
Reasoning about Mappings
in Distributed Description Logics

Bachelor Thesis

presented by
Christian Meilicke

Bensheim

submitted to the
Knowledge Representation and Knowledge Management Research Group

Prof. Dr. Heiner Stuckenschmidt
University Mannheim

August 2006

Supervisor:
Prof. Dr. Heiner Stuckenschmidt

Contents

Part I 1

1 Motivation 1

2 Distributed Description Logics 2

3 DRAGO 3

4 Outline and Contributions 5

Part II 6

5 Defining Mapping Properties 6
5.1 Preliminary Definitions . 6
5.2 Consistency and Stability . 9
5.3 Invasiveness and Irreducibility 10
5.4 Extended Terminology and Embedding 12
5.5 Entailment and Minimality . 13
5.6 Classification of Mapping Properties 14

6 Checking Mapping Properties 15
6.1 Algorithms . 15
6.2 Implementation . 20
6.3 Comparing Runtimes . 20

Part III 22

7 Experimental Evaluation 22
7.1 Mapping Diagnosis . 23
7.2 Reasoning with Minimal and Irreducible Mappings 29

Part IV 32

8 Summary and Discussion 32

i

Appendix 36

A Program Code and Additional Experimental Results 36

ii

List of Algorithms

1 Consistency . 16
2 Stability . 16
3 Embedding . 17
4 Invasiveness . 17
5 Irreducibility . 18
6 Entailment . 19
7 Minimality . 19
8 Irreducibility (optimized version) 22

List of Figures

1 Architecture of a DRAGO reasoning peer 4
2 Example of a bridgegraph . 8
3 Mapping before minimization 27
4 Mapping after minimization . 28

List of Tables

1 Classification of mapping properties 14
2 Worst case runtimes . 21
3 Ontologies chosen from the OntoFarm collection. 23
4 Main results for major mapping properties 24
5 Runtime comparison with different types of mappings 31

iii

Part I
1 Motivation

An essential element of the semantic web is the use of ontologies to describe the
domain of an information source. As argued by Baader, Horrock, and Sattler in
[2], description logics are well-suited as ontology languages. Describing an infor-
mation source by defining an ontology of the domain, results in the problem of
semantic integration. If the same domain is described by different terminologies,
there are also different corresponding domain representations that have to be inte-
grated (compare [4]). In distributed description logics semantic mappings are used
to bridge the gap between different ontologies.

Stuckenschmidt, Serafini, and Wache distinguish two lines of work related to
the problem of semantic integration (see [9]). On the one hand research focuses
on the use of semantic mappings for reasoning and query answering. On the other
hand tools for the (semi-)automatic generation of semantic relations are developed.
Obvioulsy, a framework to describe semantic mappings from a formal point of
view will be useful for distributed reasoning as well as for automatic mapping
generation. Therefore, a number of formal mapping properties are presented by
the authors of [9].

In this thesis the approach of Stuckenschmidt, Serafini, and Wache will be
resumed and extended. Especially the following questions will be raised.

• Theoretical Framework Are there further interesting mapping properties?
Can useful dependencies between mapping properties be detected?

• Algorithms Are there efficient algorithms for deciding mapping properties?
How can these algorithms be implemented?

• Mapping Diagnosis How can mapping properties be applied in the context
of mapping diagnosis and mapping repairing?

• Runtime It is possible to optimize the runtime of distributed reasoning by
using mappings that have been modified according to some of the properties?

These questions will be answered in part II and part III of this thesis. But first of
all in section 2 a short introduction into distributed description logics is given to
explain how semantic mappings are realized as sets of bridge rules. Answering the
last two questions is not possible by pure theoretical investigations. Therefore, a
tool for computing mapping properties has been developed as part of this thesis.1

1See appendix A for further information.

1

This tool makes use of the DRAGO system that is introduced in section 3. The first
part ends in section 4 with an outline of the following contents. In this section the
author explains his contribution with respect to the research questions listed above.

2 Distributed Description Logics

In the following it is assumed that the reader is familiar with description logics.
An introduction can be found in [3]. Distributed description logics, as described
by Serafini and Tamilin in [7], can be understood as a framework for formalization
of multiple terminologies pairwise linked by directed semantic mappings. In this
context a pair of terminologies T and associated mappings M is called a distributed
terminology T = 〈T, M〉.

Let I be set of indices. Then T = {Ti}i∈I denotes the set of all terminologies
in T and Ti with i ∈ I denotes the i-th terminology of T. Each terminology Ti is a
T-Box of a description logic theory. Therefore, it contains definitions of concepts
and properties as well as axioms relating concepts and properties to each other.
To refer without ambiguity to a concept C from terminology Ti, the index of the
terminology is used in front of the concept, for example i : C.

M = {Mij}i6=j∈I refers to the mappings of T. A mapping Mij is a set of
bridge rules that establishes semantic relations from Ti to Tj . Every bridge rule in
Mij has a certain type and connects a concept from Ti to a concept from Tj . The
following three types of bridge rules are known to the DRAGO system that will be
introduced in the next section.

