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Abstract

Finding correct semantic correspondences between heterogeneous ontologies
is one of the most challenging problems in the area of semantic web technologies.
As manually constructing such mappings is not feasible in realistic scenarios, a
number of automatic matching tools have been developed that propose mappings
based on general heuristics. As these heuristics often produce incorrect results, a
manual revision is inevitable in order to guarantee the quality of generated map-
pings. Experiences with benchmarking matching systems revealed that the manual
revision of mappings is still a very difficult problem because it has to take the se-
mantics of the ontologies as well as interactions between mappings into account.
In this paper, we propose methods for supporting human experts in the task of
revising automatically created mappings. In particular, we present non-standard
reasoning methods for detecting and propagating implications of expert decisions
on the correctness of a mapping.

Keywords: Ontologies, Ontology Mappings, Mapping Revision, Distributed
Description Logics

1 Introduction and Motivation
The integration of information from heterogeneous sources is one of the major chal-
lenges of modern information technology. Researchers from different areas including
databases, knowledge representation and more recently in semantic web technologies
have addressed this problem. Ontologies have been identified as a key technology for
resolving semantic heterogeneity by providing common terms as well as formal spec-
ifications of their intended meaning in some logic. In large distributed environments
with a high number of different information sources, however, it is unlikely that people
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will agree on a single ontology as the basis for integrating information. Here, we often
face a situation where multiple ontologies describing the very same domain co-exist.
In such a situation, we first have to integrate the different ontologies before they can
serve as a basis for integrating information.

A common way of integrating different ontologies describing the same or largely
overlapping domains is to use formal representations of semantic correspondences be-
tween their concepts and relations - also referred to as ’ontology mappings’. Manual
approaches for identifying semantic correspondences are often not feasible since real
world ontologies, for example in the medical domain, often contain several thousand
concepts. As a response to this problem, a number of automatic and semi-automatic
tools for generating hypotheses about semantic correspondences have been developed
(see [5] for an overview). The results of these tools, however, often contain a signif-
icant amount of errors caused by the use of general heuristics that are bound to fail
in certain situations. Due to this fact, a manual revision of the mappings created by
matching systems is often inevitable to guarantee the quality of the integration.

Revising mappings is a very complex and difficult problem even for experts in the
area. We can identify two sources of complexity that make mapping revision hard for
humans:

• The correctness of mappings depends on the semantics of the ontologies. This
means that in principle, mapping revision forces us to completely consider the
ontologies linked by the mapping. This requires some form of logical reasoning
which is almost impossible to do manually due to their size and complexity.

• Individual decisions about the correctness of a suggested semantic relation can
have an influence on past and future decisions making the revision of a mapping
a non-monotonic process. Consistently revising a mapping therefore requires to
keep track of the different dependencies which is also infeasible without ade-
quate support.

We will illustrate these two sources of complexity using a small example. Imagine
two ontologies describing scientific publications and the following semantic relations
between concepts of the two ontologies:

1:Abstract equivalent to 2:Abstract (1)
1:Document equivalent to 2:Document (2)
1:Document broader than 2:Review (3)

At a first glance all of these relations look correct. There are situations, however, where
seemingly correct relations like the first equivalence are incorrect. Taking the whole
ontologies into account it turns out that the intended meaning of concept 2:Abstract is
not the one of a summary of a document as in the first ontology, but that of an abstract
entity (e.g., a topic of a document). In particular, the ontologies contain the following
axioms:

1:Abstract v 1:Document (4)
2:Abstract v ¬2:Document (5)
2:Review v 2:Document (6)
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Taking into account these definitions the mismatch can be detected using the following
chain of reasoning: The first equivalence relation implies that every instance of con-
cept 2:Abstract will also be an instance of concept 1:Document because 1:Abstract is
its subclass. On the other hand the second equivalence relation implies that every in-
stance of concept 1:Document will also be an instance of concept 2:Document. We can
conclude that this will make every instance of 2:Abstract also an instance of 2:Docu-
ment. But since the concepts Abstract and Document are defined to be disjoint in the
second ontology, concept Abstract becomes unsatisfiable and the second ontology will
therefore be incoherent.

The example also shows the dependencies between decisions. The chain of reason-
ing described above makes clear that the first two equivalences in our mapping cannot
both be true at the same time. This means that if we first decide that the first equiva-
lence is correct and then move on to the second equivalence and also decide that this
second equivalence relation is correct, we have to revise our decision on the first one in
order to avoid the model becoming inconsistent. Further, if we decide that the second
equivalence is correct, then the third relation also has to be correct, because it follows
from the fact that Review is defined as a subclass of Document in the second ontology.

The goal of the work reported in this paper is to develop formal methods to support
the process of manual mapping revision. In particular, we address the following aspects
of mechanizing this support.

• We describe a formalization of automatically generated mappings in terms of
distributed description logics as a basis for reasoning about the implications of
mappings.

• We propose methods for computing the implications of a revision choice and for
detecting conflicts between different choices based on this formalization.

• We develop a method for making suggestions concerning the correctness of se-
mantic relations not explicitly evaluated by the user on the basis of previous
decisions and confidence estimations provided by the matching system.

In the context of this work, we focus on the dynamics of the revision process and
the use of logical reasoning for dealing with these dynamics. We built on top of previ-
ous work on repairing automatically generated mappings [12] and extend this work in
several directions.

1. We provide a formal model of the process of mapping revision as a basis for
identifying the role of automated reasoning in the process.

2. We provide a detailed analysis of reasoning about mappings in the framework of
distributed description logics as a basis for detecting inconsistency and implied
mappings.

3. We present a revision method for mappings based on a modification of the diag-
nostic reasoning method used in [12] better suited for large mapping sets.
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4. We show that the use of formal reasoning as a basis for mapping revision signif-
icantly reduces the effort involved in manual evaluation of automatically gener-
ated mappings.

The paper is organized as follows. In section 2 we first take a broader look at the
problem of mapping revision. We introduce some basic terminology and formalize the
process of mapping evaluation as a sequence of evaluation decisions. In section 3 we
introduce distributed description logics as a formal model for representing ontologies
and mappings, and show how to extend this approach towards non-standard methods
for reasoning about mappings. The actual revision algorithm, which is based on the
principles of diagnostic reasoning, is described in section 4. In section 5 we present
the results of an experimental evaluation with respect to two different scenarios. We
conclude by positioning our work in the context of related approaches and discuss the
results achieved so far.

2 A Formal Model of Mapping Revision
In this section we present a formal framework for modeling mapping revision in the
context of manual evaluation. The key element of the framework is the notion of an
evaluation function. An evaluation function describes a partial or complete evaluation
of a mapping conducted by a domain expert. Based on this conceptualization we define
the notion of a valid revision function that plays a crucial role with respect to the task
of automated and semi-automated mapping revision. Before turning to the description
of the framework, let us preliminarily recall the notion of a mapping.

2.1 Mapping Preliminaries
A mapping between ontologies O1 and O2 can be defined as a set of correspondences.
Each correspondence expresses a semantic relation between a terminological entity of
O1 and O2. As described by Euzenat and Shvaiko in [5], a correspondence can be
defined as follows.

Definition 1 (Correspondence) Given ontologiesO1 andO2, let Q be a function that
defines sets of matchable elements Q(O1) and Q(O2) of ontologies O1 and O2 re-
spectively. Then a correspondence is a 4-tuple 〈e, e′, r, n〉 such that e ∈ Q(O1) and
e′ ∈ Q(O2), r is a semantic relation, and n is a confidence value from a suitable
structure 〈D, 6〉.

