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Abstract. It has been argued that linked open data is the major bene-
fit of semantic technologies for the web as it provides a huge amount of
structured data that can be accessed in a more effective way than web
pages. While linked open data avoids many problems connected with
the use of expressive ontologies such as the knowledge acquisition bot-
tleneck, data heterogeneity remains a challenging problem. In particular,
identical objects may be referred to by different URIs in different data
sets. Identifying such representations of the same object is called object
reconciliation. In this paper, we propose a novel approach to object rec-
onciliation that is based on an existing semantic similarity measure for
linked data. We adapt the measure to the object reconciliation problem,
present exact and approximate algorithms that efficiently implement the
methods, and provide a systematic experimental evaluation based on a
benchmark dataset. As our main result, we show that the use of light-
weight ontologies and schema information significantly improves object
reconciliation in the context of linked open data.

1 Introduction

There is an ongoing debate concerning the role of ontologies for the semantic
web. While rich ontologies have been promoted as an integral part of every
semantic web application [11], it is increasingly argued that the real value of
the semantic web is based on its ability to create and maintain linked open
data which provides effective access to semantically enhanced information on
the web [21]. In this paper, we argue that the use of (light-weight) ontologies
helps to solve one of the key problems of linked open data on the web, namely,
the actual linking of data by identifying different representations of the same
object. This problem has been extensively studied in the context of database
systems as duplicate detection, record linkage, and object or reference reconcili-
ation [13]. Most existing work has focused on the design of specialized measures
which estimate the similarity of objects based on their lexical properties. The
Silk framework [22], for instance, combines lexical similarity measures in order
to create links between objects. The use of schema information in the context of
formal ontologies has only recently been proposed [15, 10]. In this work, we lever-
age schema information to exclude logically inconsistent links between objects
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and to improve the overall accuracy of instance alignments. In particular, we
use logical reasoning and linear optimization techniques to compute the overlap
of derivable types of objects. This information is combined with the classical
similarity-based approach, resulting in a novel framework for object reconcilia-
tion. Our contributions are the following:

– We combine classical similarity measures for object reconciliation with a
semantic similarity measure that takes schema information into account;

– We show that the combined approach clearly outperforms methods that do
not consider schema information;

– We present efficient ways of computing the combined similarity measures
based on a formulation as an integer linear programming problem; and

– We show that the method can be efficiently implemented using an approxi-
mate algorithm with only a modest loss of precision and recall.

The paper is organized as follows. In Section 2 we discuss the object recon-
ciliation problem in more detail and refer to existing work in this area. Section 3
extends and adapts the similarity measure proposed in [19] to the problem of ob-
ject reconciliation. In Section 4, we show that computing the maximal similarity
between objects in two datasets can be formulated as an optimization problem.
In particular, we show that there exists a transformation to a linear integer
programming problem, the solution of which corresponds to the alignment that
maximizes the semantic similarity between the datasets. In addition, we apply
an existing approximative graph matching algorithm to the problem. Finally, in
Section 5, we show that both the optimal and the approximate algorithms result
in high-quality alignments both in terms of precision and recall.

2 Problem Statement and Related Work

The problem of object reconciliation has been a topic of research for more than
50 years. It is also known as the problem of record linkage [8], entity resolu-
tion [1], and instance matching [9]. While the majority of the existing methods
were developed for the task of matching database records, modern approaches fo-
cus mostly on graph-based data representations extended by additional schema
information. We discuss the problem of object reconciliation using the notion
of instance matching. This allows us to describe it within the well-established
ontology matching framework [7]. Ontology matching is the process of detect-
ing links between entities in different ontologies. These links are annotated by a
confidence value and a label describing the type of link. Such a link is referred
to as a correspondence and a set of such correspondences is referred to as an
alignment.

Definition 1 (Correspondence and Alignment). Given ontologies O1 and

O2, let q be a function that defines sets of matchable entities q (O1) and q (O1).
A correspondence between O1 and O2 is a four tuple 〈e1, e2, r, n〉 such that e1 ∈
q (O1) and e2 ∈ q (O2), r is a semantic relation and n is a confidence value. An