• i : C
v−→ j : D (into)

• i : C
w−→ j : D (onto)

• i : C
≡−→ j : D (equivalent)

Bridge rules from Ti to Tj allow a partial translation of Ti’s language into the

language of Tj . For example, the into bridge rule i : C
v−→ j : D states that

concept i : C is, from Tj’s point of view, less general than or as general as concept
j : D. The analogous onto bridge rule states that i : C is more general than or as
general as j : D. An equivalence bridge rule is the conjunction of into and onto
bridge rule.

The first element of the semantics of distributed description logics is a local
interpretation Ii for each terminology Ti. Each interpretation Ii consists of a local
domain ∆Ii and a valuation function ·Ii . The valuation function mapps concepts
on subsets of ∆Ii and properties on subsets of ∆Ii × ∆Ii . The second element
is a domain relation rij that connects for each pair of terminologies 〈Ti, Tj〉i6=j

elements of the interpretation domains ∆Ii and ∆Ij . rij(x) is used to denote

2

{y ∈ ∆Ij |(x, y) ∈ rij} and r(D) is used to denote
⋃

x∈D rij(x) for any x ∈ ∆Ii

and any D ⊆ ∆Ii . The pair of both elements I = 〈{Ii}i∈I , {rij}i6=j∈I〉 is called
the distributed interpretation. A distributed interpretation I satisfies a distributed
terminology T iff for all i 6= j ∈ I the following clauses are true.

• Ii satisfies Ti
• rij(CIi) ⊆ DIj for all i : C

v−→ j : D inMij

• rij(CIi) ⊇ DIj for all i : C
w−→ j : D inMij

• rij(CIi) = DIj for all i : C
≡−→ j : D inMij

Due to the introduction of bridge rules it is possible to transfer knowledge between
different terminologies that changes subsumption relations in the target terminol-
ogy. Consider terminology T1 with axiom (1).

1 : A v B (1)

and a second terminology T2 with two concepts C and D. Let Mij consist of
bridge rules (2) and (3).

1 : A
w−→ 2 : C (2)

1 : B
v−→ 2 : D (3)

Since every model for (1), (2), and (3) is also a model for (4), (4) follows by
distributed reasoning.

2 : C v D (4)

This short introduction into distributed description logics should be sufficient for
the understanding of the following sections. A more detailed description can be
found in [5]. In the next section it will be explained how distributed reasoning is
implemented in the DRAGO system.

3 DRAGO

DRAGO is a peer-to-peer system for reasoning with multiple terminologies in-
terconnected by semantic mappings.2 The acronym ’DRAGO’ is an abbreviation
for ’Distributed Reasoning in a Galaxy of Ontologies’. A more detailed system
description can be found in [7].

2I thank Andrei Tamilin for his assistance with DRAGO and many interesting discussions on
related topics.

3

Figure 1: Architecture of a DRAGO reasoning peer (taken from [7]).

The major component of the DRAGO system is the DRAGO Reasoning Peer
(DRP). If a distributed terminology T is instantiated as DRAGO network, for each
terminology Ti of T there exists a DRP offering reasoning services for Ti. The
components and interfaces of a DRP are depicted in figure 1. A DRP offers two in-
terfaces. Before starting a DRP the registration service interface is used to register
a terminology Tj and associated mappings. For each mappingMij the address of
the DRP hosting terminology Ti has to be specified. Note that mappingMij from
Ti to Tj is registered at the peer hosting terminology Tj . Having started a DRP,
the reasoning service interface enables calling reasoning services concerned with
the hosted terminology. Using these services it is possible to execute the following
operations:

• Check consistency of a terminology.
• Compute the taxonomy of a terminology.
• Check entailment.
• Check satisfiability of a certain concept.

In section 6.3 it will be argued that there are two groups of operations in so far as
we are interested in the runtime of the operations.

Every reasoning service can be used in one of two modes. It is, for example,
possible to build a local taxonomy as well as a distributed taxonomy. For any local

4

operation a standard tableau reasoner is used. In this case the results of reasoning
are in no way affected by the available mappings. In opposite to local operations
in distributed mode reasoning requests are propagated to other DRPs according
to the distributed tableau algorithm (see [8] and [7] for more information on the
distributed tableau algorithm).

The DRAGO system provides the basic functionality for implementing the al-
gorithms presented below. For some algorithms it is sufficient to use the functional-
ity of the reasoning service interface. For the more complex algorithms temporary
changes have to be applied to mappings and ontologies. Thus, registration services
have to be used in accordance with the results of the reasoning requests. A detailed
description can be found in section 6.2.

4 Outline and Contributions

In part II a theoretical framework of mapping properties will be developed and
corresponding algorithms for deciding these properties will be stated. For that
reason the basics of distributed description logic have been explained in section
2. Part III will continue with an experimental evaluation and will shows how the
defined properties can be used to describe mappings. The experiments have been
realized with a tool that is based on the services of the DRAGO system. Therefore,
the DRAGO system has been introduced in section 3. Since the groundwork for
part II and III has been done, we can now take a closer look at the contents of the
following sections.

