
Fast ABox Consistency Checking using
Incomplete Reasoning and Caching

Christian Meilicke1, Daniel Ruffinelli1,
Andreas Nolle2, Heiko Paulheim1, and Heiner Stuckenschmidt1

1 Research Group Data and Web Science
University of Mannheim, Germany

christian|daniel|heiko|heiner@informatik.uni-mannheim.de
2 Data Science, Department of Business and Computer Science

Albstadt-Sigmaringen University, Germany
nolle@hs-albsig.de

Abstract. Reasoning with complex ontologies can be a resource-intensive task,
which can be an obstacle, e.g., for real-time applications. Hence, weakening the
constraints of soundness and/or completeness is often an approach to practical
solutions. In this paper, we propose an extension of incomplete reasoning meth-
ods for checking the consistency of a large number of ABoxes against a given
TBox. In particular, we use and extend the clash queries proposed by Lembo
et al. [10] for DL-Lite to compute inconsistent patterns of ABox assertions. By
caching instantiations of these patterns, we are able to reduce the amount of rea-
soning required to determine the inconsistency of an ABox with every previously
processed ABox. We present experimental results of our approach in terms of
runtime and accuracy and compare it against complete reasoning techniques, the
reasoning approach for DL-LiteA, and an approximate reasoning approach based
on machine learning proposed in [16].

1 Introduction

Ontologies, and the reasoning with ontologies, are well established techniques for cap-
turing and processing knowledge. In the past decades, a large body of research has
been conducted on optimizing reasoning systems for ontology languages of different
expressiveness. So far, the major part of research on ontology reasoning focuses on
developing reasoning systems that are both sound and complete. However, as already
argued in [16], reasoning results that are 100% accurate are not required in many use
cases for which ontology reasoning has been proposed and/or applied in the past, e.g.,
information retrieval, recommender systems, or activity recognition. On the other hand,
many of those use cases have very strict performance requirements, as they are usually
applied in real time settings.

These considerations led to the development of reasoning systems that weaken the
constraint of soundness or completeness for the sake of better performance. In this pa-
per, we propose an approach for checking the consistency of many ABoxes against the
same TBox, a task to which many real world reasoning tasks can be reduced. Our ap-
proach is sound but not complete for detecting inconsistencies in OWL 2 ontologies.

It builds upon DL-LiteA clash queries [11] and extends them in order to detect incon-
sistencies beyond the scope of DL-LiteA. Furthermore, we propose a caching method
to avoid costly calls to a reasoner, which becomes more effective with every processed
ABox.

We conduct comprehensive experiments on two real life datasets and compare our
method against three different types of reasoning approaches: First, we apply complete
reasoning techniques using HermiT [7]. Second, we apply the reasoning approach for
inconsistency detection in DL-LiteA as proposed by Lembo et al. [10]. Third, we have
reimplemented the approximate reasoning approach based on machine learning, pro-
posed by Paulheim and Stuckenschmidt [16]. The results indicate that our approach is
highly efficient and capable of detecting significantly more inconsistencies than other
incomplete methods. We analyze the results of our experiments and explain under which
conditions a method that is based on caching (parts of) explanations is a better choice
than a method that is based on learning from previously seen examples and vice versa.

The rest of this paper is structured as follows. Section 2 introduces some basic
concepts, the preliminaries on checking consistency in DL-LiteA, and the basic idea
of using machine learning techniques as proposed in [16] to solve the given problem.
Section 3 introduces our approach, which is based on the extension of the techniques
proposed for DL-LiteA combined with a caching technique. Section 4 discusses exper-
imental results both w.r.t. result quality and runtime performance. We conclude with a
summary and an outlook on future work.

2 Preliminaries and Related Work

Within this section we first recall the notion of inconsistency and explanation. We also
argue why explanations are useful for our problem (Section 2.1). Then we introduce the
description logics DL-LiteA (Section 2.2) before we finally explain how inconsistencies
can be detected in DL-LiteA (Section 2.3). Later on we use the DL-LiteA query expan-
sion techniques as a baseline in our experiments and extend this approach to detect
inconsistencies within ontologies that are beyond DL-LiteA. In Section 2.4 we present
and discuss the idea of using machine learning for detecting inconsistencies.

2.1 Inconsistencies and Explanations

In the following we use T to refer to a TBox that defines the vocabulary used in a set
of ABoxes A1 to An. In description logics, an interpretation I that satisfies all axioms
in T and all assertions in A is called a model of T ∪ A. If such a model exists, T ∪ A
is called consistent. Otherwise, T ∪A is called inconsistent [1, 3]. The inconsistency of
an ontology is usually a sign for an error, i.e., a sign for a faulty axiom or assertions. In
our setting we assume that the TBox T is not causing the problem, but helps to reveal a
mistake in (at least) one of the assertions in an ABox.