alignment M between O1 and O2 is a set of correspondences between O1 and O2.
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The generic form of Definition 1 captures a wide range of correspondences
by varying what is admissible as matchable element, semantic relation, and con-
fidence value. A fundamental distinction between different matching tasks is
determined by the restriction q on the set of matchable entities. On the one
hand we might be interested in links between terminological entities (concepts
and properties) and on the other hand we might want to find links between in-
stances. In the following we refer to an alignment that contains correspondences
of the former type as terminological alignment and to an alignment that con-
tains correspondences of the latter type as instance alignment. Terminological
alignments relate the T-Boxes of O1 and O2 by providing equivalence or sub-
sumption links between concepts and properties. Since instance matching is the
task of detecting pairs of instances that refer to the same real world object [9],
the semantic relation expressed by an instance correspondence is that of identity.
The confidence value of a correspondence quantifies the degree of trust in the
correctness of the statement. If a correspondence is automatically generated by
a matching system this value will be computed by aggregating scores from differ-
ent sources of evidence. The commonly applied methods for object reconciliation
include structure-based strategies as well as strategies to compute and aggregate
value similarities. Under the notion of instance matching, similarities between
instance labels and datatype properties are mostly used to compute confidence
values for instance correspondences. Examples of this are realized in the systems
RiMOM [23] and OKKAM [18]. Additional refinements are related to a distinc-
tion between different types of properties. The developers of RiMOM manually
distinguish between necessary and sufficient datatype properties. The FBEM
algorithm of the OKKAM project assigns higher weights to certain properties
like names and IDs. In both cases, the employed methods focus on appropriate
techniques to interpret and aggregate similarity scores based on a comparison
of datatype property values. Another important source of evidence is the knowl-
edge encoded in the T-Box. RiMOM, for example, first generates a terminological
alignment between the T-Boxes T1 and T2 describing the A-Boxes A1 and A2,
respectively. This alignment is then used as a filter and only correspondences
that link instances of equivalent concepts are considered valid [23].

In this paper we are concerned with the scenario where both A-Boxes are de-
scribed in terms of the same T-Box. An object reconciliation method applicable
to this setting is also proposed in [15] where the authors combine logical with
numerical methods. For logical reasons it is in some cases possible to preclude
that two instances refer to the same object while in other cases the acceptance
of one correspondence directly entails the acceptance of another. The authors
extend this approach by modeling some of these dependencies into a similar-
ity propagation framework. However, their approach requires a rich schema and
assumes that properties are defined to be functional and/or inverse functional.
Hence, the approach cannot be used effectively to exploit type information based
on a concept hierarchy and is therefore not applicable in many web of data sce-
narios. In contrast, our approach does not rely on specific types of axioms or a
set of predefined rules but on a well defined semantic similarity measure. A num-
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ber of different approaches to quantify the degree of similarity between concept
descriptions and ontologies have been proposed [2]. In particular, our approach
is based on the measure proposed by Stuckenschmidt [19]. This measure has
originally been designed to quantify the similarity between two ontologies that
describe the same set of objects. We apply a modified variant of this measure
to evaluate the similarity of two A-Boxes described in terms of the same T-Box.
Furthermore, our method factors in a-priori confidence values that quantify the
degree of trust one has in the correctness of the object correspondences based
on lexical properties. The resulting similarity measure is used to determine an
instance alignment that induces the highest agreement of object assertions in
A1 and A2 with respect to T .

3 A Similarity Measure for Instance Matching

In [19] Stuckenschmidt introduces a measure that quantifies the similarity of two
A-Boxes described in terms of the same T-Box. A brief description is given in
Section 3.1. In Section 3.2 we propose a modification of this measure that factors
in a-priori confidence values. We argue that the underlying idea of the measure
can be used to appropriately incorporate T-Box information during the matching
process. Additionally, we explain and motivate our approach by means of an
example. In the following, we will use 〈a, b〉 to refer to an instance correspondence
〈a, b,=, n〉 and the a-priori similarity σ(a, b) to refer to the confidence value n.

3.1 Measuring A-Box Similarity

Stuckenschmidt’s similarity measure is based on the notion of a valid instance
alignment. Given an instance alignment M between A1 and A2, suppose that we
merge both A1, A2, T , and M into a single ontology O. Due to some mismatches
in M it might happen that O becomes inconsistent. Obviously, we want to
avoid alignments that lead to inconsistencies. The following definition formally
introduces the notion of a valid alignment.