The generic form of definition 1 allows to capture a wide class of correspondences
by varying what is admissible as matchable element, semantic relation, and confidence
value. In this work, we impose the following additional restrictions on correspon-
dences: We only consider correspondences between concepts. We also restrict r to be
one of the semantic relations from the set {≡,v,w}. In other words, we only focus
on equivalence and subsumption correspondences. Given concepts A ∈ Q(O1) and
B ∈ Q(O2) subsumption correspondence 〈A, B,v, 1.0〉 is correct if everything that
we account to be an instance of A also has to be accounted to be an instance of B. The
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equivalence relation is defined as subsumption in both directions. Finally, we assume
that the confidence value is represented numerically on D = [0.0, 1.0].

Notice that the confidence value n can be seen as a measure of trust in the fact that
the correspondence holds. The higher the confidence degree with regard to the ordering
6 the more likely relation r holds between matchable elements e and e′. Given a set
of semantic correspondences, we can define the notion of a mapping as a container of
these semantic correspondences.

Definition 2 (Mapping) Given ontologiesO1 andO2, let Q be a function that defines
sets of matchable elements Q(O1) and Q(O2) of ontologies O1 and O2 respectively.
M is a mapping between O1 and O2 iff for all correspondences 〈e, e′, r, n〉 ∈ M we
have e ∈ Q(O1) and e′ ∈ Q(O2).

Based on this general model of a mapping, we can now define the process of map-
ping revision.

2.2 Revising Mappings
Let us consider an integration scenario of two overlapping ontologiesO1 andO2. In or-
der to perform the integration a mappingM has to be generated and evaluated by a do-
main expert. For each correspondence in M the evaluator has to choose between three
alternatives — correct , incorrect and unknown . By default, each correspondence is
implicitly evaluated as unknown as long as no evaluation is available for it. Having this
setting, the evaluation process can be modeled as a function e that assigns to each cor-
respondence of a given mapping a value from the set {correct , incorrect , unknown}.

Definition 3 (Evaluation function) An evaluation function e : M → {correct ,
incorrect , unknown} is defined by

e (c) 7→




correct if c is accepted
incorrect if c is rejected
unknown otherwise

for all c ∈M

Furthermore, let e (M, v) ⊆ M be defined as e (M, v) = {c ∈ M|e (c) = v} for all
v ∈ {correct , incorrect , unknown}.

In a typical scenario mapping evolution is a sequential process that starts from
e (M, unknown) = M. By iteratively evaluating correspondences in the mapping fi-
nally a complete evaluation with e (M, unknown) = ∅ is achieved. In order to model
such a stepwise evolution we further introduce a notion of a successor of an evaluation
function e, which is defined as an evaluation function containing more expert evalua-
tions compared to e.

Definition 4 (Successor evaluation function) Given an evaluation function e, an eval-
uation function e′ is called a successor of e when e (M, correct) ⊆ e′ (M, correct),
e (M, incorrect) ⊆ e′ (M, incorrect) and e (M, unknown) ⊃ e′ (M, unknown).
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We refer to the process of choosing a subsetM′ ofM based on a partial evaluation
as mapping revision and model this process as applying a revision function rev . The
input arguments of rev are a mapping M, the ontologies O1 and O2 and an evaluation
function e defined forM. By applying rev the input mappingM will be divided into a
mappingM′ ⊆M of selected correspondences and a mappingM\M′ of unselected
correspondences. Furthermore, an (possibly) extended evaluation function e′ will be
computed.

Definition 5 (Revision function) Given an evaluation function e, a revision function
rev is defined as a function rev(M,O1,O2, e) = 〈M′, e′〉 such that M′ ⊆ M and
e′ = e or e′ is a successor of e. Further we say that rev selects a correspondence c iff
c ∈M′ and unselects c iff c ∈M \M′.

By definition 5 we merely specified the domain and co-domain of a revision func-
tion. There are at least three additional requirements that a revision function should
fulfill. On the one hand a revision function should agree with the evaluation func-
tion. Every correspondence evaluated as correct should be selected and every corre-
spondence evaluated as incorrect should be unselected. Further, we require that the
application of a revision function should result in a consistent mapping. Finally, we
want all correspondences that logically follow from the selected correspondences to be
selected, too.

Definition 6 (Valid revision function) Given an evaluation function e, a revision func-
tion rev(M,O1,O2, e) = 〈M′, e′〉 is valid iff

• e′(M, correct) is closed under deduction,

• M′ is consistent, and

• for all correspondences c ∈ M we have e′(c) = correct → c ∈ M′ and
e′(c) = incorrect → c /∈M′.

Notice that we did not specifify which correspondences in e′(M, unknown) should be
part of M′. Given that e′(M, unknown) is an inconsistent subset of M, some ele-
ments of e′(M, unknown) have to be unselected to ensure the validity of the revision
function. The following are two desired characteristics for guiding this choice.

Minimal Change: The additional knowledge given by an expert evaluation should be
used in way to force a minimal set of modifications upon the knowledge en-
coded in the correspondences of the input mapping. In our context modifications
amount to unselecting correspondences.

Maximal Confidence: The chosen selection should be justified by the confidence val-
ues of the correspondences of the input mapping. In particular, the set of selected
correspondences M′ has to be maximized with respect to the sum of confidence
values of the correspondences in M′.

First, notice that the criteria of Minimal Change and Maximal Confidence may result
in conflicts. There might be two consistent subsets M′ and M′′ of the input mapping
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selected by a valid revision function, where |M′| > |M′′| but M′′ is maximal with
respect to the sum of confidences. Secondly, for both the Minimal Change and the
Maximal Confidence criterion we have to expect problems of scalability. For example,
finding a consistent mapping selection with maximal confidence is a hard optimization
problem. Thirdly, even though both criteria make sense from a theoretical point of
view, it is not obvious that the specific problem of mapping revision will be solved in
an appropriate way, if we stick too strictly to one of these criteria. Therefore, we have to
construct a revision algorithm that uses the introduced criteria as guiding principles and
finds a reasonable weighting between their importance and the specific characteristics
of the mapping revision problem.

3 A Logical Foundation for Mapping Revision
Due to the common acceptance of OWL and DL, there exists a formal agreement on
constructs for representing ontologies on the web. Contrary to this, a consensus on
the theoretical formalization of mappings has not yet been reached. A straightforward
way to formalize mappings would be to directly apply language constructs available in
OWL and hence to interpret correspondences as DL axioms. However, this approach
intermingles axioms encoding local ontological knowledge with axioms encoding map-
pings, making it hard to distinguish between the impact of mappings and the impact
of local knowledge. Obviously, this distinction is crucial to the process of mapping
revision.

In this work we propose the use of distributed description logics (DDL) as a theo-
retical underpinning for mapping formalization. The main conceptual benefit of DDL
compared to the encoding of mappings as OWL axioms is DDL’s treatment of map-
pings as first class entities, called bridge rules. Additional advantage of using DDL
comes from its ability to accommodate reasoning with and about mappings in a truly
distributed manner. Thus, it is possible to revise mappings without the necessity of in-
tegrating mappings with ontologies. Notice that this is a major benefit of DDL, because
in many scenarios access to an ontology as a whole might be granted due to privacy
restrictions, while reasoning services for the relevant parts of the ontology might be
available. A more detailed argumentation for the use of DDL bridge rules can be found
in [2].