Section 5 introduces the mapping properties that constitute the main subject
of this thesis. The properties of consistency, embedding, entailment, and mini-
mality have already been described in [9]. In addition several new properties are
introduced. These are the properties of stability, invasiveness, and irreducibility.
Besides defining additional mapping properties, one objective of the thesis is to
find dependencies between mapping properties. Several propositions are stated to
describe these dependencies. The section ends with a classification of the intro-
duced properties according to two dimensions.

In section 6 for each property an algorithm is stated that checks wether or not
the property holds. Four algorithms have already been stated partially in [9]. Re-
fining these algorithms and adding additional algorithms is another contribution of
this thesis. All algorithms have been implemented by the author using the services
of the DRAGO system. A short description of this implementation is given. Fi-
nally, the worst case runtimes of the algorithms are compared with respect to their
usage of DRAGO reasoning services.

The experimental evaluation is described in section 7. Thus, attention is fo-

5

cused no longer on theoretical questions but on questions of applicability. After
describing the ontologies and automatically generated mappings chosen as test-
cases, the defined properties are used for mapping diagnosis. By applying the im-
plemented algorithms formal defects can be detected in many generated mappings.
This shows that the theoretical framework provides a powerful tool in mapping
diagnosis. This approach is carried on towards mapping repairing and explained
with an example.

There is some evidence that minimized and reduced mappings can be used to
optimize the runtime performance of standard reasoning tasks. This is verified by
the experimental results of a second test series. Thus, the defined mapping prop-
erties can not only be applied in the context of mapping diagnosis and debugging,
but also for optimizing the runtime of distributed reasoning.

The results of this thesis are summarized and discussed in section 8 with respect
to the questions stated in the first section. Besides presenting results, three points
of criticism are dealt with leading to further interesting areas of research.

Part II
5 Defining Mapping Properties

First of all a few terminological simplifications have to be introduced. Whenever
an indexed expression like Ti is used, it is supposed that Ti is an element of T
without explicitly mentioning the additional constraint i ∈ I . The same holds
for an expression likeMij and the set of mappings M. Using an expression like
i : C, it is also supposed that there exists a terminology Ti in T. These agreements
simplify the definitions and explanations presented in the following sections.

5.1 Preliminary Definitions

In section 2 a distributed terminology T = 〈T, M〉 has been defined as a set of ter-
minologies T = {Ti}i∈I and a set of mappings M = {Mij}i6=j∈I . This implies by
definition that every terminology and every bridge rule of T is known. Concerning
an implementation of a distributed terminology as a DRAGO peer network, this
kind of omniscient point of view must be refrained. Each peer offering reasoning
services for a terminology has direct access only to a (small) subset of the whole
network, in particular to the peers in the neighbourhood. Therefore, it makes sense
first to examine the structure of a distributed terminology, before introducing map-
ping properties in the following sections.

6

Since requesting reasoning services is always bound to a certain terminology,
the resulting information might also - in a yet unspecified way - be only information
about a subset of the distributed terminology T and its mappings. To explain this
in detail, it is useful to describe a distributed terminology T as a directed graph
(compare [11]). A directed graph G = 〈V,E〉 is defined as a pair 〈V,E〉 with V
being a finite set and E being a binary relation on V . The vertex set V obviously
coincides with the set {Ti}i∈I . The edge set E depends on the set {Mij}i6=j∈I in
the following way: For all pairs 〈i, j〉i6=j∈I the edge 〈Ti, Tj〉 is an element of E if
and only ifMij is a non-empty set. The direction of the edge 〈Ti, Tj〉 is equal to
the direction of the bridge rules inMij since the bridge rules inMij are mapping
concepts from Ti into respectively onto concepts from Tj . Thus, knowledge is
transferred from Ti to Tj and Ti can be seen as knowledge source for Tj . The
following definition captures this conception and distinguishes between direct and
indirect access to a knowledge source.

Definition 1 (Known source and source) Given T, a terminology Ti is a known
source of terminology Tj iffMij is a non-empty set. A terminology Ti is a source
of Tj iff Ti is a known source of Tj or if there exists a k ∈ I with k 6= i and k 6= j
such that Ti is a source of Tk and Tk is a source of Tj .

Alternatively, terminology Ti can be defined as a known source of terminology
Tj if and only if vertex Tj is adjacent to vertex Ti. Similarly, it can be said that
terminology Ti is a source of terminology Tj if and only if there exists a path from
vertex Ti to Tj . Figure 2 depicts an example of a distributed terminology. In this
example T4 and T5 are known sources of T3 while both of them are sources but not
known sources of T1.

The source-relation can be used to introduce the property of being a root termi-
nology. Tj is a root terminology if Tj is reachable from every other terminology Ti.
If the mappings of T contain cycles, a distributed terminology T can have several
root terminologies. On the other hand, not even one of T’s terminologies might be
a root terminology. In figure 2 there is exactly one root terminology T1.