Definition 2 (Valid Alignment). Let M be an instance alignment between

A-Boxes A1 and A2 both described in terms of T-Box T . M is valid with respect

to T if and only if for all concepts C and all properties P defined in T as well

as for all correspondences 〈a, b〉, 〈a′, b′〉 ∈ M we have

T ∪ A1 |= C(a) ⇒ T ∪A2 6|= ¬C(b)

T ∪ A2 |= C(b) ⇒ T ∪A1 6|= ¬C(a)

T ∪ A1 |= P (a, a′) ⇒ T ∪A2 6|= ¬P (b, b′)

T ∪ A2 |= P (b, b′) ⇒ T ∪A1 6|= ¬P (a, a′)

Under the assumption that two different URI references in the same A-Box
denote two distinct instances, a valid alignment will not lead to inconsistencies
in the merged ontology. We now introduce the notion of a functional one-to-one
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alignment between A-Boxes. M is a functional one-to-one alignment if and only
if for all pairs of correspondences 〈a, b〉 6= 〈a′, b′〉 ∈ M we have a 6= a′ and b 6= b′.
Based on the notion of a valid functional one-to-one alignment one can count,
for each possible alignment M, the number of assertions identical in A1 and A2,
where instance equivalence is determined by the alignment M. We will call this
value the overlap of two A-Boxes A1 and A2 induced by M.

Definition 3 (Overlap). Let A1 and A2 be A-Boxes described in terms of

T-Box T . Furthermore, let M be a functional one-to-one1 instance alignment

between A1 and A2 that is valid with respect to T . The overlap of A1 and A2

induced by M with respect to T is defined as

overlapT (A1,A2,M) :=

| {C(a) | T ∪ A1 |= C(a) ∧ T ∪ A2 |= C(b) ∧ 〈a, b〉 ∈ M}∪

{¬C(a) | T ∪ A1 |= ¬C(a) ∧ T ∪ A2 |= ¬C(b) ∧ 〈a, b〉 ∈ M}∪
{

P (a, a′) | T ∪ A1 |= P (a, a′) ∧ T ∪ A2 |= P (b, b′) ∧ 〈a, b〉, 〈a′
, b

′〉 ∈ M
}

∪
{

¬P (a, a′) | T ∪ A1 |= ¬P (a, a′) ∧ T ∪ A2 |= ¬P (b, b′) ∧ 〈a, b〉, 〈a′
, b

′〉 ∈ M
}

|

Based on this, it is possible to define the A-Box similarity between A1 and
A2 as the maximal possible overlap of A1 and A2. In order to find this value, we
have to consider the set of all possible valid functional one-to-one alignments M
between A1 and A2. Notice that the overlap is not only determined by M but
also by the size of A1, A2 (number of instances), and T (number of concepts and
properties). Thus, we have to use a normalizing denominator. The resulting sim-
ilarity measure quantifies the degree of similarity as a value in the interval [0, 1].

Definition 4 (A-Box Similarity). Let A1 and A2 be A-Boxes described in

terms of T-Box T . Furthermore, let M be the set of all functional one-to-one

instance alignments between A1 and A2 that are valid with respect to T . The

A-Box similarity between A1 and A2 with respect to T is defined as

simT (A1,A2) := max
M∈M

2 ∗ overlapT (A1,A2,M)

overlapT (A1,A1, IA1
) + overlapT (A2,A2, IA2

)

where IA refers to the identity alignment that maps every instance described in

an A-Box A on itself.

Notice that this similarity measure fulfills the properties of a conceptual
similarity measure as defined by Amato et al. [5]. In particular, we have 0 ≤
simT (A1,A2) ≤ 1, simT (A1,A2) = simT (A2,A1), and simT (A,A) = 1.

1 The approach is not limited to functional one-to-one alignments but can also generate
m-to-n alignments. To simplify the exposition of the framework, however, we chose
to describe it with respect to functional one-to-one alignments.
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b5

name: Chris

b6

name: Chris

hasHusband

Person(b6)
Man(b6)

Person(b5)
Woman(b5)

a5

name: Chris

a6

name: Chris

hasHusband

Person(a5)
Woman(a5)

Person(a6)
Man(a6)

a1

name: Alice

a2

name: Bob

hasHusband

a3

name: Alice

a4

name: Bob

Person(a3)
Woman(a3)

¬Person(a4)
Dog(a4)

Person(a2)
Man(a2)

Person(a1)
Woman(a1)

A-Box 1

b1

name: Alice

b2

name: Bob

b3

name: Alice

b4

name: Bob

Person(b3)
Woman(b3)

¬Person(b4)
Dog(b4)

Person(b2)
Man(b2)

Person(b1)
Woman(b1)

A-Box 2

hasHusband

Fig. 1. Motivating example.

3.2 Exploiting A-Box Similarity

In this section, we leverage the A-Box similarity from Definition 4 for the task of
object reconciliation. Furthermore, we demonstrate the advantage of our method
over those approaches using only lexical confidence values. Therefore, we intro-
duce a small motivating example. Suppose that the shared T-Box T is defined
as follows.

