then, for each combination of states the
ground body atoms can have (e1, . . . , en) ∈ D(b1) × . . . ×
D(bn) and each state of the ground head atom hi a function
cpd(r)(hi|e1, . . . , en) : D(h) 7→ [0, 1] is given. This function
is the conditional probability density of each of the ran-
dom variables that are represented by the direct influence
relationship between ground atoms encoded by such a rule.
Note that rules with empty bodies are facts and for a fact
f with f ≡ h(th1, . . . , thn) the a-priori probability density is
given in the same way.

The last important structural element in the knowledge
representation formalism of Bayesian Logic Programs is the
construct of so-called combining rules. Combining rules are
needed in BLPs because there is a one-to-one correspon-
dence between ground atoms and random variables or nodes
in the Bayesian Network, respectively. If we have e.g. two
rules with the same predicate in the head atom, it might
be possible to unify the head atoms of both rules with the
same ground atom. So, if the bodies of the two rules can
be completely grounded in a valid way, the ground body
atoms of both rules are direct parents of the ground head
atom in the corresponding Bayesian Network. Then, the
conditional probability density of the random variable that
corresponds to the ground head atom needs to consider the
possible states of all body atoms at once.

A combining rule is an algorithm that maps a finite set
of conditional probability densities {p(hi|ai1, . . . , aini)|m ≥
i ≥ 1, ni ≤ 0}, m ≥ 1, to the conditional probability densi-



ties p(h|b1, . . . , bn) with {b1, . . . , bn} ⊆ ∪m
i=1{ai1, . . . , aini}.

As explained above, the combining rules are important to
ensure that random variables that get e.g. by means of a
reasoning process more direct parents, get also a valid condi-
tional probability density. Combining rules can be different
algorithms. [13] mentions as most simple combining rule
e.g. the usage of the maximum of the former probability
densities.

Semantically, a BLP B corresponds to a compressed rep-
resentation of a Bayesian Network. The proofs for the cor-
respondance of BLPs to Bayesian Networks can be found in
[13].

3.1.2 Reasoning with BLPs
The processing of queries posed to BLPs consists of two

steps of a so-called knowledge-based model construction pol-
icy. First, an LP reasoner has to be used to build the least
Herbrand Model (or only the relevant part of it by means
of top-down reasoning or Backward-Chaining) of the corre-

sponding logic program B̃ of an BLP B. Then, by means of
substituting the ground atoms of the least Herbrand Model
in all possible but valid ways into the rules, the correspond-
ing Bayesian Network is created.

A probabilistic BLP query is defined in [13] as an expres-
sion of the form ? − Q1, . . . , Qn|E1 = e1, . . . , Em = em.
This expression queries for the conditional probability den-
sity p(Q1, . . . , Qn|E1 = e1, . . . , Em = em). It has to hold
that {Q1, . . . , Qn, E1, . . . , Em} ⊆ HB(B). Here, HB(B)
is the Herbrand model of the BLP B. Clearly, an answer
is only defined if and only if {Q1, . . . , Qn, E1, . . . , Em} ⊆
LHB(B) with LH(B) the least Herbrand Model of B.

An inference engine for BLPs exists already and is called
Balios [12]. It is written in Java and calls Sicstus Prolog
to perform logical inference and a BN inference engine (e.g.
HUGIN or ELVIRA) to perform probabilistic inference.

3.2 Bayesian Description Logic Programs
We define Bayesian Description Logic Programs (Bayesian

DLPs or even shorter BDLPs) as a subset of BLPs. As
the knowledge representation formalism of Description Logic
Programs does not contain function symbols in the syntax
and we want to extend DLPs only with probabilities, we
restrict the syntax of BLPs first and disallow the usage of
function symbols. By this means we ensure that the lan-
guage of corresponding logic programs of Bayesian Descrip-
tion Logic Programs corresponds to the knowledge represen-
tation formalism of DLPs. Note that the only difference in
the representation lies in the usage of the“|” symbol instead
of the arrow “←” typical in Logic Programming.