3.1 Formalizing Mappings
Distributed description logics, as described in [22], can be understood as a formalism
for representation and analysis of multiple ontologies pairwise linked by directional
semantic mappings. In this context, depicted in Figure 1, a pair composed of a set O
of ontologies and a setM of associated mappings between arbitrary pairs of ontologies
constitutes a distributed ontology O = 〈O,M〉. In this section we recall the basics of
distributed description logics shedding the light on the supported syntactical constructs
for expressing ontological mappings and their respective semantic definitions.

Syntax: Let I be a set of indices. Given a collection of ontologies O = {Oi}i∈I , the
distributed description logics starts from a set {DLi}i∈I of description logic theories.
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Figure 1: An example of a distributed ontology

Each ontology Oi is standardly formalized as a T-box Ti of a description logic DLi.
Therefore, it contains definitions of concepts and properties, as well as general axioms
relating them to each other.1 For distinction, every definition is prefixed with an index
of T-box it belongs to, i.e., i:C, i:C v D. A collection of T-boxes {Ti}i∈I formally
represents the collection of ontologies O.

A collectionM = {Mij}i6=j∈I refers to the mappings of a distributed ontology O.
Every mapping Mij containing semantic correspondences between ontology Oi and
Oj is respectively formalized as a set Bij of bridge rules between corresponding T-
boxes Ti and Tj . Consequently, the collection of mappingsM is formally represented in
distributed description logics by a collection of bridge rules {Bij}i 6=j∈I . Each bridge
rule in Bij has a certain type and connects a concept from Ti to a concept of Tj .
Distributed description logics supports two core bridge rule types:

• i:C v−→ j:D (into)

• i:C w−→ j:D (onto)

The derived equivalence bridge rule i: C ≡−→ j: D is defined as the conjunction of
corresponding into and onto rules.

Intuitively, bridge rules from Ti to Tj express a subjective possibility of Tj to trans-
late some of the concepts of Ti into its local concepts. For example, the into bridge
rule i: PhDThesis v−→ j: Thesis states that concept PhDThesis, from the Tj’s point
of view, is less general than its local concept Thesis. Similarly, the onto bridge rule
i: InProceedings w−→ j:ConferencePaper expresses the more generality relation.

Bridge rules are directional, hence Bij is not the inverse of Bji. A certain mapping
Bij might be also empty, which represents the impossibility of Tj to interpret concepts
of Ti into any of its local concepts.

The collection of T-boxes and bridge rules between them forms a distributed T-
box T = 〈{Ti}i∈I , {Bij}i 6=j∈I〉 of distributed description logics, which is in turn the
formalization of the whole distributed ontology O = 〈O,M〉.
Semantics: The semantics of distributed description logics is based on a fundamental
idea that each ontology Ti is locally interpreted on a local interpretation domain. Each

1We assume the reader is familiar with description logics; an introduction can be found in [1].
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local interpretation Ii consists of a local domain ∆Ii and a valuation function ·Ii ,
which maps every concept to a subset of ∆Ii and every role to a subset of ∆Ii ×∆Ii .
Given that setting, the first component of semantics is a set of interpretations {Ii}i∈I ,
one for each Ti.

To resolve heterogeneity between different interpretation domains distributed de-
scription logics introduces a second semantic component, a domain relation. A do-
main relation rij represents a possible way of mapping the elements of ∆Ii into the
domain ∆Ij , such that rij denotes {d′ ∈ ∆Ij | 〈d, d′〉 ∈ rij}; for any subset D
of ∆Ii , rij(D) denotes

⋃
d∈D rij(d); and for any R ⊆ ∆Ii × ∆Ij rij(R) denotes⋃

〈d,d′〉∈R rij(d)× rij(d′).
A distributed interpretation I = 〈{Ii}i∈I , {rij}i 6=j∈I〉 satisfies a distributed T-box

T = 〈{Ti}i∈I , {Bij}i 6=j∈I〉, is called a model of T, if all its’ components (T-boxes
and bridge rules) are satisfied according to the following rules:

• Ii |= A v B for all A v B in Ti

• rij(CIi) ⊇ DIj for all i:C w−→ j:D in Bij

• rij(CIi) ⊆ DIj for all i:C v−→ j:D in Bij

The notion of logical entailment in distributed description logics is defined as usual
in classical description logics. T |= i:C v D if for every distributed interpretation I,
I |= T implies I |= i:C v D. Given a distributed T-box T = 〈{Ti}i∈I , {Bij}i6=j∈I〉,
one can perform some basic distributed inferences such as checking concept satisfia-
bility and subsumption. A concept i:C is satisfiable with respect to T if there exist a
distributed model I of T such that CIi 6= ∅. A concept i:C is subsumed by a concept
i:D with respect to T (T |= i:C v D) if for every distributed model I of T we have
that CIi ⊆ DIi .

Encoding correspondences as bridge rules: To formalize semantic mappings in
terms of presented distributed description logics we follow the approach of encod-
ing correspondences as bridge rules. In particular, each correspondence 〈e, e′, r, n〉
between a pair of ontologies Oi and Oj is translated into a set of bridge rules using a
translation function t in the following way:

t(〈id, e, e′,v, n〉) = i:e v−→ j:e′, n ∧ j:e′ w−→ i:e, n

t(〈id, e, e′,w, n〉) = i:e w−→ j:e′, n ∧ j:e′ v−→ i:e, n

Equivalence correspondences are interpreted as a pair of inclusion correspondences
which are treated individually in our experiments.

3.2 Reasoning with mappings
Reasoning in distributed description logics is founded on exploitation of the capability
of bridge rules to propagate knowledge across interlinked ontologies. Such a propa-
gation from an ontology Ti (the source) to ontology Tj (the target) via a set of bridge
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rules Bij from i to j can be represented by a pattern of the following form:

(1) axioms in i and (2) bridge rules from i to j
(3) axiom in j

which must be read as: if axioms (1) are satisfied in Ti and the bridge rules (2) are
contained in Bij , then the axiom (3) must be satisfied in Tj .

Now, following the semantics of bridge rules, one can observe that an interaction
between onto and into bridge rules can indeed cause the effect of propagating concept
subsumption axioms:

i:A v B and i:A w−→ j:G, i:B v−→ j:H
j:G v H

(7)

Because GIj ⊆ rij(AIi) ⊆ rij(BIi) ⊆ HIj , we indeed can derive that j:G v H .
Formally, the subsumption propagation pattern (7) can be stated as follows: Given

a distributed ontology T = 〈{Ti}i∈I , {Bij}i 6=j∈I〉, if Bij contains a pair of bridge

rules i:A w−→ j:G and i:B v−→ j:H , then T |= i:A v B =⇒ T |= j:G v H .
In languages that support the disjunction construct, propagation rule (7) can be gen-

eralized to the propagation of subsumption axioms between a concept and a disjunction
of n > 0 concepts in the following way:

i:A v B1 t . . . tBn and i:A w−→ j:G, i:Bk
v−→ j:Hk (1 6 k 6 n)

j:G v H1 t . . . tHn

(8)

The important property of propagation (8) is that it is the most general form of sub-
sumption propagation in distributed description logics. Moreover, it has been shown in
[21] that in case of SHIQ component ontologies, by adding this propagation pattern
as an additional inference rule to SHIQ description logics tableau one gets a correct
and complete distributed tableaux method for reasoning with distributed ontologies. A
detailed description of the distributed tableau algorithm can be found in [22].

3.3 Reasoning about mappings
In the previous subsection we have seen how to exploit the knowledge encoded in the
mapping of a distributed reasoning scenario. Building on that, in the following we
introduce several properties to describe characteristics of mappings. We argue that
these properties are well suited to cope with changing and evolving mappings.