Definition 2 (Root terminology) Given T, Ti is a root terminology iff for every
j ∈ I with j 6= i terminology Tj is a source of Ti.

A request sent to a peer hosting terminology Ti will never be forwarded to
a peer hosting terminology Tj if Tj is not a source of Ti. Thus, the notion of a
source allows us to eliminate irrelevant terminologies and mappings by reducing
the whole distributed terminology to a restricted terminology.

Definition 3 (Restricted terminology) Given T and terminology Ti, let J ⊆ I be
a set of indices such that for every j ∈ J terminology Tj is a source of Ti. Then
〈{Ti}i∈J , {Mij}i6=j∈J〉 is called T restricted by Ti.

7

Figure 2: Example of a bridgegraph.

In figure 2 the distributed terminology restricted by T3 is marked by a dashed
line. Whenever a certain mapping property is checked, a connection to a peer host-
ing one of T’s ontologies, say for example T3, has to be established. The mappings
outside the distributed terminology restricted by T3 are unknown to the peer host-
ing T3 and have therefore no effect on the results of reasoning. The mappings
within the restricted terminology can be subdivided into two groups. M43 and
M53 establish a connections between T3 and one of its known sources in oppo-
site to M64 and M65. Mappings of the first group are affecting the distributed
taxonomy of T3 directly. Mappings of the second group have an influence on the
distributed taxonomy of T3’s sources, and thus, via the mappings of the first group,
an indirect influence on the distributed taxonomy of T3. But these mappings are
not even known to the peer offering reasoning services for T3.

In the following subsection mapping properties like ’consistency with respect
to a terminology’ will be defined. If such a definition is used to express, for exam-
ple, that the mappings are consistent with respect to T3, the truth of the statement
depends fully on the distributed terminology restricted by T3. Anyhow, consistency
with respect to T3 does not entail consistency with respect to any other terminol-
ogy in the distributed terminology restricted by T3. The same holds for any other
mapping property.

Checking wether a certain property holds with respect to all terminologies in
T, requires an iterative or recursive approach in which all of T’s terminologies are
traversed. For every visited terminology Ti it has to be checked if the property holds
with respect to Ti. In order to enable traversing every terminology a connection to
a root terminology has to be established. Otherwise it is only possible to make
statements about subsets of the whole distributed terminology.

8

5.2 Consistency and Stability

Suppose that there is a library using two terminologies T1 and T2. T1 contains
information about furniture and capacity, while T2 is about available literature.
Since the mappings between these ontologies have been developed by a bad paid
student assistant, there are a few defective bridge rules. Among others we have
bridge rules (5) and (6).

1 : bookshelf
w−→ 2 : book (5)

1 : shelf
v−→ 2 : unreadable (6)

Further, let T1 describe bookshelves as a subclass of shelves. By applying (5) and
(6) we can conclude that in the distributed taxonomy of T2 books are unreadable
things. But suppose that books and unreadable things have been defined as disjoint,
according to our intuition. Then concept book becomes distributed unsatisfiable
and thereforeM12 is, according to the following definition, called an inconsistent
mapping. In general the mappings of a distributed terminology can be defined as
inconsistent with respect to a concept i : C if the additional constraints induced by
the mappings have the (unintended) effect of making the local satisfiable concept
i : C distributed unsatisfiable. If such an effect does not occur the mappings are
consistent with respect to i : C.

Definition 4 (Consistency) Given T, M is consistent with respect to i : C iff Ti 6|=
C v ⊥ ⇒ T 6|= i : C v ⊥. Otherwise M is inconsistent with respect to i : C. M
is consistent with respect to Ti iff for all i : C M is consistent with respect to i : C.
Otherwise M is inconsistent with respect to Ti.

Obviously, inconsistency is a clear symptom for defective parts in the mappings of
a distributed terminology. Nevertheless, it was typical to the results of the exper-
imental evaluation that many of the automatically generated mappings are incon-
sistent (compare section 7.1).

Inconsistency can be seen as a special case of the more general notion of insta-
bility. An inconsistent mapping turns a local satisfiable concept C into a distributed
unsatisfiable concept, while an instable mapping imposes additional constraints on
C which do not necessarily lead to a distributed unsatisfiable concept. The notion
of stability can thus be defined as follows.

Definition 5 (Stability) Given T, M is stable with respect to i : C iff for all i : D
we have T |= i : C v i : D ⇒ Ti |= C v D. Otherwise M is instable with respect
to i : C. M is stable with respect to Ti iff for all i : C M is stable with respect to
i : C. Otherwise M is instable with respect to Ti.

9

The negative connotation of the term instability should not imply that the property
of instability is in fact a negative mapping property. Wether instability has to be
judged as negative property might depend on several factors. Finally, this question
has to be answered with respect to the properties and requirements of the concrete
application that makes use of the distributed terminology. Nevertheless, a system
that assists an ontology engineer in its work should be able to decide wether or not
mappings are stable, and should also, in the case of instability, show with respect
to which concepts mappings are instable. In section 7.1 an example is given .