According to Kalyanpur et al. [8], an explanation (or justification) for an assertion
or an axiom φ is a subset O′ of O = T ∪ A such that O′ |= φ while O′′ 6|= φ for all
O′′ ⊂ O′. An explanation can be understood as a minimal reason that explains why φ
follows from O. Analogously, given an inconsistent ontology O, we are interested in

2

explanations for the inconsistency, i.e., minimal subsets O′ of O such that there exists
no model for O′. More precisely, a minimal inconsistent subset O′ (also referred to
as MIS) is a subset of O such that O′ is inconsistent while O′′ is consistent for all
O′′ ⊂ O′. An example for a MIS is shown as Example 1.

Example 1. This example shows a simplified inconsistency explanation for one of the
ABoxes from the experiments with DBpedia and DOLCE. The inconsistency is related
to the fact that clintonMorrison11 is implicitly typed as a Person, but at the same time
as a time span in the life of a person via the concept Situation.

team(clintonMorrison11 , irelandFootballTeam) (1)
PhysicalObject v ¬SocialObject (2)
PhysicalAgent v PhysicalObject (3)

Person v PhysicalAgent (4)
Situation(clintonMorrison11) (5)

∃team v Athlete (6)
Athlete v Person (7)

Situation v SocialObject (8)

The example shows that the explanations for an inconsistency are not trivial and that
mistakes in the ABox can only be detected via chains of relevant axioms. With respect
to our setting, we are only interested in the ABox elements, since we trust in the cor-
rectness of the TBox axioms. For that reason, the relevant assertions are (1) and (5). It is
important to understand that we can replace the concrete instances in (1) and (5) by any
other pair of instances. This means that any instantiation of team(x , y)∧ Situation(x)
will be inconsistent. The computation and caching of the relevant information that cor-
responds to such a partial explanation will be an important element of our approach. In
particular, we focus only on a specific type of partial explanations, which correspond to
the clash types in DL-LiteA.

2.2 DL-LiteA

DL-Lite is a family of lightweight description logics proposed by Calvanese et al. [2]
with the aim to find a trade-off between expressiveness and reasoning complexity. This
resulted in a family of languages where terminological reasoning can be done in PTIME
in the size of the TBox and query answering in AC0 in the size of the ABox. In DL-
LiteA, which is a concrete member of the DL-Lite family, concept, role, value-domain,
and attribute expressions are formed according to the following syntax:

B ::= ⊥C | A | ∃Q | δ(U) E ::= ρ(U)

C ::= >C | B | ¬B | ∃Q.C F ::= >D | T1 | . . . | Tn
Q ::= P | P− V ::= U | ¬U
R ::= Q | ¬Q

3

where>C denotes the top or universal concept,⊥C the bottom or empty concept, A
an atomic concept, B a basic concept and C a general concept. Similar to that, we have
atomic roles denoted by P, basic roles by Q and general roles by R. Atomic attributes are
represented by U and general attributes by V whereas E denotes a basic value-domain
and F a value-domain expression. Furthermore, ∃Q (unqualified existential restrictions)
represent objects that are related by role Q to some objects, ∃Q.C (qualified existential
restrictions) denote objects that are related by Q to objects denoted by concept C, ¬
denotes the negation of concepts, roles or attributes and P is used to represent the
inverse of role P. Concerning an attribute U its domain is denoted by δ(U) and its range
(set of values) by ρ(U). Value domains are represented by T1 | . . . | Tn, where each Ti

denotes a pairwise disjoint data type of values and >D the universal value-domain [2,
17]. In DL-LiteA a knowledge base K = 〈T ,A〉 consists of a TBox T also known
as schema, and an ABox A, the extensional knowledge part which represents a data
source.

The defined expressions can be used in TBox axioms in the following way. Axioms
of the form B v C denote concept inclusions, Q v R role inclusions, E v F value-
domain inclusions and U v V attribute inclusions. Functionality assertions on roles
and attributes in T are denoted by funct Q and funct U. TBox axioms of the form B1

v B2 and Q1 v Q2 are called positive inclusions (PI) whereas B1 v ¬B2 and Q1 v
¬Q2 negative inclusions (NI). For ABox assertions a and b represent object constants
and v represents a value constant. We refer the reader to [2, 17] for a discussion of the
semantics of DL-LiteA, which we omit here due to the lack of space.

An example of an axiom that is not within the scope of DL-Lite is an axiom of the
form ∃partOf .Event v Event . If such an axiom is part of a MIS, the approach based
on clash query expansion, which is shortly presented in the following section, will not
be able to detect the respective inconsistency.

2.3 Inconsistency Detection in DL-LiteA

Lembo et al. [10] identified a collection of six different patterns that cause clashes in
DL-LiteA knowledge bases listed as follows. This collection is complete for DL-LiteA.
This means that any inconsistency in O = T ∪A, as long as the axioms and assertions
are within the DL-LiteA profile, can be detected by checking the following patterns.
With respect to the following listing let a, b and c be individuals, let A and A′ be named
concepts, P and P ′ be roles, and let U be an attribute in accordance with the naming
conventions of the previous section.