Let us reconsider the example from the introduction. Suppose there are two ontolo-
gies T1 and T2 about the domain of libraries and bridge rules mapping B12 from T1 to
T2 automatically generated by matching system. Amongst others we have bridge rules
(9) and (10) as elements of this mapping.

1:Abstract w−→ 2:Abstract (9)

1:Document v−→ 2:Document (10)
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Further, let 1:Abstract v 1:Document be in T1 and 2:Document v ¬2:Abstract
in T2. By applying (9) and (10) we can conclude that 2:Abstract v 2:Document.
Thus, concept 2:Abstract is distributed unsatisfiable and therefore B12 is inconsistent.
The accordant property of a mapping can be defined as follows.

Definition 7 (Consistency) Given T = 〈{Ti}i∈I , {Bij}i6=j∈I〉, Bij is consistent with
respect to j:C iff Tj 6|= C v ⊥ → T 6|= j:C v ⊥. Otherwise Bij is inconsistent with
respect to j:C. Bij is consistent with respect to Tj iff for all j:C Bij is consistent
with respect to j:C. Otherwise Bij is inconsistent with respect to Tj .

Algorithm 1 decides consistency of a mapping with respect to terminology Ti of T and
can be understood as a straight forward way to implement definition 7.

Algorithm 1
ISCONSISTENT(T = 〈{Ti}i∈I , {Bij}i6=j∈I〉 , i)

1: for all C ∈ GETALLCONCEPTS(T, i) do
2: if Ti 6|= C v ⊥ and T |= i:C v ⊥ then
3: return false
4: end if
5: end for
6: return true

Obviously, inconsistency is a clear symptom for defective parts in a mapping Bij

of a distributed terminology. We can thus conclude that at least one bridge rule in Bij

has to be incorrect, given that Bij is inconsistent.
Can we find an analogue principle to determine wether a bridge rules b follows from

Bij? Obviously, b follows from Bij if and only if b does not provide any additional
pieces of information that are not explicit or implicit available in Bij . Consider again
the example from the introduction where T2 contains the axiom Document v Review
and consider the following bridge rules.

1:Document w−→ 2:Document (11)

1:Document w−→ 2:Review (12)

The second bridge rule follows from the first one, because every distributed inter-
pretation that is a model for the first bridge rule will also be a model for the second
bridge rule. The following definition formally introduces the corresponding notion of
entailment in general.

Definition 8 (Entailment) Given T = 〈{Ti}i∈I , {Bij}i 6=j∈I〉. A bridge rule b is en-
tailed by T iff every model I of T satisfies b.

While this definition precisely captures the notion of entailment, the distributed
tableaux algorithm cannot be used directly to check if a certain bridge rule is entailed
from a set of bridge rules. We solve this problem by introducing the notion of a con-
cepts image. The image Ci→j of a concept C from Ti is a concept in Tj that fulfills the
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condition rij(CIi) ≡ (Ci→j)Ij where r is the domain relation connecting elements
of the interpretation domains of different terminologies. An image Ci→j in Tj can be
understood as the counterpart of concept i:C in Tj . The image of a concept can alterna-
tively be defined by extending T in the following way: (1) add a new concept, the image
Ci→j of C, to Tj ; (2) add the equivalence bridge rule i:C ≡−→ j:Ci→j to Bij . Since
Ci→j is linked to i:C via the equivalence bridge rule, we have rij(CIi) ≡ (Ci→j)Ij

for any model I of T. The following is the formal representation of this constructive
definition.

Definition 9 (Image extension) Given T = 〈{Ti}i∈I , {Bij}i6=j∈I〉. Let T ′j be defined

as T ′j = Tj ∪ {> w Ci→j} Tj and let B′
ij be defined as B′

ij = Bij ∪ {i:C ≡−→
j: Ci→j}. Then j: Ci→j is called the image of i: C and TCi→j

= 〈{Tk}k 6=j,k∈I ∪
{T ′j }, {Bkl}k 6=i,l 6=j,k 6=l∈I ∪ {B′

ij}〉 is called T extended by Ci→j .

Remember that entailment of a bridge rule b is based on the fact that every model
of T satisfies b. Based on the following proposition we can in a straight forward way
define a procedure for deciding entailment of a bridge rule. The correctness of this
proposition follows directly from the definition of image extension.

Proposition 1 (Bridge rule equivalence) Given T = 〈{Ti}i∈I , {Bij}i 6=j∈I〉, for each
pair of concepts 〈i:C, j:D〉 with i 6= j ∈ I we have.

T |= i:C ≡−→ j:D ⇐⇒ TCi→j |= j:Ci→j ≡ j:D

T |= i:C v−→ j:D ⇐⇒ TCi→j |= j:Ci→j v j:D

T |= i:C w−→ j:D ⇐⇒ TCi→j |= j:Ci→j w j:D

Algorithm 2 makes use of proposition 1. It decides entailment by reasoning in the
extended terminology TCi→j

.

Algorithm 2

ISENTAILED(T, i:C R−→ j:D)
1: if R = v then
2: return TCi→j |= j:Ci→j v D
3: else if R = w then
4: return TCi→j |= j:Ci→j w D
5: else if R = ≡ then
6: return TCi→j |= j:Ci→j ≡ D
7: end if

4 Implementing a Revision Function
Remember that a revision function has to provide two components. On the one hand
we would like to extend the evaluation as much as possible. On the other hand we
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have to rationally select a subset of the input mapping taking into account both the
evaluation function as well as the confidence values of the correspondences evaluated
as unknown . We start with the extension of the evaluation function in section 4.1 and
continue with the selection component in the following subsections.

Up to now, we have introduced the evaluation framework based on our intuitive
understanding of a correspondence. Due to the formal encoding of correspondences in
bridge rules of distributed description logics , an evaluation function can now be seen
as a function that assigns the values {correct , incorrect , unknown} to bridge rules,
and a revision function takes as input the T-boxes of a distributed terminology as well
as a set of bridge rules between them. In the same way we will also transfer the other
definitions introduced in section 2.2 to the context of distributed description logics.

4.1 Extension
The extension of the evaluation function can be implemented in a straight forward
way by applying the algorithms for checking consistency and entailment (algorithm 1
and 2). Remember that, given an evaluation function e for a set of bridge rules Bij

between Ti and Tj , Bij is divided in three complementary subsets e(Bij , correct),
e(Bij , incorrect) and e(Bij , unknown). Since all bridge rules in e(Bij , correct) are
accepted, we can use this information to derive that certain bridge rules in
e(Bij , unknown) have also implicitly been evaluated, even though the evaluator might
not be aware of this. On the one hand, for each bridge rule b with e(b) = unknown we
know that b has to be evaluated as correct if b can be entailed by e(Bij , correct). On
the other hand, we can conclude that each bridge rule b with e(b) = unknown has to
be evaluated as incorrect if e(Bij , correct) ∪ b is inconsistent.