This section ends with a simple proposition about the relation between consis-
tency and stability that can be accepted without further evidence. It has already
been argued above that every stable mapping is a consistent mapping.

Proposition 1 Given T, if M is stable with respect to Ti, then M is consistent with
respect to Ti.

Using the properties of consistency and stability one can make statements about
differences between the local and the distributed taxonomy of a terminology. In
the next subsection this approach will be extended by comparing the distributed
taxonomy to the distributed taxonomy that results from a modified set of bridge
rules.

5.3 Invasiveness and Irreducibility

Assume that Mij - the mapping from Ti to Tj - is built up step by step starting
with an empty mapping. In the first step bridge rule b0 is added to Mij , in the
second step b1 and so on. In each step compare the distributed taxonomy of Tj
before adding the bridge rule to the distributed taxonomy of Tj after adding the
bridge rule. Obviously, the distributed taxonomy before the first step -Mij is still
empty - is equal to the local taxonomy. For each step either the taxonomy changes
or remains unchanged. If there is at least one modifying step while constructing
Mij , the mappings of T are instable with respect to Tj .

A statement about the modifiying effect of step k is actually a statement about
the relation between {b0, . . . , bk−1} and bk in the context of T. Refrain now from
this iterative procedure and simply judge the impact of adding a bridge rule to
Mij . It still can be distinguished between bridge rules that change the distributed
taxonomy and bridge rules that have no impact on the distributed taxonomy. The
following definition introduces the property of invasiveness to distinguish bridge
rules according to these considerations.

Definition 6 (Invasiveness) Given T, let T′ be T with bridge rule i : C
R−→ j : D

(R ∈ {v,w,≡}) added toMij . Then i : C
R−→ j : D is invasive with respect to

10

T iff there exists a pair of concepts 〈E,F 〉 from Tj such that T′ |= j : E v j : F
and T 6|= j : E v j : F .

What happens if one of the bridge rules inMij is removed? Again, it can be
distinguished between a modification of the distributed taxonomy and an unmodi-
fied taxonomy. If none of the bridge rules inMij can be removed without causing
a modification,Mij cannot be reduced to a smaller subset of bridge rules that has
the same modifying effect asMij . The accordant property is called irreducibility
and defined as follows.

Definition 7 (Irreducibility) Given T, M is irreducible from Ti to Tj iff for every
b ∈ Mij bridge rule b is invasive with respect to T′ where T′ is defined as the dis-
tributed terminology T withMij replaced byMij\{b}. Otherwise M is reducible
from Ti to Tj . M is irreducible with respect to Tj iff for every known source Ti of
Tj the mappings of T are irreducible from Ti to Tj . Otherwise M is reducible with
respect to Tj .

Due to the results presented in section 7.1 the irreducible subset of a mapping
is almost very small compared to the size of the original mapping. There are two
major benefits of a smaller mapping. On the one hand the reasons for instability
become obvious in the small, irreducible mapping (compare section 7.1). On the
other hand a smaller mapping allows faster reasoning (demonstrated in section 7.2).
Aside from any empirical results, with respect to stable mappings the following
proposition holds.

Proposition 2 Given T, let M be stable with respect to Tj . If M is irreducible from
Ti to Tj thenMij ≡ ∅.

Assume that M is stable with respect to Tj and irreducible from Ti to Tj . Fur-
thermore, letMij be a non-empty mapping with b ∈ Mij . From irreducibility it
follows that removing b has effects on the distributed taxonomy of Tj . Thus, the
distributed taxonomy differs from the local taxonomy of Tj , and M therefore can-
not be stable with respect to Tj . The assumption has to be rejected and proposition
2 has been proved.

The mapping properties introduced in the last two subsections were built upon
satisfiability of concepts respectively upon differences between taxonomies. In
both cases mapping properties can be reduced to their effect on relations between
concepts. In the following two subsections several properties will be introduced
that cannot be described this way. Therefore, attention has to be focused not on the
concepts themselves but on their images.

11

5.4 Extended Terminology and Embedding

The image Ci→j of a concept C from Ti is a concept in Tj that fulfills the con-
dition rij(CIi) ≡ (Ci→j)Ij where r is the domain relation connecting elements
of the interpretation domains of different terminologies. This is one way to de-
fine the notion of an image. Instead of this approach an equivalent but more con-
structive definition is introduced. The image of a concept can alternatively be de-
fined by extending the distributed terminology T in the following way: (1) Add
a new concept, the image Ci→j of C, to Tj . (2) Add the equivalence bridge rule
i : C

≡−→ j : Ci→j toMij . Since Ci→j is linked to C via the equivalence bridge
rule, rij(CIi) ≡ (Ci→j)Ij for any model I of T. The following is the formal
representation of this constructive definition.

Definition 8 (Extended distributed terminology and image) Given T, let T ′j be
Tj extended with Ci→j , where Ci→j is a concept that is not in Tj . Further, let
M′

ij be Mij extended with i : C
≡−→ j : Ci→j . Then concept j : Ci→j is

called the image of concept i : C in Tj and the distributed terminology TCi→j
=

〈{Tk}k 6=j,k∈I ∪ {T ′j }, {Mkl}k 6=i,l 6=j,k 6=l∈I ∪M′
ij〉 is called T extended by Ci→j .