∃hasHusband ⊑ Woman

∃hasHusband
− ⊑ Man

Dog ⊑ ¬Person

Person ≡ Woman ⊔Man

Let us assume we have six individuals a1, ..., a6 and b1, ..., b6 in each A-Box. Fur-
thermore, let us assume that the following concept and object property assertions
are explicitly specified in A1 and A2, respectively.

hasHusband(a1, a2) hasHusband(b1, b2)

hasHusband(a5, a6) hasHusband(b5, b6)

Woman(a3) Woman(b3)

Dog(a4) Dog(b4)

Figure 1 provides an illustration of this example. Stated assertions are depicted
in black, while gray-colored assertions can be inferred from the given ones with
respect to the T-Box T . To simplify the notation, we base the a-priori confidence
value σ(a, b) of a correspondence 〈a, b〉 on the identity of the name datatype-
property value by setting the lexical similarity to 1 if the strings of the name
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attribute are identical and to 0 otherwise. Now, if we computed the individual
alignment between A1 and A2 by maximizing only the given lexical similarity,
we would not be able to differentiate between the pairs of individuals with name
Alice (blue squares including a1, a3 and b1, b3 in Figure 1), with name Bob
(green squares including a2, a4 and b2, b4 in Figure 1), and with name Chris
(red squares including a5, a6 and b5, b6 in Figure 1), respectively. Consequently,
there would only be a probability of 1

8
of choosing the correct alignment. In light

of this, we introduce Definition 5 which extends the notion of A-Box overlap by
incorporating the (a-priori) lexical confidence values as coefficients.

Definition 5 (Weighted Overlap). Let A1 and A2 be A-Boxes both described

in terms of T-Box T . Furthermore, let M be a functional one-to-one instance

alignment between A1 and A2 that is valid with respect to T and with a-priori

confidence values given by σ. The weighted overlap between A1 and A2 induced

by M with respect to T is defined as

overlapwT (A1,A2,M) :=

∑

〈a,b〉∈M

∑

C∈T :
T ∪A1|=C(a) ∧

T ∪A2|=C(b)

σ(a, b) +
∑

〈a,b〉,〈a′,b′〉∈M

∑

P∈T :
T ∪A1|=P (a,a′) ∧

T ∪A2|=P (b,b′)

σ(a, b) + σ(a′, b′)

2
+

∑

〈a,b〉∈M

∑

C∈T :
T ∪A1|=¬C(a) ∧

T ∪A2|=¬C(b)

σ(a, b) +
∑

〈a,b〉,〈a′,b′〉∈M

∑

P∈T :
T ∪A1|=¬P (a,a′) ∧

T ∪A2|=¬P (b,b′)

σ(a, b) + σ(a′, b′)

2
.

The main difference between Definition 5 and Definition 3 is the weighing
of the overlap of every (negated) concept and object property assertion with
the a-priori similarity σ. We revisit our example to verify the ability of Defini-
tion 5 to leverage positive and negative concept and object property assertions
and to improve the quality of the alignment. In order to show the improve-
ments, we compare the weighted overlap score of the different possibilities to
align the individuals named Bob, Alice, and Chris. With respect to the indi-
viduals named Chris there are two possible alignments {〈a5, b5〉, 〈a6, b6〉} and
{〈a5, b6〉, 〈a6, b5〉}. Both alternatives link individuals that belong to the same
concept Person and, therefore, both add a score of two to the weighted overlap.
In addition, the partial alignment {〈a5, b5〉, 〈a6, b6〉} links the instances having
the conceptsWoman andMan in common. Consequently, this combination adds
an additional score of two to the weighted A-Box similarity. As a result, our ap-
proach will make the partial alignment {〈a5, b5〉, 〈a6, b6〉} part of the optimal
valid one-to-one alignment due to the greater overlap of concept-assertions.

In case of the individuals named Alice the two possible partial alignments
{〈a1, b1〉, 〈a3, b3〉} and {〈a1, b3〉, 〈a3, b1〉} exist. All individuals named Alice be-
long to the concepts Woman and Person. This means that concept assertions
are not sufficient to distinguish between these alignments. However, the existing
object property assertions hasHusband(a1, a2) and hasHusband(b1, b2) increase
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the weighted similarity only for the alignment containing {〈a1, b1〉, 〈a3, b3〉}. Ac-
cordingly, our method will make the partial alignment {〈a1, b1〉, 〈a3, b3〉} part of
the optimal valid one-to-one alignment because the approach also takes object
property assertions into account.