Algorithm 3
EXTENDEVALUATION(T = 〈{Ti}i∈I , {Bij}i 6=j∈I〉 , e, k, l)

1: e′ ← e
2: {B¬kl} ← {Bij}i6=j∈I \ {Bkl}
3: for all b ∈ e(Bkl, unknown) do
4: if ISENTAILED(〈{Ti}i∈I , {B¬kl} ∪ {e(Bkl, correct)}〉 , b) then
5: e′(b) ← correct
6: end if
7: if ISCONSISTENT(〈{Ti}i∈I , {B¬kl} ∪ {e(Bkl, correct) ∪ {b}}〉 , l) then
8: e′(b) ← incorrect
9: end if

10: end for
11: return e′

Algorithm 3 is a direct implementation of this strategy. This algorithm takes as
input a distributed terminology T = 〈{Ti}i∈I , {Bij}i 6=j∈I〉, an evaluation function e
defined for mapping Bkl, and the indices k, l ∈ I referring to terminologies Tk and
Tl respectively. Though this approach requires reasoning in a modified distributed
terminology, all modifications are related to the mapping attached to Tl. This means
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that the algorithm can be executed locally on the reasoner hosting Tl. The same holds
for the algorithms introduced in the following subsections. Notice, that this is an im-
portant aspect, because in a realistic scenario mappings will be managed locally and
modifications of mappings and terminologies hosted by different reasoning peers will
not be granted, in general. While we primarily discussed the case where we have two
ontologies connected via a mapping, algorithm 3 makes use of the information encoded
in the whole distributed terminology T which might consist of several ontologies and
mappings between them. Thus, it might happen that the revision process is not only
directly affected by the axioms in Tk and Tl but also indirectly by some of the other
ontologies and mappings.

Let us revisit the small example introduced in an informal way in section 1 to
better understand the capabilities of extending an evaluation function. This example
will illustrate two essential issues about extending an evaluation.

Example 1 Given the bridge rule mapping B12 from T1 to T2 consisting, amongst
others, of the following bridge rules generated by a fully automatized matching system.

1:Document ≡−→ 2:Document, 0.98 (13)

1:Abstract ≡−→ 2:Abstract, 0.93 (14)

1:Document w−→ 2:Review, 0.57 (15)

Suppose now that a domain expert for knowledge management evaluates B12 starting
with bridge rule b(13). He accepts this correspondence and thus we have
e(B12, correct) = {b(13)} and e(B12, unknown) = {b(14), b(15)}. Given the fol-
lowing axioms for T1 and T2

T1 |= Document w Abstract
T2 |= Document v ¬Abstract
T2 |= Document w Review

applying the extension algorithm will result in the extended evaluation function e′p with

e′p(B12, correct) = {b(13), b(15)}
e′p(B12, incorrect) = {b(14)}
e′p(B12, unknown) = ∅

Thus, for our example, we ended up with a fully evaluated mapping by applying the
extension algorithm.

This example sheds light on two important aspects. On the one hand it might hap-
pen that the extension of an evaluation function results in a relatively high number of
evaluation decisions that can be skipped. In this example for one evaluation decision
we gained two further decisions without (direct) manual intervention. On the other
hand applying the extension algorithm might sometimes result in non trivial exten-
sions, in particular where manual evaluation might result in erroneous decisions. The
incorrectness of bridge rule (14) can be counted as an example. By merely looking
at the concept names, not taking their conceptual context into account, an inattentive
evaluator might make a mistake that can be avoided logical reasoning .
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4.2 Selection
We will now turn our attention to the selection component of the revision function that
decides which parts of the input mappings evaluated as unknown should be selected
and unselected, respectively. First, we concentrate on the case where no expert eval-
uation is available. We will later see, that our approach can be extended in a straight
forward way to the general case where partial evaluation is available.

In the following we rely on the classical definition of diagnosis introduced by Re-
iter [17]. The basic assumption of our approach is that bridge rules model seman-
tic correspondences between concepts of different ontologies without introducing in-
consistencies. A diagnosis task is normally defined in terms of a set of components
COMP in which a fault might have occurred, a system description SD defining the
behavior of the system and a set of observations OBS (or symptoms). A diagnosis
is now defined as the minimal set ∆ ⊆ COMP such that the observations OBS are
explained by a subset of the components having abnormal behavior. In our context
we regard a bridge rule mapping Bij to be the set of components to be diagnosed,
while T = 〈{Ti}i∈I , {Bij}i 6=j∈I〉 provides the system description. Observations are
provided in terms of implied subsumption relations between concepts in the two on-
tologies. Bridge rules are assumed to be abnormal if they cause inconsistency. In other
words, a diagnosis is the minimal set of bridge rules ∆ ⊆ Bij such that the mapping
Bij \∆ is consistent.

Definition 10 (Diagnosis) Given T = 〈{Ti}i∈I , {Bij}i 6=j∈I〉, a diagnosis for a map-
ping Bij is defined as the minimal set ∆ ⊆ Bij such that {Bij}i 6=j∈I \∆ is consistent
with respect to Tj .

Since we want our revision function to chose a consistent subset of Bij that still
contains as much bridge rules as possible, we thus have to find a diagnosis. Never-
theless, computing diagnoses (minimal sets of abnormal components) is known to be
computational intractable in the general case as the set of all possible diagnoses form
a combinatorial search space which is exponential in the size of COMP . In order to
deal with this problem, we adopt the notion of conflict sets [17] for guiding the search
for abnormal correspondences.

Reiter defines a conflict set as a subset of the system components that together
produce an abnormal behavior. In our context a conflict set is a subset of the mapping
that is inconsistent. This definition implies that any inconsistent mapping automatically
becomes a conflict set. This trivial conflict set, however, does not provide us with any
hints about the set of bridge rules that constitute the diagnosis. In diagnosis we are
normally interested in minimal conflict sets (conflict sets with the additional property
that none of its subsets is a conflict set). These sets have the beneficial property that the
problem caused by a minimal conflict set can be repaired by removing one component
in the set. Having identified a minimal conflict set, the decision which bridge rule to
remove can in a straight forward way be based on the order of confidence values. We
already explained that a confidence value can be seen as a measure of trust in the fact
that the correspondence holds. If we now know, given a set of bridge rules B, that at
least one of these bridge rules has to be incorrect, the most reasonable decision is to
remove the one with the lowest confidence.
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A classical algorithm for computing conflict sets to find a diagnosis is based on
the notion of a conflict set tree [4]. Conflict set trees allow non-redundant searching
in the power set of a given axiom set, in our context the power set of a set of bridge
rules. Having once identified minimal conflict sets, it is possible to compute a hitting
set of these conflict sets. Notice that approaches based on the computation of a hitting
set are not efficient enough for our problem. We have also tried this approach and the
results of our experiments indicate that it does not scale well. Thus, we have to make
use of the following observation. Given a mapping Bkl with k, l ∈ I and a bridge rule
b /∈ Bkl from Tk to Tl. Suppose that Bkl is consistent with respect to Tl, while Bkl∪ b
is inconsistent with respect to Tl. We can conclude that (1) there exists at least one
minimal non empty conflict set C ⊂ Bkl ∪ b and that (2) for every minimal conflict set
C ⊆ Bkl we have b ∈ C. This observation can be used for an algorithm that computes a
diagnoses ∆ based on the notion of minimal conflict sets without explicitly computing
them.

First we sort all bridge rules in Bkl descending with respect to their confidence
values. Then we start with an empty set B∗

kl adding step by step bridge rules b ∈ Bkl.
In each step we have to check if the distributed terminology, where we temporarily
replace Bkl with B∗

kl, has become inconsistent. In case of inconsistency, we know that
the current bridge rule b is an element of at least one minimal conflict set C ⊆ B∗

kl

and that there exists no bridge rule b′ ∈ C such that the confidence of b′ is less than
the confidence of b. We can conclude that there exists a diagnosis ∆ with b ∈ ∆. We
remove b from B∗

kl and continue with the next bridge rule. In case of no inconsistency
we continue with the next step of the iteration without removing b from B∗

kl. Finally,
we end up with a consistent set of bridge rules B∗

kl and know that ∆ = Bkl −B∗
kl is

a diagnosis for the given problem.
Now suppose that a partial evaluation e for a mapping Bkl is available with

e(Bkl, correct) 6= ∅. The previously described algorithm can be extended in a natural
way to cope with this situation. Instead of starting with an empty mapping B∗

kl = ∅,
we have to start with B∗

kl = e(Bkl, correct). Algorithm 4 is an implementation of this
approach that computes a diagnosis for the mapping Bkl from Tk to Tl with k 6= l ∈ I .
Notice, that parts of the diagnosis have already been conducted by the manual evalu-
ation e. These are the bridge rules e(Bkl, incorrect). Thus, algorithm 4 returns also
e(Bkl, incorrect) as part of the diagnosis ∆.