It is now possible to check relations between concepts of different terminolo-
gies. This possibility will be exploited in the following to introduce several map-
ping properties. At first a property is defined that holds if the image Ci→j of a
satisfiable concept i : C is distributed unsatisfiable in the extended distributed ter-
minology TCi→j

. This might occur if there is no unsatisfiable concept in Tj and
even if the mappings are consistent with respect to Tj . Consider, for example, a

mapping that consists of the bridge rules i : C
v−→ j : D and i : C

v−→ j : D′

with j : D and j : D′ being defined as disjoint classes. It follows that Ci→j is
distributed unsatisfiable in TCi→j

.

Definition 9 (Embedding) Given T, M is embedding i : C in Tj iff T 6|= i : C v
⊥ ⇒ TCi→j 6|= j : Ci→j v ⊥. M is embedding Ti in Tj iff for all i : C M is
embedding i : C in Tj . M is an embedding for Tj iff for all T ∈ T M is embedding
T in Tj .

The experimental results with respect to the property of embedding are similar to
the results of checking consistency. In both cases a great number of mappings is
judged as defective (see section 7.1).

Notice that this definition does not restrict Ti to be a known source of Tj . For
every terminology Ti that is not a known source of Tj and for every concept i : C,
the extended mappingM′

ij of TCi→j
consists of exactly one bridge rule connecting

i : C to its image Ci→j . Since there is also no relation between Ci→j and any of the

12

concepts in Tj the image Ci→j cannot be distributed unsatisfiable. Thus, for every
terminology Ti that is not a known source of Tj the mappings of T are embedding
Ti in Tj .

The property of embedding represents the external counterpart of consistency.
Both properties depend on the existence of a distributed unsatisfiable concept re-
spectively image. However, there is no conditional relation that could be expressed
by a proposition as one might expect. Embedding does not hold if an image of a
satisfiable concept from a different terminology becomes distributed unsatisfiable
and inconsistency holds if a satisfiable concept becomes distributed unsatisfiable
in its own terminology.

5.5 Entailment and Minimality

The following definitions are centered around the concept of entailment. A bridge
rule is entailed by a distributed terminology T if the bridge rule does not provide
any additional pieces of information that are not explicit or implicit available in T.
Suppose for example that T1 contains the axiom Tiger v Carnivore and consider
the following bridgerules.

1 : Carnivore
v−→ 2 : Animal (7)

1 : Tiger
v−→ 2 : Animal (8)

Obviously, the second bridge rule follows from the first one. The following defini-
tion formally introduces the corresponding notion of entailment.

Definition 10 (Entailment of a bridge rule) Given T, a bridge rule i : C
R−→ j :

D with R ∈ {v,w,≡} is entailed by T iff every model I of T satisfies i : C
R−→

j : D.

On the one hand the property of entailment can be used to check wether a
bridge rule that is not an element of T’s mappings can be derived from T. On the
other hand entailment can be used to construct a subset of a mappingMij that is
strong enough to entail every bridge rule inMij . Therefore, the related property
of minimality has to be defined.

Definition 11 (Minimality) Given T, M is minimal from Ti to Tj iff for every
b ∈ Mij bridge rule b is not entailed by T′ where T′ is defined as the distributed
terminology T withMij replaced byMij\{b}. M is minimal with respect to Tj iff
for every known source Ti of Tj the mappings of T are minimal from Ti to Tj .

Due to the experimental evaluation, automatic generation of mappings pro-
duces a great number of bridge rules that are entailed by a smaller minimal subset.
This result will be discussed in section 7.1.

13

Concept Image
Satisfiability Consistency Embedding
Taxonomies Stability -
Modifications of taxonomies Invasiveness Entailment

Irreducibility Minimality

Table 1: Classification of mapping properties

5.6 Classification of Mapping Properties

The defined properties can be classified with respect to two dimensions. The first
dimension is the object of the property. In the case of consistency, stability, inva-
siveness, and irreducibility it depends on concepts if one of these properties holds,
while in the case of embedding, entailment, and minimality images are relevant.
The second dimension is the context of the property. Consistency and embedding
evaluate concepts respectively images in the context of satisfiability. Invasiveness
and entailment evaluate concepts respectively images in the context of mapping
modifications and resulting taxonomy modifications. The very same obtains for ir-
reducibility and minimality since these properties are defined in terms of invasive-
ness and entailment. The classification based on these dimensions is summarized
in table 1.

One might wonder why there is an empty cell in the table. The explanation
is quite simple. In order to check stability, the local taxonomy is compared to
the distributed taxonomy. If there is a concept that has changed its place in the
taxonomy of Ti, the mappings are instable with respect to Ti. Such a comparison
is not possible for images because it would require that the source terminologies of
Ti could be compared to terminology Ti.