1) Instantiation of an unsatisfiable named concept, role, attribute
a) T |= A v ¬A and A(a) ∈ A
b) T |= P v ¬P and P (a, b) ∈ A
c) T |= U v ¬U and U(a, v) ∈ A

2) Assertions contradicting axioms that prohibit self-interrelations
a) T |= P v ¬P− and P (a, a) ∈ A

3) Incorrect data types
a) T |= ρ(U) v T and U(a, v) ∈ A and vI /∈ T I

4) Assertions contradicting negative inclusions

4

a) T |= A v ¬A′ and A(a), A′(a) ∈ A
b) T |= A v ¬∃P and A(a), P (a, b) ∈ A
c) T |= A v ¬∃U and A(a), U(a, v) ∈ A
d) T |= A v ¬∃P− and A(b), P (a, b) ∈ A
e) T |= P v ¬P ′ and P (a, b), P ′(a, b) ∈ A
f) T |= ∃P v ¬∃P ′ and P (a, b), P ′(a, c) ∈ A
g) T |= ∃P v ¬∃P ′− and P (a, b), P ′(c, a) ∈ A
h) T |= ∃P− v ¬∃P ′− and P (a, b), P ′(c, b) ∈ A

5) Assertions contradicting role functionality
a) (funct P) ∈ T and P (a, b), P (a, c) ∈ A and b 6= c
b) (funct P−) ∈ T and P (a, c), P (b, c) ∈ A and a 6= b

6) ABox assertions contradicting attribute functionality
a) (funct U) ∈ T and U(a, v1), P (a, v2) ∈ A and v1 6= v2

In the context of DL-LiteA it is sufficient to implement the |= operator in terms of
the DL-LiteA expansion rules. All clashes related to clash type 4)a) can, for example, be
detected by applying the DL-LiteA expansion rules recursively on each directly stated
disjointness axiom B v ¬C. As a result, all relevant clashes of the type T |= A v
¬A′ are collected and the ABox can be checked against these inconsistency patterns. If
we apply the approach on the axiom PhysicalObject v ¬SocialObject given a TBox
that contains amongst others all of the axioms listed in in Example 1, the expansion
rules will entail Situation v ¬∃team . This means that every ABox is inconsistent that
instantiates team(x , y) ∧ Situation(x).

2.4 Learning vs Computing Explanations

It has been a trend over the last years to train statistical models on large knowledge
graphs in order to predict new facts about the world. An overview is given in [13].
These works are mainly concerned with the prediction of a fact that cannot be entailed
by deductive reasoning. Opposed to that, in [16] the authors propose to mimic a rea-
soner for checking consistency by training a machine learning model. To this end, the
authors propose to translate an ABox to a binary feature representation. On top of this
representation a TBox specific classifier is learned that is able to distinguish between
consistent and inconsistent ABoxes. The approach requires the usage of a reasoner to
annotate the training examples, which are ABoxes translated to the feature representa-
tion, as consistent or inconsistent. Once the classifier has been trained, it mimics the
behavior of the reasoner. Results presented in [16] have shown that the approach is
highly efficient once the training phase has been finished.

A crucial aspect of the method is the chosen feature representation. In [16] the au-
thors propose the use of path kernels introduced in [12] for generating the features.
Without recalling the details, we point out that the generated features for Example 1
contain a feature for team(x , y), a feature for Situation(z), and another feature for the
conjunction team(x , y) ∧ Situation(x). This means that the classifier can also learn
that each instantiation of team(x , y) ∧ Situation(x) is inconsistent. In order to suc-
cessfully learn that this pattern causes inconsistency, the training examples have to cover
at least one inconsistent ABox A∗ that makes use of this pattern. Moreover, there need

5

to be some consistent training examples that use team(x , y) only and some that use
Situation(x) only without the conjunction to avoid over-fitting. For the same purpose,
the training examples must also cover consistent ABoxes that make use of the other
concepts and roles in A∗ that are not causing the inconsistency.

Contrary to an approach based on machine learning, we compute a partial expla-
nation for the inconsistency of A∗. By projecting the explanatory entailment to its cor-
responding assertional pattern, we are able to directly achieve the goal of the learning
process without the need for annotating a sufficient number of samples with a standard
reasoner. However, the computation of an explanation is known to be rather costly and
several approaches have been proposed for this purpose [6, 8]. We base our work on
the DL-Lite clash patterns. We will argue in the following section that we can use the
DL-Lite techniques or a standard reasoner to check for A∗ if a certain pattern, which
might be part of a complex explanation, results in an inconsistency. By storing incon-
sistent patterns we can directly decide that each ABox that instantiates this pattern is
inconsistent.

3 Our Approach

We describe two approaches for checking a sequence of ABoxes A1, . . . ,An against
a given TBox T . The first approach (Section 3.1) is a straightforward application of
the inconsistency reasoning techniques of DL-LiteA that are based on the clash types
of Lembo et al [10]. Our approach (Section 3.2) extends and modifies this approach by
using a reasoner that is fully compliant with the OWL 2 semantics.