4.3 Revision
We can now combine algorithm 3 and 4 into a revision function (see algorithm 5). First
of all, before computing the evaluation extension and the diagnosis, consistency of the
evaluation function e has to be checked. Consistency of the manual evaluation is a
necessary precondition for further computation. If this precondition is satisfied, the
algorithm first extends the manual evaluation and then computes a diagnosis based on
the extended evaluation. It returns a pair that consists of the extended evaluation and
the set of selected bridge rules.

In case of an inconsistent human evaluation algorithm 5 throws an exception. This
exception can be handled in the following way. Inform the evaluator about the prob-
lem and apply a modified version of algorithm 4 on the set of accepted bridge rules
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Algorithm 4
COMPUTEDIAGNOSIS(T = 〈{Ti}i∈I , {Bij}i 6=j∈I〉 , e, k, l)

1: {B¬kl} ← {Bij}i6=j∈I \ {Bkl}
2: B∗

kl ← e(Bkl, correct)
3: B′

kl ← e(Bkl, unknown)
4: SORTDESCENDING(B′

kl)
5: for all b ∈ B′

kl do
6: B∗

kl ← B∗
kl ∪ {b}

7: if not ISCONSISTENT(〈{Ti}i∈I , {B¬kl} ∪ {B∗
kl}〉 , l) then

8: B∗
kl ← B∗

kl \ {b}
9: end if

10: end for
11: return (B′

kl \B∗
kl) ∪ e(Bkl, incorrect)

e(Bkl, correct) where all of these bridge rules are now treated as unknown . The re-
sulting diagnosis is then presented to the evaluator in order to reject one of the bridge
rules that previously have been accepted. This prodedure has to be repeated until every
inconsistency in e(Bkl, correct) is removed.

Algorithm 5
REVISE(T = 〈{Ti}i∈I , {Bij}i 6=j∈I〉 , e, k, l)

1: {B¬kl} ← {Bij}i6=j∈I \ {Bkl}
2: if not ISCONSISTENT(〈{Ti}i∈I , {B¬kl} ∪ {e(Bkl, correct)}〉 , l) then
3: throw INCONSISTENCYEXCEPTION
4: end if
5: e′ ← EXTENDEVALUATION(T, e, k, l)
6: B′

kl ← COMPUTEDIAGNOSIS(T, e′, k, l)
7: return 〈e′,Bkl \B′

kl〉

In section 2.2 we introduced two desirable characteristics of a revision function. We
referred to these characteristics as Minimal Change, Maximal Confidence. We already
argued that Minimal Change and Maximal Confidence disagree in many situations. On
the one hand the diagnosis ∆ computed with algorithm 4 is minimal in the sense that
there exists no other ∆′ ⊂ ∆ that would also be a diagnosis. On the other hand this
does not imply that there exists no other diagnosis ∆∗ with |∆∗| < |∆|. We can
conclude that algorithm 4 does not fulfill the requirement of Minimal Change. Due to
the greediness of algorithm 4 the selection made by the revision will also in general not
be of Maximal Confidence. Nevertheless, our algorithm results in an approximation of
both criteria and yields in many cases better solutions than strict Minimal Change or
Maximal Confidence algorithms.

Example 2 Given a mapping B12 from T1 to T2 consisting of the following bridge
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rules.

1:Person ≡−→ 2:Person, 1.0 (16)

1:Reviewer ≡−→ 2:Review, 0.65 (17)

1:Participant ≡−→ 2:ParticipationFee, 0.6 (18)

Further, we have the following disjointness axioms

T2 |= Person v ¬Review (19)
T2 |= Person v ¬ParticipationFee (20)

that make the subset {16, 17} as well as the subset {16, 18} inconsistent. In this sit-
uation our algorithm will compute ∆ = {17, 18} as diagnosis. Contrary to this, a
solution that fulfills the Minimal Change criteria as well as the Maximal Confidence
criteria would result in a diagnosis ∆ = {16}. In this situation, applying the criteria
would result in throwing away the only correct bridge rule in the set which is clearly
not what we want.

Notice that, based on our experience, similar patterns frequently occur in many
mappings. Opposed to the theoretical attractiveness, this example clearly shows that in
practice the global Minimal Change and Maximal Confidence criteria fails, while the
suggested greedy approach succeeds.

5 Experiments
In the experimental section we show that our approach can be successfully applied
to different scenarios of mapping evolution. In section 5.1 we first focus on the case
when there is no expert evaluation available. In such a situation the revision process
will be fully automated. In section 5.2 we deal with the case where a domain expert
is available and a complete expert evaluation has to be achieved. In such a scenario
we have to focus on the extension of the evaluation function. In particular, we discuss
the amount of effort that will be saved due to automatized extension of the evaluation
function.

We evaluated our approach using the OntoFarm Dataset of ontologies in the domain
of conference organization [25]2 which is part of the Ontology Alignment Evaluation
Initiative (OAEI) the de facto standard for evaluating ontology matching approaches.
We chose this particular data set because it is the largest collection of OWL ontologies
about the same topic that still allow for a complete evaluation of the results. The dataset
of the benchmark track which is often used in comparable studies is much smaller both
in terms of the number and the size of ontologies involved. There are larger datasets
but out of these only the anatomy data set provides a reference mapping. Further,
all data sets except for the benchmark and the conference data set that we use are
not really OWL ontologies, but only consist of simple hierarchies. This means that

2The ontologies are available from http://nb.vse.cz/∼svabo/oaei2006/.
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the OntoFarm dataset so far is the best and most representative benchmark for testing
methods supporting the alignment of OWL ontologies.

Meanwhile the OntoFarm Dataset consists of 13 ontologies six of which we used in
our experiments. These are the ontologies CMT, CRS, PCS, CONFTOOL, SIGKDD
and EKAW, containing between 17 and 77 concepts. The other ontologies where omit-
ted because not all of the matching systems in our experiments were able to provide
the corresponding mappings or because the ontologies have been added to the dataset
after we designed the experiment.

5.1 Revising without Expert Evaluation
In a first experiment reported in [12] we considered pairwise mappings produced be-
tween the six ontologies presented above. We manually created a reference mapping
used to evaluate the automatically generated revision. In order to guarantee the fair-
ness of evaluation, we had three people individually checking the mappings. In cases
of a disagreement the correctness of a correspondence was decided by a majority vote.
It turned out that there was very little disagreement with respect to the correctness
of correspondences. For only about 3% of the correspondences the result had to be
determined by vote.

For each pair of ontologies, we ran algorithm 4 in both directions. Table 1 sum-
marizes the results with respect to precision of four state of the art matching systems3

and precision and recall of the debugging algorithm. The precision of the debugging
algorithm ranges between 78% and 100%. These results can be compared to the pre-
cision of the matcher and the strategy to remove correspondences randomly. Applying
our recommendations to Falcon-AO and OWL-CTXmatch we were able to increase the
precision by 2% and 6%, respectively. In the case of matcher Falcon-AO recall of the
matching results was not affected at all, while in the case of matcher OWL-CTXmatch
we only removed one correct correspondence. For somematcher++ and HMatch we
could increase precision by 8% and 19%. Since we could not compute recall of the
matching system due to the missing of a reference mapping, we can make no exact
statements about the negative effects on recall for these two matchers.