But what about embedding? Why is a comparison possible across the borders
of terminologies? This time concepts can be compared to their images, because
the empty set ⊥ is the same in all terminologies. Thus, the unsatisfiability of some
concept i : C can be compared to the unsatisfiability of j : Ci→j .

This section ends with an important proposition about the relation between in-
vasiveness and entailment that will be used in section 6.3 to optimize the algorithm
for computing irreducibility.

Proposition 3 Given T, if a bridge rule b is entailed by T then b is not invasive
with respect to T.

It is not very hard to proof this proposition. Let b be a bridge rule i : C
R−→ j : D

that is invasive with respect to T. Then there exists a pair of concepts 〈E,F 〉 in Tj

14

such that T′ |= j : E v F and T 6|= j : E v F with T′ being T extended by b.
Now let I be an interpretation that is a model of T but a countermodel of T′. Since
T and T′ differ with respect to j : E v F , such an interpretation exists. Thus, I is
a modell of T that does not satisfy b, and therefore b is not entailed by T. It can be
concluded that every bridge rule that is entailed by T is not invasive with respect
to T.

6 Checking Mapping Properties

In the following algorithms for checking the previously defined properties will be
stated. Most of these algorithms are straight forward implementations of the corre-
spondent definitions. For the more complicated algorithms a proof of correctness
will be sketched. It will also be described how these algorithms have been imple-
mented using the DRAGO system. Finally, the runtime of the algorithms will be
discussed with respect to their implementation using DRAGO reasoning services.

6.1 Algorithms

The pseudocode used for describing the algorithms abstracts from many concrete
details. A function call like GETALLCONCEPTS(T, i), for example, has two ar-
guments, a distributed terminology T and an index i ∈ I . You should notice that
in an implementation the index has to be replaced by an address (e.g. a hostame
and a portnumber). Before requesting any information, a connection to a reason-
ing peer has to be established via the specified address. Whereas the distributed
terminology T, the first parameter, never has to be specified. It is determined by
the reasoning peer and the fact that this peer is a node in a network of terminolo-
gies and mappings. Nevertheless, this simplification makes it easier to focus on the
more important aspects of the algorithms and to connect them to the corresponding
definitions.

Consistency Algorithm 1 is a straight forward implementation of the definition
of consistency. The algorithm iterates over all concepts in Ti and checks for every
concept local and distributed satisfiability.

Stability Checking stability can be reduced to a comparison between the local
and the distributed taxonomy of a terminology. Any differences between local and
distributed taxonomies always come along with at least one concept having more
superclasses in the distributed taxonomy than in the local taxonomy. This principle
is used in algorithm 2. The functions GETLOCALSUPERCLASSES(T, i, C) and

15

Algorithm 1
ISCONSISTENT(T, i)

1: for all C ∈ GETALLCONCEPTS(T, i) do
2: if Ti 6|= C v ⊥ and T |= i : C v ⊥ then
3: return false
4: end if
5: end for
6: return true

GETDISTRIBUTEDSUPERCLASSES(T, i, C) are supposed to return the set of all
superclasses of concept C with respect to the local respectively the distributed
taxonomy of Ti.

Algorithm 2
ISSTABLE(T, i)

1: for all C ∈ GETALLCLASSES(T, i) do
2: L← GETLOCALSUPERCLASSES(T, i, C)
3: D ← GETDISTRIBUTEDSUPERCLASSES(T, i, C)
4: if |L| 6= |D| then
5: return false
6: end if
7: end for
8: return true

Embedding The algorithm for checking if the mappings of a distributed termi-
nology are embedding Ti in Tj is similar to the algorithm for checking consistency
with respect to Tj . In the case of consistency for every concept C local and dis-
tributed satisfiability are considered. In the case of embedding it is checked if C is
distributed satisfiable in Ti and if Ci→j is distributed satisfiable in Tj . Algorithm 3
implements this procedure. The more general property of being an embedding for
a certain terminology Tj can be decided by iterating over all known sources Ti of
Tj each time calling ISEMBEDDING(T, i, j).

Invasiveness The invasiveness of a bridge rule can be checked by computing the
distributed taxonomy before and after adding the bridge rule, as stated in algo-
rithm 4. Notice that the function GETDISTRIBUTEDTAXONOMY(T, j) returns the
distributed taxonomy of Tj in an appropriate tree structure that conains full infor-

16

Algorithm 3
ISEMBEDDING(T, i, j)

1: for all C ∈ GETALLCLASSES(T, i) do
2: if T 6|= i : C v ⊥ and TCi→j |= j : Ci→j v ⊥ then
3: return false
4: end if
5: end for
6: return true

mation about subclasses, equivalent classes, and superclasses for every concept.
Thus, the comparison in line four is a complex operation.