Finally, for the individuals named Bob the partial alignments under con-
sideration are {〈a2, b2〉, 〈a4, b4〉} and {〈a2, b4〉, 〈a4, b2〉}. Due to the disjointness
axiom specified in T and the existing assertions one can infer the negative con-
cept assertions ¬Person(a4) and ¬Person(b4). Hence, according to Definition 2,
an alignment containing both 〈a2, b4〉 and 〈a4, b2〉 is not valid. Therefore, our
method will make the partial alignment {〈a2, b2〉, 〈a4, b4〉} part of the optimal
valid one-to-one alignment. This illustrates how our approach also factors in
negative concept and object property assertions.

4 Optimal and Approximate Algorithms for Computing

the Maximal Weighted A-Box Similarity

We now turn to the problem of devising algorithms that compute the previously
defined (weighted) similarity measure between A-Boxes. Let A1 and A2 be two
A-Boxes both described in terms of a T-Box T . It follows from Definition 4
and Definition 5 that, in order to compute the alignment that maximizes the
weighted A-Box similarity, we have to determine

argmax
M∈M

overlapwT (A1,A2,M)

with M the set of all functional one-to-one instance alignments that are valid
with respect to T . Notice that we can ignore the normalization denominator
from Definition 4 since we are not directly interested in the maximal weighted
A-Box similarity but rather the alignment that maximizes it. The problem of
finding this alignment is computationally challenging due to its combinatorial
complexity. It is essentially equivalent to the inexact multi-labeled graph match-
ing problem, except that the validity requirement from Definition 2 can poten-
tially lead to additional constraints on the set of possible alignments. As the
inexact multi-labeled graph matching problem is NP-complete because it gener-
alizes the well-known subgraph isomorphism problem [14], it can be shown that
finding the alignment that maximizes the weighted A-Box similarity is also an
NP-hard problem2. Nevertheless, we are able to provide efficient algorithms by
(a) transforming the problem into an integer linear programming problem [16],
and by (b) applying the approximate multi-labeled graph matching algorithm
of Cour et al. [4] to the problem. We discuss the details of these two approaches
in the remainder of this section.

2 To prove the NP-hardness one can construct, for every instance of the multi-labeled
graph matching problem, two A-Boxes A1 and A2 such that the alignment that
maximizes the weighted A-Box similarity between A1 and A2 is also the solution
to the corresponding inexact multi-labeled graph matching problem. We omit the
details as the proof is beyond the scope of the paper.
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4.1 Integer Linear Programming

Integer linear programming (ILP) can be defined as the problem of optimizing
a linear objective function over a finite number of integer variables, subject to
a set of linear equalities and inequalities over these variables. It is a problem
that mainly occurs in the field of operations research [20]. From a mathematical
perspective, it can be defined as the problem of finding a point on a polyhedron,
determined by the given linear (in-)equalities, at which the linear objective func-
tion attains its minimum or maximum [16]. The problem of finding the alignment
that maximizes the weighted similarity of two A-Boxes can be transformed to a
integer linear programming problem as follows.

Variables: Let A1 and A2 be two A-Boxes described in terms of a T-Box T
and let ai, 1 ≤ i ≤ n and bj , 1 ≤ j ≤ m, denote the individuals in A1 and
A2, respectively. We will denote the set of variables of the ILP with V . Now,
for every 1 ≤ i ≤ n and 1 ≤ j ≤ m, we add the variable x〈i,j〉 to the set V
if there exists at least one concept3 C ∈ T such that either T ∪ A1 |= C(ai)
and T ∪ A2 |= C(bj) or T ∪ A1 |= ¬C(ai) and T ∪ A2 |= ¬C(bj). In addition,
for every 1 ≤ i, k ≤ n and 1 ≤ j, l ≤ m, we add the variables x〈i,j〉, x〈k,l〉, and
s〈i,j〉,〈k,l〉 to the set V if there exists at least one object property P ∈ T with
either T ∪ A1 |= P (ai, ak) and T ∪ A2 |= P (bj , bl) or T ∪ A1 |= ¬P (ai, ak)
and T ∪ A2 |= ¬P (bj , bl). We will require all variables in V to be binary, that
is, they can take on the values 0 and 1, respectively. Note that variable x〈i,j〉

represents the correspondence 〈ai, bj〉, that is, x〈i,j〉 will be 1 in the solution of
the ILP if and only if the correspondence 〈ai, bj〉 is part of the alignment that
maximizes the weighted A-Box similarity. Furthermore, the variable s〈i,j〉,〈k,l〉
represents the correspondences 〈ai, bj〉 and 〈ak, bl〉, that is, s〈i,j〉,〈k,l〉 will be 1 in
the solution of the ILP if and only if both correspondences 〈ai, bj〉 and 〈ak, bl〉
are part of the alignment that maximizes the weighted A-Box similarity.