3.1 Precompiling DL-LiteA Clash Types

At the end of Section 2.3 we explained how the expansion rules of DL-LiteA can be used
to compute all combinations of concepts, roles and attributes resulting in inconsistencies
in an DL-LiteA ontology. Given a TBox T we apply this procedure for all clash types
storing the results in an efficient index structure. We have to distinguish between clash
types that are related to the use of

a) a single concept, role, or attribute (Type 1 and 2),
b) two concepts, two roles, concept and role, or concept and attribute (Type 4),
c) an attribute and a value from a datatype (Type 3),
d) a role or an attribute and the inequality of two instances or values (Type 5 and 6).

For each of these four cases we use a dedicated hash structure (referred to as H⊥a
to H⊥d), which allows to check if, e.g., the relevant combination of signature elements
(concepts, roles, attributes), is contained. We sometimes refer to these data structures in
an more general way by omitting the subscript. Once H⊥a to H⊥d have been computed,
checking an ABox for consistency breaks down to checking for each single assertion or
each pair of assertions if the used signature elements are stored in the respective data
structures. We refer to this approach as CQ in the following. This approach has proven
itself in practice and was successfully applied in Nolle et al. [14].

6

3.2 On Demand Reasoning

Our approach, which is a modified extension of CQ, omits the up-front computation of
clash queries. Instead, we invoke a reasoner on the fly if we cannot decide the consis-
tency based on clash queries already observed. We refer to that approach as CQ+. CQ+
differs from CQ in three aspects.

First, instead of using the expansion rules, we use a standard OWL 2 reasoner to
compute the signature combinations that correspond to instantiations of the clash types.
This does not guarantee completeness. There are still possible signature combinations
resulting in inconsistencies that are not captured by one of the clash types, e.g., in-
consistent combinations of more than two type assertions like A(a), B(a), C(a) with
A u B v D and D v ¬C. Nevertheless, we will be able to detect inconsistencies
that cannot be detected by expanding the stated axioms via the DL-LiteA expansion
rules, because sometimes relevant entailments are based on axioms that are beyond the
DL-LiteA expressivity.

Second, we do not compute inconsistent combinations of signature elements in ad-
vance, but on the fly during checking combinations of ABox assertions from the given
set of ABoxes. We store every detected clash type instantiation in one of the H⊥ caches.
Note that these caches are empty when we apply the approach to check the consistency
of the first ABox. This differs from the CQ approach, where we compute all inconsis-
tent signature combinations in advance. To minimize the calls to the reasoner, we check
prior to any reasoning if the currently used combination of signature elements is already
stored in one of the H⊥ caches (or in one of the H> caches, which will be explained in
the following paragraph). This will obviously be more effective the more ABoxes are
already processed.

Third, we do not only store inconsistent signature combinations, but also consistent
combinations. Without this extension we cannot leverage the knowledge about the in-
consistencies we detected so far. In the CQ approach we first computed the assertional
patterns resulting in inconsistencies, then we started processing the ABoxes checking
each assertion or combination of assertions against the pattern stored in H⊥. If this
check is negative, we conclude that the checked combination is consistent. We cannot
apply this procedure in the current approach, because H⊥ will be empty at the beginning
and highly incomplete in the initial phase until a significant number of inconsistencies
has been observed. For that reason we have to store inconsistent combinations in H⊥
and consistent combinations in H>. For each combination of axioms within an ABox
that can found in one of these caches, we decide upon the consistency of this ABox
fragment without calling a reasoner.

The algorithm for checking the consistency of an ABox A against a TBox T is
shown in Algorithm 1. This algorithm is called for each of the ABoxes that need to
be checked. The different variants of H⊥ and H> are referenced via global variables
pointing to data structures for which the operations of adding and containment checking
run in constant time. We have depicted the algorithm only for Case 4)b). In our actual
implementation, we extended the algorithm by a comprehensive set of case distinctions
covering the remaining clash types using all four caches.

For the CQ+ approach, every processed ABox increases the probability that a cer-
tain combination of signature elements has already been observed to be consistent or

7

Algorithm 1 CHECKCONSISTENCY(A, T)
1: for all a ∈ instances(A) do
2: for all φ(a) ∈ class-assertions(A) do
3: for all ψ(a, b) ∈ role-assertions(A) do
4: if 〈φ, ∃ψ〉 ∈ H⊥

b then
5: return false
6: end if
7: if 〈φ, ∃ψ〉 ∈ H>

b then
8: continue // ... with next loop cycle
9: end if

10: if T |= φ v ¬∃ψ then
11: 〈φ, ∃ψ〉 add−→ H⊥

b

12: return false
13: else
14: 〈φ, ∃ψ〉 add−→ H>

b

15: end if
16: end for
17: end for
18: end for
19: return true

inconsistent, which means that no reasoning activities are required for that combination.
In terms of Algorithm 1, this means that line 10 to 15 will be executed less often the
more often the procedure is called. However, this depends both on the size of the TBox
and on the distribution of factually used combinations of signature elements, which will
be discussed in the following section.