On the other hand the values for recall of the revision range between 22% and
56%. This means that our debugging method only captures parts of the incorrect cor-
respondences. We have already expected a similar result, since the under-specification
the ontologies in terms of missing disjointness statements results in a lack of inconsis-
tency symptoms that are the basis for the repairing algorithm. On the other hand, this
means that we can expect much better results for ontologies with carefully specified
disjointness statements between concepts.

5.2 Revising with Expert Evaluation
While in the previous section we dealt with the case of a fully automatized revision,
in the following we focus on the aspect of supporting mapping revision conducted by

3The developers of the matching system referred to as ’somematcher++’ below prohibited us to publish
results related to their system, therefore we do not use the actual name.
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mapping revision
Matching System number precision precision recall

Falcon-AO 246 89% 100% 22 %
OWL-CTXmatch 280 68% 96% 26 %
somematcher++ 270 75% 80% 54 %

HMatch 406 57% 78% 56%

Table 1: Experimental Results on the OntoFarm Benchmark. The first column indi-
cates the number of correspondences generated by the matching system, the second the
precision of this mapping (figures for recall were not available at the time of the exper-
iment). The last two columns refer to the precision and recall of the revision method,
where precision is the fraction of removed correspondences that were actually wrong
according to the reference mapping and recall is the fraction of wrong correspondences
according to the reference mapping that our method removed.

a domain expert. Without reasoning support the expert has to evaluate each bridge
rule in mapping B iteratively. In the following we measure the effort of an evalua-
tion process in number of evaluation decisions. An evaluation decision is defined to
be the specification of a successor e′ of the correct evaluation function e such that
|e′(B, unknown)| + 1 = |e(B, unknown)|. The effort for evaluating mapping B
without support will thus be |B|. In this section we measure how many evaluation
decisions can be skipped by extending the evaluation function after each manual eval-
uation decision.

We selected four of the ontoFarm ontologies and automatically generated mappings
between all pairs of ontologies by applying the matching system CtxMatch [3]. In con-
trast to the majority of existing systems limited to discovery of “≡” correspondences,
CtxMatch is additionally capable of finding “v”, “w” relations. This is more adequate
for many applications but makes the manual revision even more time-consuming, be-
cause normally the system finds more correspondences than other systems.

For all pairs of ontologies 〈Ti, Tj〉 with Ti 6= Tj ∈ {CMT,CRS,PCS,CONFTOOL}
we built the distributed terminology T = 〈{Ti, Tj}, {Bij}〉 where Bij is the mapping
generated by the CtxMatch matching system. Then we proceeded as follows:

1. Init the counter m ← 0 of manual evaluation decisions.

2. Evaluate the first unevaluated bridge rule b ∈ Bij and set m ← m + 1.

3. Recompute e ←EXTENDEVALUATION(T, e, i, j).

4. If e(Bij , unknown) 6= ∅ continue with step 2.

This procedure ends when every bridge rule has been manually or automatically eval-
uated. While m counts the number of manual evaluation decision, (|Bij | −m)/ |Bij |
measures the fraction of bridge rules evaluated manually. In addition, we also counted
the number of bridge rules that have been evaluated as correct by entailment as well
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CMT CRS PCS CONFTOOL

CMT
size 53 ; 44 48 ; 32

random order - 56.6% (23/0) n.a. 60.4% (19/0)
impact order 35.8% (33/1) 39.6% (28/1)

CRS
size 53 ; 41 38 ; 29 80 ; 38

random order 54.7% (23/1) - 60.5% (15/0) 65% (18/10)
impact order 41.5% (29/2) 52.6% (18/0) 22.5% (36/26)

PCS
size 73 ; 63 38 ; 30 45 ; 23

random order 41.1% (43/0) 60.5% (15/0) - 73.3% (12/0)
impact order 27.4% (53/0) 52.6% (18/0) 55.6% (19/1)

CONFTOOL
size 48 ; 32 80 ; 36 45 ; 23

random order 60.4% (19/0) 68.8% (18/7) 73.3% (12/0) -
impact order 43.8% (27/0) 40% (36/12) 57.8% (19/0)

Table 2: Experimental results for supporting manual evaluation. The first row in each
cell represents |B| ; |e(B, correct)| for the finally obtained evaluation function e.
The second and third row distinguish between iterating over different orderings of the
input mapping. They present the fraction of bridge rules that had to be evaluated. In
parentheses you find the number of bridge rules automatically selected due to entail-
ment and the number of bridge rules unselected due to inconsistency.

as the number of bridge rules that have been evaluated as incorrect by inconsistency
checking.

In a first series of experiments we ordered the bridge rules in a random way.4 The
results for these experiments are presented in the rows headed with random order in
table 2. The fraction of bridge rules that had to be evaluated manually ranges from
41.1% to 73.3%. Aggregating over all pairs of ontologies, we measured that only
60.8% of all bridge rules had to be evaluated instead of evaluating 100% in a scenario
without revision support. Notice that most parts of the extension are based on entail-
ment, while reasoning with inconsistencies has only limited effects. As we already
mentioned, the ontologies in our test set are underspecified with respect to disjointness
between concepts. This prevents some mappings to become inconsistent even though
incorrect correspondences are involved.

Even though these results show the benefit of our approach, there is still room for
improvement by ordering the bridge rules of the input mapping in a proper way. The
following example describes the effects of different orderings.

Example 3 The example from the introduction also nicely shows the importance of a
good ordering. Given the input mapping B12 = {b23, b24, b25} from example 1.

• b23 and b25 are correct and b24 is incorrect,

• {b23} entails b25,
4More precisely, to make the results reproducible we ordered the bridge rules lexicographical with respect

to the concepts matched by the bridge rule.
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• and {b23, b24} is inconsistent.

On the one hand, if we first manually evaluate e(b23) = correct the extension of e will
be a complete evaluation function with e(B, unknown) = ∅. On the other hand, if we
evaluate B in the order of 〈b24, b25, b23〉 the extension function cannot be extended at
all.

Example 3 shows that we have to find an appropriate order for a given input map-
ping to exploit our approach to its full extent. To determine such an order we define
the notion of the potential impact of a bridge rule, formally introduced in definition
11. Given a bridge rule b from T1 to T2 the potential impact counts the number of
bridge rules b′ that can be entailed from {b} as well as the number of bridge rules
such that {b, b′} is inconsistent, where b′ ∈ Bfull and Bfull is defined to be the set of
all combinatorial possibilities for matching concepts from T1 to T2. Notice that this
characteristic is only a rough approximation of a bridge rules’ real impact, because it
abstracts from complex interactions between more than two bride rules.

Definition 11 (Potential impact of a bridge rule) The potential impact of a bridge
rule from T1 to T2 is defined as

imp(T1, T2, 1:C
R−→ 2:D) 7→





sub(T1, C) · (super(T2, D) + dis(T2, D)) if R = v
super(T1, C) · (sub(T2, D) + dis(T2, D)) if R = w
imp(T1, T2, 1:C

v−→ 2:D) + imp(T1, T2, 1:C
w−→ 2:D)) if R = ≡

where sub(T , C) returns the number of all subclasses of concept C in T , super(T , C)
returns the number of all superclasses of concept C in T , and dis(T , C) returns the
number of all classes that are disjoint with C.