Objective Function: We will now define the coefficient for each of the variables
in V . For every x〈i,j〉 ∈ V we set the coefficient c〈i,j〉 to be the product of the
a-priori similarity of the individuals ai and bj and the number of (negated)
concepts in T of which both ai and bj are instances:

c〈i,j〉 := σ(ai, bj) ∗ | {C | T ∪ A1 |= C(ai) ∧ T ∪ A2 |= C(bj)}∪

{C | T ∪ A1 |= ¬C(ai) ∧ T ∪ A2 |= ¬C(bj)} |

Similarly, for every s〈i,j〉,〈k,l〉 ∈ V we set the coefficient d〈i,j〉,〈k,l〉 to be the
product of the mean of the a-priori similarities between the individuals ai, bj
and ak,bl, respectively, and the number of (negated) object properties in T of
which both pairs 〈ai, ak〉 and 〈bj , bl〉 are instances:

d〈i,j〉,〈k,l〉 := (σ(ai, bj) + σ(ak, bl))/2 ∗

| {P | T ∪ A1 |= P (ai, ak) ∧ T ∪ A2 |= P (bj , bl)}∪

{P | T ∪ A1 |= ¬P (ai, ak) ∧ T ∪ A2 |= ¬P (bj , bl)} |

3 We do not consider the top concept thing in the formulation of the ILP.



10

Finally, we can define the objective of the ILP as

Maximize:
∑

x〈i,j〉∈V

c〈i,j〉x〈i,j〉 +
∑

s〈i,j〉,〈k,l〉∈V

d〈i,j〉,〈k,l〉s〈i,j〉,〈k,l〉

Linear Constraints: In addition to the variables and the objective function
we also need to introduce several linear constraints to ensure that every feasible
solution of the ILP corresponds to a valid functional one-to-one alignment be-
tween the A-Boxes A1 and A2. First, we enforce that every solution of the ILP
corresponds to an alignment that is both (a) one-to-one and (b) functional by
introducing the following sets of constraints:

(a) ∀j :
∑

x〈i,j〉∈V

x〈i,j〉 ≤ 1 and (b) ∀i :
∑

x〈i,j〉∈V

x〈i,j〉 ≤ 1.

Furthermore, for any solution of the ILP, every variable s〈i,j〉,〈k,l〉 ∈ V will be set
to 1 if and only if the two corresponding variables x〈i,j〉 and x〈k,l〉 are also both set
to 1. This can be modeled with a conjunction of the following three constraints:

s〈i,j〉,〈k,l〉 − x〈i,j〉 ≤ 0; s〈i,j〉,〈k,l〉 − x〈k,l〉 ≤ 0; and x〈i,j〉 + x〈k,l〉 − s〈i,j〉,〈k,l〉 ≤ 1.

Finally, the validity requirement introduced in Definition 2 has to be enforced.
For every variable x〈i,j〉 ∈ V we add the linear constraint x〈i,j〉 ≤ 0 if there
exists at least one concept C ∈ T with A1∪T |= C(ai) and A2∪T |= ¬C(bj) or
A1 ∪ T |= ¬C(ai) and A2 ∪ T |= C(bj). In addition, for every pair of variables
x〈i,j〉 ∈ V and x〈k,l〉 ∈ V we add the linear constraint x〈i,j〉 + x〈k,l〉 ≤ 1 to the
ILP if there exists at least one object property P ∈ T with A1 ∪ T |= P (ai, ak)
and A2 ∪ T |= ¬P (bj , bl) or A1 ∪ T |= ¬P (ai, ak) and A2 ∪ T |= P (bj , bl).
Note that an additional advantage of the method is the possibility to add known

correct correspondences to the formulation of the ILP.
The proof of the following theorem is omitted due to space constraints.

Theorem 1. Let A1 and A2 be two A-Boxes described in terms of a T-Box T .

Furthermore, let ILP be the integer linear program constructed from A1, A2,

and T according to the previous steps. Then every set of variables comprising a

solution of ILP correspond to an alignment that maximizes the weighted A-Box

similarity between A1 and A2.