4 Experiments

In Section 4.1 we first describe the datasets used in our experiments and give an overview
on the reasoning methods that we evaluate. We present and discuss the most important
results of our experiments in Section 4.2.

4.1 Setting

We use two datasets in our experiments1. These datasets have also been used in [16]
to demonstrate how machine learning can be applied efficiently to mimic a reasoner.
We rebuild larger versions of these datasets according to the descriptions in [16]. The
first dataset, that we refer to as the DBpedia+ dataset, uses the DBpedia TBox that
consists of all mapping-based roles and types in DBpedia [9]. This TBox is extended
with the top-level ontology DOLCE-Zero [4]. The reason for this extension is related
to the fact that DBpedia contains only few disjointness axioms, while DOLCE-Zero

1 All the datasets created for this paper are available online at http://web.informatik.uni-
mannheim.de/rr2017

8

Table 1: Characteristics of the DBpedia+ and GoodRelations dataset in terms of number
of generated ABoxes, percentage of inconsistent ABoxes, average size of ABoxes; the
description logic of the TBox, and number of logical axioms in the TBox.

ABoxes Inconsistent Average Size DL Logical Axioms

DBpedia+ 100000 24.07% 58.1 SHIN (D) 7436
GoodRelations 5000 28.54% 13.9 SHI(D) 450

introduces disjointness on the top level [15]. We generated 100k ABoxes where each
ABox consists of a randomly chosen role assertion and all class assertions related to its
subject and object. Thus, all of the ABoxes have a very simple structure and most of the
reasoning task is related to checking the asserted types against the domain and range
restrictions of the role. However, the explanations for an inconsistency can nevertheless
be quite complex. This is illustrated by Example 1, which is an (already slightly sim-
plified) explanation for one of the generated ABoxes. Note also that an ABox usually
contains more assertions than shown in Example 1.

The second dataset uses the GoodRelations ontology as TBox. GoodRelations [5]
is a vocabulary designed for e-commerce, which is used as RDFa to describe products
and offers. We have used a sample of documents from the WebData-Commons 2014
Microdata corpus, and extracted 5k randomly chosen documents (= ABoxes) that make
use of the GoodRelations vocabulary. In doing so we encountered syntactic errors and
related parsing problems, which required a semi-automated extraction process. For that
reason, we were able to extract only 5000 ABoxes. Opposed to the ABoxes from the
DBpedia+ dataset, these ABoxes do not share a common structure and are larger com-
pared to the ABoxes from the DBpedia+ dataset. The characteristics of the two datasets
are presented in Table 1.

We have not used the schema.org and the YAGO dataset used in [16] because they
pose less complex reasoning tasks. According to our inspection of the schema.org
dataset, many mistakes are based on roles that have been used as attributes (or vice
versa). The remaining inconsistencies seem to be only clashes related to attributes us-
ing data values that are incompatible with the explicitly stated data type. Each of the
ABoxes in the YAGO dataset is describing a single instance by all of its concept as-
sertions. This means that each ABox is of the form C1(a), . . . , C2(a). Moreover, these
assertions are extended in a preprocessing step by adding the transitive closure on the
stated class assertions, in order to support the machine learning.

In our experiments we analyze the following reasoning techniques with respect to
their performance on the two datasets we introduced above.

CQ refers to the technique that uses the DL-LiteA expansion rules. We apply this tech-
nique to compute inconsistent patterns of assertions in a preprocessing step. Check-
ing an ABox boils down to checking the ABox against these precompiled clash
patterns.

CQ+ refers to the method that uses the DL-LiteA clash patterns. However, instead of
using expansion rules in a preprocessing step it uses a complete reasoner to check
the relevant entailments on the fly wh3n the corresponding combinations appear in

9

the currently processed ABox. We will also report about experiments, where we
turn off the reasoning components after n ABoxes have been processed and the
results are than solely based on the cache.

ML refers to the machine learning approach that has been described in [16]. For the
feature transformation of the ABoxes, we used all paths up to length 3 for the
GoodRelations dataset, while the ABoxes from the DBpedia dataset naturally have
a path length of at most 2. All experiments were conducted with RapidMiner Stu-
dio.2 In particular, we report about results using Decision Trees which has turned
out to achieve good and stable results.

HermiT is a well-known OWL 2 reasoner [7], which we also used to annotate the
training examples for the ML approach.

4.2 Results

The main results of our experiments are depicted in Table 2. The first column is rele-
vant only for CQ+ and ML. For CQ+ it shows the number of ABoxes that have been
processed to set up the cache. For ML the same number refers to the number of train-
ing examples. The second column shows to the preprocessing time in seconds. In the
preprocessing phase the CQ approach computes the expanded clash queries, the ML
method trains a classifier which includes also the labeling of the samples with a rea-
soner (HermiT in our setting), the CQ+ (cache only) method requires processing some
ABoxes in order to observe and store clashes (explanations) in the cash, HermiT re-
quires loading the TBox. The third column shows the average time for checking the
consistency of an ABox in milliseconds. While we know that all reasoning based meth-
ods are sound, i.e., a consistent ABox will never be labeled as inconsistent, an approach
based on ML cannot guarantee soundness. For that reason we compare the results in
terms of accuracy in the fourth column informing about the fraction of correct answers
for each of the methods.