For a second series of experiments we ordered the bridge rules descending due to
their potential impact. The results are also presented in table 2 in the rows headed with
impact order. The effects confirm with our theoretical expectations. The number of
entailment propagations as well as the number of inconsistency propagations could be
increased by a significant degree. We reduced the effort of manual evaluation to the
range from 22.5% to 57.8%. In average we now have to evaluate only 40.4% of the
input mapping. This means that a domain expert has to evaluate less than every second
bridge rule of a mapping in average.

6 Related Work
There are at least two areas of research that have a direct connection to the work re-
ported in this paper. The first area is concerned with the revision of ontologies, the
second with the analysis and generation of semantic relations between different on-
tologies.

In a recent paper, Haase and Qi compare different approaches for resolving incon-
sistencies in Description Logic Ontologies [9]. Amongst the approaches reviewed in
the paper, there is a group of methods that extend and adapt classical methods from
belief revision, in particular the AGM theory to the case of description logics. While
[6] only considers formal properties of ontology revision in terms of a modification
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of the AGM postulates and the formal properties of revision operators, [16] proposes
a revision operator based on weakening the model by introducing exceptions. In [28]
Wassermann argues that diagnostic reasoning can be seen as a special kind of believe
revision. Recently a number of approaches for diagnosing and repairing inconsisten-
cies and incoherence in ontologies have been proposed. These approaches are similar
to our work in the sense that they apply diagnostic reasoning to the problem of belief re-
vision, however none of these approaches addresses the revision of mappings between
ontologies.

In [13] Parsia and other discuss different approaches to ontology diagnosis and de-
bugging. In particular, they distinguish glass-box techniques that analyze the tableaux
proof to find causes of inconsistencies and black-box techniques that use the reasoning
algorithm as a black box and try to detect inconsistencies by successively asking ques-
tions to the reasoner. Our approach for detecting inconsistencies in mappings can be
seen as a black-box approach in this context.

Schlobach and Cornet [20] investigate the problem of computing minimal conflict
sets (called MUPS) for ALC terminologies as a basis for diagnostic reasoning. In
follow up work [19] Schlobach investigates a glass-box approach that uses of the hit-
ting set algorithm as a basis for computing diagnoses. Several extensions of the basic
method by Schlobach have been developed. In [10] the authors extend the hitting set
based diagnosis algorithm for ontologies to the language SHOIN thereby covering
most of the expressive power of OWL-DL. The authors of [7] propose a black-box
method based on the hitting set algorithm that does not require a modification of the
reasoning algorithm. The work of Schlobach revealed that the standard hitting set al-
gorithm is not the best choice with respect to diagnosing ontological knowledge. In
our work, we adopted the idea of computing minimal conflict sets and of replacing
the standard diagnosis algorithm by a specialized diagnosis strategy. All of the ap-
proaches mentioned above solely work on a single ontology. A first attempt towards
extending the approaches mentioned above towards mapped ontologies is made in the
NeOn Project [14]. The resulting method has been tested on realistic ontologies [15]
one including mappings between different ontologies. The approach, however, does
not distinguish between mappings and local axioms. Our work focusses on mappings
which allows us to use special heuristics not applicable in the general case, e.g. by
relying on the confidence values provided by the matching systems.

Wang and Xu [27] report some work that explicitly addresses the problem of de-
bugging ontology mappings. They propose a number of heuristics for identifying and
repairing inconsistent mappings. Most of the heuristics proposed for detecting incon-
sistent mappings are special cases of the general framework of inconsistency detec-
tion described in this paper. Similar heuristics for identifying conflicts are used by
state-of the art matching systems for eliminating mapping hypotheses. None of these
approaches, however, is based on a sound model-theoretic notion of unsatisfiability.

A notable exception is the work on semantic matching carried out at the University
of Trento [8]. Their approach uses propositional logical reasoning about concept labels
for identifying mappings. This strategy ensures that no inconsistent mappings are gen-
erated in the first place. The approach has been extended to more expressive ontologies
in [23]. A drawback of this method compared to our approach is the fact that the use
of logical reasoning for proving semantic relations is often too restrictive and will miss
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many correct matches. Our approach addresses this problem by first allowing the use
of rather weak heuristics for generating hypotheses and only using reasoning a poste-
riori to filter out obviously incorrect hypotheses. This will in general lead to a higher
recall.

7 Conclusions and Future Work
In this paper, we have argued for the need of providing reasoning support for manual
mapping revision to deal with the inherent complexity of the problem. We proposed
methods for dealing with the revision problem that can either be applied directly to
a proposed mappings to find and remove inconsistencies or to support the process of
manual mapping revision by a human expert. We have implemented a graphical tool
for manual revision that includes all of the methods mentioned in section 4 and used
it to perform some experiments reported in section 5. The experiments show that the
revision methods proposed improve the revision process both in terms of the quality
of mappings (in particular the precision is enhanced significantly) and in terms of the
human effort in terms of correspondences that have to be evaluated.

The problem of mapping revision addressed in this paper can be seen as a special
case of the general problem of ontology or knowledge base revision. This allowed us to
build upon some general principles of knowledge revision that have been described in
the literature. In particular, the use of diagnostic reasoning to implement the revision
process as proposed in [28] has been adopted. Further, our method for computing
diagnosis is similar to existing work on ontology diagnosis and relies on the notion
of conflict sets as minimal sets of axioms that cause an inconsistency. As we have
seen, the special needs of mapping revision also required us to abandon some of the
principles normally used in the area of knowledge revision. In particular, the use of the
minimality criterion for deciding which axioms to remove from a conflicting set does
not perform well in the context of mapping revision (compare example 2). For us this
meant that we could not use standard methods for computing diagnosis (in particular
the hitting set algorithm [17]). Instead we relied on a greedy strategy for deciding
which correspondences to remove which turned out to perform quite well in many
cases.

There are a number of open problems that need to be addressed in future work.
Some of these problem have already been mentioned in the paper. One is the problem
of underspecified ontologies. In particular, the detection of inconsistencies in the map-
pings relies on the presence of correct disjointness axioms in the mapped ontologies.
In practice these axioms are often not available. There are several ways we could deal
with this problem. One is to work with the assumption that sibling-concepts are al-
ways disjoint and adding the corresponding axioms to the ontologies. This has already
successfully been done in the context of revising ontologies [18]. Another option is
to apply ontology learning techniques to automatically add missing disjointness state-
ments. A corresponding approach has recently been proposed [26]. Another potential
problem is the complexity of the reasoning problems involved. It has been shown that
subsumption reasoning in DDL is NEXP-Time-Complete [24]. As our revision method
makes extensive use of this reasoning service, we cannot hope for efficiency as long
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as we stick to the requirement that the result of the revision step has to be consistent
and closed under deduction. Recently, we have explored efficient approximations of
these reasoning services that only require to classify the ontologies once and then use
correct but incomplete heuristics for checking consistency [11]. So far, we have found
only a very few examples where this approximate method fails to detect all inconsis-
tencies. Finally, the method presented in this paper is only complete with respect to
mappings between concepts. Many matching systems, however, also propose corre-
spondences between relations in different ontologies. Extending our approach to these
correspondences as well will be one of the next steps.

Despite these shortcomings, the general idea of logic-based mapping revision has a
lot of benefits also for the matching process. In recent work, we have used a variation
of the revision method proposed here to filter out results early in the matching process.
Instead of the greedy approach used here, we combined logical reasoning with a full-
fledged optimization algorithm. With this combination we where able to increase the
quality of matching results significantly. Exploiting this possibility to increase the
quality of matching results thus easing the evaluation will also be investigated in more
details in future work.
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