4.2 Approximate Algorithm

In the experimental section, we will verify empirically that the transformation
to an integer linear program can be efficiently solved for small to medium sized
ontologies. However, due to the inherent computational complexity of the prob-
lem, the method will not scale to ontologies with large numbers of instances.
Therefore, we will additionally apply an inexact graph matching algorithm [4]
to approximate the alignment that maximizes the weighted A-Box similarity.
This algorithm was originally developed for graph matching problems occurring



11

in the areas of computer vision and machine learning. It solves a continuous re-
laxation of an integer quadratic programming formulation of the inexact graph
matching problem and is closely related to the spectral matching formulation
of [12]. The construction of the quadratic formulation is similar to the previous
construction of the ILP. We refer the interested reader to these articles for a
more detailed description of the algorithm.

5 Experimental Evaluation

Now that we have introduced our framework for instance matching we will
present empirical evidence for the utility of the method on real-world object
reconciliation problems. We conducted the experiments with the following ques-
tions in mind:

– To which degree can we improve standard instance matching approaches
which are mostly based on lexical similarities between datatype properties?

– How efficient is our approach with respect to runtime?
– How well does the approximate graph matching algorithm perform compared

to the ILP approach?

Before we present the results of the experiments, we describe the datasets we
used for our experiments as well as the baseline algorithms against which we
compare our methods.

5.1 Dataset and Experimental Set-up

We used the IIMB benchmark dataset4 for the experiments. The benchmark was
developed by Ferrara et al. [9] and provides a set of realistic object reconcilia-
tion problems with each of the A-Boxes containing about 300 individuals. The
individuals are specific movies, actors, and directors. The T-Box is that of a typ-
ical light-weight ontology with 5 concepts, 13 datatype, and 5 object properties.
There is one reference dataset with the original T-Box and A-Box and 70 different
transformations which can be roughly divided into the following four categories:

Values Transformations (VT): Typographical errors are simulated and other
lexical modifications like changing the word order are applied to datatype
property values.

Structural Transformations (ST): The focus of these transformations is on
the modification of the datatype properties themselves. They include value
deletions, depth modifications, and value separations.

Combination of VT and ST (VT & ST): The combination of the previous
two types of transformations.

Logical Transformations (LT): Instances are moved to different classes. These
classes may be disjoint, explicit/implicit subclasses, or entirely new concepts
in the T-Box.
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Fig. 2. Precision and recall for the four different methods.

For our experiments we implemented a simple measure to compute the lexical a-
priori similarity σ. For each pair of individuals a and b it considers the datatype
properties p1, ..., pn that are used to describe both a and b. The a-priori similar-
ity is then defined as the average similarity of these datatype property values:
σ(a, b) = 1

n

∑n

i=1
sim(pi(a), pi(b)). We set σ(a, b) to zero for all pairs of indi-

viduals that have no datatype properties in common. To quantify the lexical
similarity sim we used the SoftTFIDF string matching approach introduced by
Cohen et al. [3] without modifications. Note again that the a-priori similarity
σ can be replaced by any other measure that estimates the lexical similarity of
individuals. For a survey on existing methods in the context of record linkage
we refer the reader to Elmagarmid [6]. Once an appropriate similarity measure
σ is chosen, most state-of-the-art approaches use one of the following two meth-
ods to generate functional one-to-one alignments. The first method selects, from
the set of possible correspondences, the one correspondence 〈a, b〉 with high-
est confidence σ(a, b) and removes all correspondences containing either a or
b from the set of possible correspondences. This procedure is repeated until a
functional one-to-one alignment is generated. We refer to this method as greedy
one-to-one. The second method (denoted as optimal one-to-one) computes the
functional one-to-one alignment that maximizes the sum of the a-priori confi-
dence values. We implemented both methods and used the results obtained as
baselines in our experiments.

We denote the optimal algorithm as optimal wABS (weighted A-Box Simi-
larity) and the approximate graph matching algorithm as approximate wABS 5.
We used the mixed integer programming algorithm SCIP6 to solve the ILP
formulation of the optimal wABS algorithm. According to standard benchmarks
for mixed integer linear programming algorithms7, SCIP is one of the fastest
non-commercial solvers. However, there are commercial solvers available which

4 http://islab.dico.unimi.it/content/iimb2009/
5 The Matlab implementation is available at http://www.seas.upenn.edu/

~timothee/software/graph_matching/graph_matching.html
6 http://scip.zib.de
7 http://plato.asu.edu/ftp/milpf.html
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Optimal wABS Approximate wABS

overall load and execute overall load and execute

reason algorithm reason algorithm

Mean 4774.7 119,5 4728,4 146.2 121,5 22,5
Median 3221.5 123,2 3061,5 148.0 122,7 24,8
St. Dev. 4979.3 13,7 5158,1 19.1 10,6 5,2

Table 1. Average execution times (in seconds) for the two different methods.

are several times faster than SCIP according to the benchmarks. Also, since
the ILP formulation is independent of the particular solving method, progress
in mixed integer linear programming will directly translate to shorter runtimes
of the optimal wABS algorithm. The logical reasoning necessary to prepare the
input for the optimal and approximate wABS algorithms was carried out using
the reasoner Pellet [17]. All experiments were run on a desktop PC with an AMD
Athlon dual core 6000+ 3.01 GHz processor and 3 GB RAM.