Furthermore, we restrict the domain of each predicate to a
boolean set containing just the two states true and false. By
this means we ensure that we yield a logic that corresponds
to common logics.

There is no restriction on the combining rule that goes
further than to obey to the fact that only boolean states are
allowed for the ground atoms of a BLP in order to lie in the
Bayesian DLP fragment. As a combining rule we can thus
use a very simple one like the already mentioned maximum
or even the noisy or (for details cf. [13]).

There is also no restriction on the probability densities
that can be used.

4. INFORMATION INTEGRATION WITH
BAYESIAN DLPS

A way for integrating data sources described by Logic Pro-
gramming and Description Logic ontologies is to first trans-
late the Description Logic ontologies to Logic Programming,
i.e., more specifically, into Description Logic Programs. This
can be done only with the part of the Description Logic on-
tologies that lie in this fragment. The Logic Programming
ontologies need to be rectified from elements that go syn-
tactically beyond Description Logic Programs. This can be
done e.g. by simply deleting the rules that employ such
elements. Afterwards, appropriate mappings between the
entities of the ontologies need to be discovered by means
of some automatic mapping discovery tool, preferable one
that employs a machine learning approach with a bayesian
method. The reason for such a preference is that a quantita-
tive measure of the certainty for the results of the mapping
discovery process is computed by such a method as well and
can be directly used. Another requirement for the mappings
is, that they can be or are already represented in the log-
ical formalism of DLPs or a fragment of DLPs. Then, the
ontologies and the mappings can be seen as one huge ontol-
ogy that can be queried in a coherent manner by the same
reasoning methods.

We assume that the discovered mappings are rules that
have a conditional probability distribution attached which
indicates the certainty of the mappings. Such a mapping
represented by means of a Bayesian DLP clause is for exam-
ple the rule:
o2 : woman(X)|o1 : mammal(X) ∧ o1 : female(X),
i.e. each instance of ontology o1 that is a mammal and
as well female, is a woman in the second ontology o2.
The probability p(o2 : woman = true|o1 : mammal =
true, o1 : female = true) = 0,8 might for example also
hold. Then, according the laws of probability theory, also
p(o2 : woman = false|o1 : mammal = true, o1 : female =
true) = 0,2 holds.

A framework for information integration based on Bayesian
DLPs needs to be based on similar reasoning algorithms like
the ones that are used for BLPs. Reasoning with BLPs
bases on a so-called knowledge-based model construction ap-
proach. I.e. by means of a Logic Programming reasoning
algorithm, the least Herbrand model (or the part of the least
Herbrand Model which is relevant for the query) of the cor-
responding logic program is computed. The ground atoms
of the Herbrand model correspond to the nodes or random
variables, respectively, in the Bayesian Network that needs
to be built up in order to perform probabilistic inference.
For each valid and exhaustive ground atom substitution of
a rule, the grounded rule corresponds to a child (ground
head atom) and parents (ground body atoms) relationship
in the corresponding Bayesian Network. A directed arc is
included into the Bayesian Network from each of the ground
body atoms to the ground head atom of the grounded rule
at hand. If two different valid and ground rules exist that
have the same ground head atom but different ground body
atoms, the random variable that corresponds to the ground
head atoms has all the ground body atoms of the rules as
parents in the corresponding Bayesian Network.

The discovered mapping rules are associated with a con-
ditional probability distribution. In order to reason with
the mappings and the original ontologies in a coherent man-



ner, we need to add a-priori and conditional probabilities to
the original ontologies that have been transferred into pure
Description Logic programs. This means that we need to
transfer the DLP ontologies into BDLP ontologies.