HermiT achieves an accuracy of 100% on both datasets. However, the runtimes are
≈25ms and ≈100ms for checking a single ABox. This shows that it is problematic to
apply standard reasoning techniques if we want to check a very high number of ABoxes,
without resorting to parallelization.

The CQ method reaches an accuracy of 98.59% on DBpedia+ and 100% on Good-
Relations. An accuracy of 98.59% corresponds, with respect to the DBpedia+ dataset,
to 5.44% inconsistent ABoxes that have not been detected to be inconsistent. The run-
times of the CQ approach are about 0.05ms for a DBpedia+ ABox and 0.3ms for a
GoodRelations ABox. The differences can be explained by the different size of the
ABoxes. Comparing these runtimes to the runtimes of HermiT, the CQ method is about
2000 times faster. The method requires relatively high preprocessing runtimes for the
preprocessing step due to the fact that all possible DL-LiteA clashes are computed even
though most of them will never be instantiated.

The CQ+ approach is capable of detecting all inconsistencies for both datasets. The
improvement for DBpedia+ from 98.59% (CQ) to 100% (CQ+) is caused by the use of

2 http://www.rapidminer.com

10

Table 2: Runtime and accuracy of CQ, CQ+, CQ+ turning off reasoning, ML and Her-
miT for the DBpedia+ and GoodRelations dataset averaged over ten runs for each set-
ting. For settings that depend on previously processed ABoxes (”Training”), we ran-
domly selected the set of these ABoxes in each of the runs.

Training
Runtimes

Accuracy
Preprocessing (s) Checking Inc. (ms)

D
B

pe
di

a+

CQ - 746 0.046 98.59%
CQ+ - - 77 to ≤0.5 100%

CQ+
(cache only)

1000 77 0.041 98.6%
10000 172 0.043 99.59%
50000 253 0.04 99.84%

ML
1000 98 + 1 0.356 97.62%
10000 984 + 22 0.383 98.46%
50000 4919 + 183 0.525 98.52%

HermiT - 10 98.38 100%

G
oo

dR
el

at
io

ns

CQ - 20 0.311 100%
CQ+ - - 4.5 to ≤0.33 100%

CQ+
(cache only)

50 0 0.318 99.89%
500 1 0.315 99.92%

2500 2 0.321 100%

ML
50 1 + 0 1.483 95.60%
500 12 + 0 1.589 99.87%

2500 61 + 1 1.757 99.9%
HermiT - 2 24.48 100%

full-fledged reasoning when checking such patterns as T |= A v ¬∃P , while the pat-
terns themselves cover all factually existing inconsistencies. The runtimes of the CQ+
approach cannot be presented in terms of an average number, but require presenting
the runtime depending on the number of previously checked ABoxes. Remember that
with every processed ABox more information is stored in the H⊥ and H> caches. To
measure the impact of the cache, we apply our algorithm on consecutive blocks of 1000
ABoxes w.r.t DBpedia+ (100 ABoxes w.r.t GoodRelations) measuring the average run-
time for a single ABox within such a block.

The resulting runtimes are shown in Figure 1 on a logarithmic scale. We start with a
runtime of≈ 80ms for DBpedia. After processing 10k ABoxes the runtime for an ABox
is≈ 5ms. After 50k ABoxes have been processed less than 1ms is required. The runtime
behavior is similar for GoodRelations. However, significantly less processed ABoxes
are required to reduce the initial runtimes. After having processed 1000 ABoxes, the
runtimes for CQ and CQ+ are roughly the same. The differences between DBpedia+
and GoodRelations are related to the significantly smaller TBox of GoodRelations.
Since there are less concepts, roles and attributes in GoodRelations, there are also less
(frequently used) inconsistent and consistent vocabulary combinations.

The CQ method is about 80 times (GoodRelations) to 2000 times (DBpedia+) faster
compared to HermiT. This means that by applying the CQ method we are losing com-
pleteness, as described above, but gain a significant improvement in runtime. The CQ+

11

Fig. 1: Runtime of CQ+ for processing a single ABox with respect to the number of
already processed ABoxes for DBpedia+ [GoodRelations].

number of processed ABoxes

av
er

ag
e

ru
nt

im
e

pe
rA

B
ox

(l
og

.s
ca

le
)

10k
[1k]

20k
[2k]

30k
[3k]

40k
[4k]

50k
[5k]

60k 70k 80k 90k 100k
0.1ms

1ms

10ms

100ms

DBpedia+
GoodRelations

method detects all inconsistencies in both datasets. Its runtimes are at the beginning sim-
ilar to the runtimes of HermiT. However, after processing a large number of ABoxes,
CQ+ is between 80 and 200 times faster compared to HermiT.