5.2 Results

We first evaluated the performance of the two baseline algorithms by compar-
ing them to existing OAEI 2009 results of state-of-the-art matching systems.
The greedy and optimal one-to-one algorithms based on the rather simple aver-
age lexical similarity achieved higher precision and recall values than 2 of the 6
state-of-the-art matchers. Hence, our baseline algorithms are comparable to the
performance of existing matching algorithms. We then ran all four algorithms on
the different modifications included in the IIMB dataset8. Figure 2 depicts the
average recall and average precision values for the four categories. The results
show a significant increase of precision and recall for the two wABS methods
compared to the two baseline one-to-one algorithms. The approximative wABS

algorithm has a precision and recall of 0.92 and 0.93, respectively, while the
optimal wABS algorithm reaches a precision and recall of 0.99. Comparing this
to the precision and recall of the optimal one-to-one algorithm of 0.78 and 0.73,
respectively, we have a solid improvement between 18% and 36%. These results
verify that leveraging T-Box information significantly improves the accuracy of
alignments. They also show the trade-off between runtime and accuracy. The
approximative wABS algorithm has lower precision and recall than the optimal
method but is about 30 times faster. Table 1 depicts the execution times (in-
cluding reasoning and preprocessing) of these two algorithms. While the optimal

wABS algorithm needs an average of 1.3 hours to compute the alignment, the
approximate wABS algorithm needs only about 2 minutes. The high standard
deviation of the optimal wABS method speaks to the computational complexity
of the problem. In most cases the ILP solver finds the optimal solution relatively
fast but due to the hardness of the problem there are naturally some hard cases
which increase the average runtime of the algorithm.

8 We had to omit 5 of the 70 variations (19, 21, 37, 39, and 40) since these cases
involved different T-Boxes.
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Overall, the experiments demonstrate that using the weighted A-Box simi-
larity improves the instance alignments substantially. Since instance matching
is usually not time-critical the optimal wABS algorithm is applicable to small
to medium sized ontologies. The approximate wABS algorithm has the poten-
tial to also scale to larger ontologies with only a modest loss of precision and
recall. The complete experimental results and the implementations are available
at http://webrum.uni-mannheim.de/math/lski/matching/rec/.

6 Discussion and Future Work

We proposed a framework for object reconciliation based on a semantic similarity
measure between A-Boxes. The framework allows one to combine lexical a-priori
similarities between instances with the terminological knowledge encoded in the
ontology. We argued that most state-of-the-art approaches for instance matching
focus solely on ways to compute lexical similarities. These approaches are some-
times extended by a structural validation technique where class membership is
used as a matching filter. However, even though useful in some scenarios, these
methods are neither based on a well defined theoretical framework nor generally
applicable without adjustment. Contrary to this, our approach is grounded in a
coherent theory and incorporates terminological knowledge during the matching
process. Our experiments show that the resulting method is flexible enough to
cope with difficult matching problems for which lexical similarity alone is not
sufficient to ensure high-quality instance alignments.

Currently, our approach is restricted to generate alignments between A-Boxes
described in terms of the same T-Box. In some cases this requirement is unreal-
istic. In such a situation it might make sense to merge the two T-Boxes prior to
the instance matching process. Especially in cases where we have large A-Boxes
described with relatively small T-Boxes, the benefits demonstrated by our exper-
iments legitimate the required manual effort. In addition to this, our framework
can be extended to generate both instance and terminological alignments at the
same time. This extension requires to model instance and terminological corre-
spondences in the same way. Instead of interpreting the axioms of the shared
T-Box as hard constraints, we have to interpret both types of correspondences as
soft constraints. This way we benefit from an automatically generated, uncertain
terminological alignment while avoiding the risk of rejecting correct instance cor-
respondences. In this setting, both types of correspondences are in contest with
each other. The solution to the corresponding optimization problem leads to
both an instance alignment and a terminological alignment. Further research
will show whether this approach will provide a general framework for ontology
matching that unifies instance and schema matching in an appropriate way.

Acknowledgement: We thank Alfino Ferrara for providing us the IIMB bench-
mark and for the initiative at http://www.instancematching.org/.
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