The easiest is the assigment of a-priori probabilities to the
facts of the program, i.e. the EDB. We simply assign for
each fact f(c) in the EDB the a-priori probability p(f(c) =
true) = 1. Then, clearly, the probability of the fact being
false has to be p(f(c) = false) = 0.

The assignment of conditional probabilities to the rules
cannot be performed before the least Herbrand model (or
the part of it which is relevant for the query) has been de-
rived. As the probabilities are needed only for the inference
with the Bayesian Network, this is no problem. We suggest
the following algorithm for computing the conditional proba-
bilities for ground atoms (or in the terminology of Bayesian
Networks: random variables) which are intensional (or in
the terminology of Bayesian Networks: which have parents):
First, the least Herbrand Model (or the part of it which is
relevant for the query) of the DLP ontologies and the corre-

sponding logical program B̃ of the BDLP mapping program
B is inferred in a coherent manner (i.e. as if the ontologies

and B̃ are one huge ontology O). Then, the ground atoms
of the inferred least Herbrand Model (or part of it, as case
may be) have to be unified with the atoms of the rules in
O in all possible ways such that the resulting ground rules
are valid regarding satisfiability relative to O. For each such
rule r : h|b1, . . . , bn, we can assess the conditional probabil-
ity as p(h = true|b1 = true, . . . , bn = true) = 1. Hence, it
holds p(h = false|b1 = true, . . . , bn = true) = 0. A lot of
state combinations of the ground body atoms are not con-
sidered in this way, because it is not possible to infer directly
the head atom by these state combinations. For these state
combinations the probability of h = true given these states
is 0 and the probability for h = false given these states is 1.
In this way, we assign to each relevant rule valid conditional
probabilities that can be used in the Bayesian Network that
corresponds to O or just to the part of O which is relevant for
the query. Note that if a ground head atom can be inferred
by different ground rules, the combining rule maximum [13]
can be applied.

As an example consider the following rule of the cor-
responding logic program of a BDLP B: Parent(X) ←
hasChild(X, Y ). Say the atoms hasChild(John, Peter),
hasChild(John, Linda) and Parent(John) are ground atoms
contained in the least Herbrand model of the corresponding
logic program B̃. All these ground atoms correspond to ran-
dom variables in the corresponding Bayesian Network which
will be set up for the reasoning and query ansering purposes.
By means of these ground atoms, we can build the following
ground rules:

• Parent(John) ← hasChild(John, Peter)

• Parent(John) ← hasChild(John, Linda)

Thus, the following conditional probabilities will be as-
signed: p(Parent(John) = true|hasChild(John, Peter) =
true) = 1 and p(Parent(John) = true|hasChild(John, Linda)
= true) = 1. The complementary states of the head atoms
given the same states of the body atoms can be computed
easily by means of the laws of probability theory. The
application of the combining rule maximum yields finally
p(Parent(John) = true|hasChild(John, Peter) = true,

hasChild(John, Linda) = oneOf(false, true)) = 1 and as
well p(Parent(John) = true|hasChild(John, Peter) =
oneOf(false, true), hasChild(John, Linda) = true) = 1.
Note that the function oneOf returns one item of its pa-
rameter set.

After setting up the corresponding Bayesian Network or
the part of it which is relevant to the query, the query can
be processed by a typical Bayesian Network inference en-
gine. Possible queries can be e.g. to ask for the probability
p(o2 : father(X)|o1 : male(X) = false, o1 : parent(X) =
true). By means of the Logic Programming reasoner, all
possbile valid substitutions for X can be computed and the
ground queries can be posed to the corresponding Bayesian
Network. We can also ask simply for p(o2 : father(X)) and
not give any evidence. Note that the query needs not to be
taken into account before the Logic Programming reason-
ing process starts, although by considering it in advance, a
smaller portion of the least Herbrand Model and thus the
Bayesian Network can be built. The whole least Herbrand
Model can be inferred and by this means the whole Bayesian
Network be built. However, we do believe that it is much
more efficient to consider the query in advance, because the
least Herbrand Model of several ontologies that need to be
integrated can be quite huge and thus the resulting Bayesian
Network as well.