One of the most important features of the CQ+ method is the option to turn off rea-
soning and to rely solely on the cache after a reasonable number of ABoxes have been
processed. Table 2 shows the runtimes after turning off reasoning as soon as n ABoxes
have been processed. The time required to process the first n ABoxes is counted as pre-
processing time in this setting. n is specified in the column entitled ”Training”. For the
ML approach we use exactly this number of ABoxes as training examples. The CQ+
runtimes, after turning off the reasoning component, are approximately the same run-
times that we measured for the CQ approach. However, the accuracy is surprisingly high
after processing a relatively small number of ABoxes. After processing 1k ABoxes of
DBpedia+, the accuracy is similar to the accuracy of the CQ method; after 10k ABoxes
we are already reaching an accuracy of 99.59% which is increased to 99.84% when pro-
cessing 50k ABoxes. For GoodRelations we achieve an accuracy of 100% after having
processed 2500 ABoxes. This shows that the CQ+ method is highly flexible and can be
configured for the needs of a given application scenario (runtime vs. accuracy).

We have also applied the ML approach of Paulheim and Stuckenschmidt [16]. The
runtimes are slightly worse compared to the runtimes of the CQ method. Note that most
of the runtimes are related to generating the feature representation of an ABox, while the
classification itself is extremely fast. The high runtimes for preprocessing are caused by
the need to annotate the training examples with the help of HermiT, while the runtimes
for learning the classifier are of little significance. The accuracy of the approach is
rather high. However, the ML results that are based on learning from n examples are
worse than comparable results of the CQ+ approach relying solely on the cache after n
ABoxes have been processed with an active reasoning component. This becomes more
evident when we present the results in terms of the error rate (1 − accuracy). The
error rate on DBpedia+ with n = 10000 is 1.54% for ML and 0.41% for CQ+, the
error rate on GoodRelations with n = 2500 is 0.13% for ML and 0.08% for CQ+. This

12

Table 3: Characteristics related to memory consumption for CQ, CQ+ and ML.
DBpedia GoodRelations

processed/training examples 10k 100k 500 5000
CQ (H>

b / H⊥
b) - / 8810234 - / 11184

CQ+ (H>
b / H⊥

b) 17057 / 480 27580 / 1460 804 / 7 1722 / 12
ML (number of features) 4211.6 8261 1781.4 2427

illustrates the theoretical considerations that we presented in Section 2.4. Moreover, the
accuracy of the learned classifier is in none of the settings higher than the well known
CQ method.

In Table 3 we present numbers relevant to the memory usage. For CQ and CQ+ we
show the number of stored combinations in the H>b (consistent usage) and H⊥b (incon-
sistent usage). Note that the Hb caches are the only ones that can increase up to the
square of the concepts, roles and attributes defined in the TBox, while the other caches
will only grow linearly. For ML we show the dimension of the feature vector that de-
scribes a single ABox. First, we compare the clash patterns stored by CQ and CQ+.
While there are more than 8 million instantiations of clashes, there occur only 1460
of these clashes in a set of 100k ABoxes. This is less then 0.02%. For GoodRelations
we measured only 12 different inconsistency patterns.3 The fact that only very specific
errors occur in the dataset is also a reason why learning works in the given setting. The
fact that DBpedia results in more than 8 million inconsistent combinations shows that
the CQ approach is only applicable to larger TBoxes if extensive memory resources are
available. While the number of consistent combinations clearly dominates the incon-
sistent combinations for CQ+, the overall cache size is still acceptable and seems to
grow linearly with respect to the size of the TBox. The number of features in the ML
approach is less for DBpedia+ and more for GoodRelations compared to the sum of the
entries in the CQ+ caches. Overall, the numbers are in the same order of magnitude.
The differences are mainly based on the fact that the maximal path length in the DB-
pedia+ ABoxes is two, while the GoodRelations dataset has ABoxes that correspond to
graphs with longer paths.

5 Conclusion and Future Work

In this work, we have studied different methods to solve the problem of efficiently
checking the consistency of a large set of ABoxes against a given TBox. Our results
indicate that the approach proposed in [11], which is complete for DL-LiteA, can also
be applied successfully to scenarios where the given TBox is more expressive. While
such an approach, referred to as CQ, is incomplete in theory, our experiments indicted
that only few inconsistencies remain undetected. Moreover, the CQ approach clearly

3 Note that the Hb caches do not contain errors related to wrong datatypes. However, these
errors are less important from a reasoning perspective since all of them have been detected by
comparing the stated datatype against the type of the given value.

13

outperforms an approach based on machine learning, which has been proposed more
recently [16].

We extended the CQ resulting in an approach referred to as CQ+. This approach is
based on the use of a complete reasoner to check on the fly the entailment that results
in an instantiation of a clash pattern. Spotted inconsistent and consistent combinations
of vocabulary usage are stored in a cache, which is used prior to any calls to the rea-
soner. This extension resulted in an accuracy of 100% for both datasets used in our
experiments. Moreover, we could show that the runtimes decrease with every processed
ABox resulting in a highly efficient procedure for checking consistency.