It is very likely that cycles appear in the mappings and
thus also in the corresponding Bayesian Network. In [19],
however, it has been shown that approximate inference for
Bayesian Networks with cycles often converges and if it does,
a good approximation of the correct marginals is given.

5. RELATED WORK
Different kinds of probabilistic logics have been developed,

especially since the early nineties of the last century. In par-
ticular, the growth in understanding of Bayesian Networks
promoted the emergence of different flavours of probabilistic
logics. E.g. in [15] a probabilistic Description Logic based
on Bayesian Networks has been introduced. In [20], [14]
and [9] approaches have been presented that focus rather
at the Logic Programming and Relational Logic paradigm.
However, our intention within this paper is to present an
elegant way of integrating the knowledge representation for-
malism of Description Logic Programs with probabilities.
The knowledge representation formalism of BLPs allows to
separate the logic programming paradigm from the proba-
bilistic modelling and reasoning paradigm and thus is par-
ticularly appropriate for our aim of extending DLPs with
probabilities for Information Integration purposes. As can
be seen, BLPs allow a probabilistic extension of DLPs in a
very straightforward and intuitive way. This is not possi-
ble with the other probabilistic logics introduced in Artifi-
cial Intelligence and Knowledge Representation. A survey
on probabilistic logics that focus on the logic programming
and the relational logic paradigm can be found in [21].

In [5], DatalogP , a probabilistic extension of Datalog has
been presented. One difference to our approach is that Data-
log with stratified negation has been extended. As we want
to integrate DL and LP ontologies, we do not need nega-
tion. Another difference is the probabilistic model behind
DatalogP which does not extend Logic Programming in such
a straightforward way like it is done in BDLPs. E.g. in
DatalogP only facts have a probability attached. The facts
which can be derived get constraints on the probabilities.



The semantics considers a set of possible worlds and a prob-
ability distribution on this set. In contrast, our approach
views each ground fact as a random variable which can be
either true or false.

Within the context of the Semantic Web, a probabilistic
extension of SHOQ [6] and a probabilistic extension of OWL
[4] have been introduced. Only in [4] a Bayesian Network
has been used as underlying probabilistic reasoning mech-
anism. However, the knowledge representation formalism
of Logic Programming has not been considered in either of
these works.

An approach for Ontology Mediation by means of Bayesian
Networks has been presented in [17]. However, the authors
rather want to enhance existing mappings (cf. the name
of the system Ontology Mapping ENhancer). They do not
provide an integrated framework on reasoning with the map-
pings and the ontologies. Furthermore, the language they
use for capturing the mappings is very simple and very sim-
ilar to RDF Schema.

6. CONCLUSIONS
In this paper, we have presented a framework for proba-

bilistic Information Integration of information described by
means of Description Logics and Logic Programming ontolo-
gies. For this purpose, we have introduced a logical formal-
ism that is a probabilistic extension of Description Logic
Programs [7]. The logical formalism we present is a sub-
set of a logical formalism called Bayesian Logic Programs
(BLPs) [13]. We restrict the knowledge representation for-
malism of BLPs in order to enable automatic, probabilistic
Information Integration by means of a probabilistic exten-
sion of Description Logic Programs. In [7], it has been shown
that Description Logic Programs are the most appropriate
knowledge representation formalism for the integration of
Description Logics and Logic Programming ontologies. The
rationale is their feature of being the expressive intersec-
tion of both knowledge representation formalisms, DL and
LP which are the prevalent knowledge representation for-
malisms with a formal semantical grounding in the Semantic
Web community.

Our framework shows how to overcome the worst bottle-
neck of Information Integration, the need of human inter-
vention. We show how automatic discovered mappings can
be used to reason in an integrated and coherent manner with
the information represented within the original ontologies.
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