Even though we measured in our experiments an accuracy of 100%, we are aware
that this is only an empirical observation related to the datasets we used in our experi-
ments. Even within the simple structure of the DBpedia ABoxes, there is no guarantee
that the CQ+ method finds all inconsistencies. One can easily define sets of axioms that
would result, in combination with an ABox that has the same structure as the ABoxes
of the DBpedia+ dataset, in an inconsistency. An example are the following axioms and
assertions.

∃P.B v A,A v ¬C,P (a, b), C(a), B(b)

Both CQ and CQ+ are not capable of detecting this inconsistency, due to the fact
that the involved assertions do not instantiate one of the clash types. A machine learning
based approach is in principle capable of learning a classifier that will work for such
cases. This will happen if instantiations of P (x, y), C(x), B(y) appear sufficiently of-
ten within the training examples, while proper subsets of these instantiations, that are
marked as consistent, will also appear sufficiently often within the training examples.
Other inconsistencies that are beyond the scope of CQ+ involve, for example, role tran-
sitivity and role irreflexivity.

In general, an approach that is based on learning can pay-off only for datasets where
two conditions hold:

– Some inconsistencies in the dataset cannot be detected with incomplete but efficient
reasoning techniques.

– These inconsistencies are instantiations of the same pattern that appears rather fre-
quently in the dataset.

In such a setting it might make sense to use (additionally) an approach that lever-
ages machine learning techniques to learn patterns that are not covered by CQ, CQ+
or any alternative inference method. This requires the development of an appropriate
feature representation without introducing a huge feature space that cannot be handled
efficiently. However, unless such a method based on machine learning is available, it
seems to be the best choice to rely on the CQ method, the CQ+ method, or another
elementary inference method.

As a first step in our future work, we plan to use the reasoner Konclude [18] in our
experiments.

14

References

1. Baader, F.: The description logic handbook: theory, implementation, and applications. Cam-
bridge: Cambridge University Press (2003)

2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. Journal of Auto-
mated Reasoning 39(3), 385–429 (2007)

3. Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., Wache, H.: Inconsistencies, negations
and changes in ontologies. Proceedings of the National Conference on Artificial Intelligence
21(2), 1295 (2006)

4. Gangemi, A., Mika, P.: Understanding the semantic web through descriptions and situations.
In: OTM Confederated International Conferences” On the Move to Meaningful Internet Sys-
tems”. pp. 689–706. Springer (2003)

5. Hepp, M.: Goodrelations: An ontology for describing products and services offers on the
web. In: International Conference on Knowledge Engineering and Knowledge Management.
pp. 329–346. Springer (2008)

6. Horridge, M., Parsia, B., Sattler, U.: Explaining inconsistencies in owl ontologies. In: Inter-
national Conference on Scalable Uncertainty Management. pp. 124–137. Springer (2009)

7. Horrocks, I., Motik, B., Wang, Z.: The HermiT OWL Reasoner. In: Proceedings of the 1st
International Workshop on OWL Reasoner Evaluation (ORE-2012), Manchester, UK (2012)

8. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL
entailments. In: The Semantic Web. pp. 267–280. Springer (2007)

9. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S.,
Morsey, M., Van Kleef, P., Auer, S., et al.: DBpedia–a large-scale, multilingual knowledge
base extracted from wikipedia. Semantic Web 6(2), 167–195 (2015)

10. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Query rewriting for inconsistent
DL-Lite ontologies. In: Web Reasoning and Rule Systems, pp. 155–169. Springer (2011)

11. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-Tolerant First-
Order Rewritability of DL-Lite with Identification and Denial Assertions. In: Proceedings of
the 25th International Workshop on Description Logics (2012)

12. Lösch, U., Bloehdorn, S., Rettinger, A.: Graph kernels for rdf data. In: Extended Semantic
Web Conference. pp. 134–148. Springer (2012)

13. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational ma-
chine learning for knowledge graphs. Proceedings of the IEEE 104(1), 11–33 (2016),
http://dx.doi.org/10.1109/JPROC.2015.2483592

14. Nolle, A., Meilicke, C., Chekol, M., Nemirovski, G., Stuckenschmidt, H.: Schema-based
debugging of federated data sources. In: Proceedings of the 22nd European Conference on
Artificial Intelligence (ECAI2016). IOS Press (2016)

15. Paulheim, H., Gangemi, A.: Serving dbpedia with dolce – more than just adding a cherry on
top. In: International Semantic Web Conference. pp. 180–196. Springer (2015)

16. Paulheim, H., Stuckenschmidt, H.: Fast approximate a-box consistency checking using ma-
chine learning. In: Extended Semantic Web Conference. pp. 135–150. Springer (2016)

17. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking
data to ontologies. In: Journal on data semantics X, pp. 133–173. Springer (2008)

18. Steigmiller, A., Liebig, T., Glimm, B.: Konclude: System description. J. Web Sem. 27, 78–85
(2014), http://dx.doi.org/10.1016/j.websem.2014.06.003

15