Algorithm 4

ISINVASIVE(T, i : C
R−→ j : D)

1: T ← GETDISTRIBUTEDTAXONOMY(T, j)
2: Mij ←Mij ∪ {i : C

R−→ j : D}
3: T ′ ← GETDISTRIBUTEDTAXONOMY(T, j)
4: if T 6= T ′ then
5: return true
6: end if

Irreducibility Algorithm 5 is computing the irreducible set of bridge rules from
Ti to Tj . Remember that there is no bridge rule in an irreducible mapping that can
be removed without changing the distributed taxonomy. Thus, algorithm 5 iterates
over all bridge rules and checks if the actual bridge rule b is removable without
affecting the distributed taxonomy. If b is removable, the algorithm continues with
the reduced mapping. Otherwise b is added again to the mapping. The algorithm
terminates if all bridge rules have been processed like this. Then the reduced set of
bridge rulesMij is returned.

Is the resulting mapping -M′
ij in the following argumentation - really the irre-

ducible subset ofMij? Since the distributed taxonomy is neved changed through
the whole iteration,M′

ij is definitely a superset of the irreducible set. Otherwise
an invasive bridge rule would have been removed. But there still could be a bridge
rule b inM′

ij that is not invasive with respect toM′
ij\{b}. Assume that there is

such a bridge rule b. Then there must be a step in the iteration in which b is checked
and judged as invasive. Otherwise it would have been removed and would thus not
be an element ofM′

ij . The existence of such a step is equivalent to the existence

17

Algorithm 5
REDUCEFROMTO(T, i, j)

1: for all b ∈Mij do
2: Mij ←Mij\{b}
3: if ISINVASIVE(T, b) then
4: Mij ←Mij ∪ {b}
5: end if
6: end for
7: return Mij

of a set of bridge rulesM′′
ij withMij ⊇ M′′

ij ⊇ M′
ij such that b is invasive with

respect toM′′
ij\{b}. Compare nowM′

ij\{b} ⊆ M′′
ij\{b} ⊆ M′′

ij with respect to
the corresponding distributed taxonomies. M′

ij\{b} and M′′
ij result in the same

taxonomy, whileM′′
ij\{b} results in a different taxonomy. This would mean that

the modifications that have been applied to a taxonomy by adding a set of bridge
rules can be undone by adding a further set of bridge rules. But this is definitely not
possible. Adding invasive bridge rules is an irreversible operation since every inva-
sive bridge rule is adding further specifications to the distributed taxonomy. Thus,
the assumption of M′

ij not being the irreducible subset of Mij can be rejected.
Algorithm 5 correctly computes the irreducible subset ofMij .

Entailment Remember that entailment of a bridge rule b is based on the fact
that every model of T satisfies b. This cannot be checked directly using standard
reasoning methods. The following proposition has to be used.

Proposition 4 (Bridge rule equivalence) Given T, for any two concepts i : C
and j : D the following equivalences hold.

T |= i : C
≡−→ j : D ⇐⇒ TCi→j |= j : Ci→j ≡ D

T |= i : C
v−→ j : D ⇐⇒ TCi→j |= j : Ci→j v D

T |= i : C
w−→ j : D ⇐⇒ TCi→j |= j : Ci→j w D

Now entailment of a bridge rule i : C
R−→ j : D can be checked following a very

simple procedure. Extend T to TCi→j
and check relation R between j : Ci→j and

j : D in TCi→j
. Algorithm 6 describes this procedure in detail.

Minimality Having once established a method for checking entailment, an al-
gorithm for computing minimal mappings (algorithm 7) can be stated using an

18

Algorithm 6

ISENTAILED(T, i : C
R−→ j : D)

1: if R = v then
2: return TCi→j |= j : Ci→j v D
3: else if R = w then
4: return TCi→j |= j : Ci→j w D
5: else if R = ≡ then
6: return TCi→j |= j : Ci→j ≡ D
7: end if

iterative procedure that is similar to the algorithm for computing irreducible map-
pings: For all bridge rules b inMij the following operation is applied. Remove b
fromMij and check if b is entailed by the remaining bridge rules. If b is entailed,
continue directly with the next bride rule. Otherwise put b back intoMij and con-
tinue with the next bridge rule. Having checked every bridge rule this way, Mij

has become a minimal mapping.

Algorithm 7
MINIMIZEFROMTO(T, i, j)

1: for all b ∈Mij do
2: Mij ←Mij\{b}
3: if not ISENTAILED(T, b) then
4: Mij ←Mij ∪ {b}
5: end if
6: end for
7: return Mij

Once again it has to be proved that the resultingMij -M′
ij in the folllowing

argumentation - is really minimal. On the one hand a bridge rule that cannot be
entailed from Mij or a subset of Mij is never removed. Thus, the result of the
algorithm is definitely a superset of the minimal set. But could there be, on the
other hand, an element b in M′

ij that is entailed by M′
ij\{b}? Such an element

does not exist. Since b is entailed by M′
ij\{b}, it also has to be entailed by any

superset ofM′
ij\{b}. Thus, it would have been removed in one of the iterations

and it can be concluded that the algorithm is correct.

19

6.2 Implementation

The algorithms defined in the previous section have been implemented using the
DRAGO system described in section 3. The implementation of algorithms 1 and
2 is a straight forward task using standard reasoning services of DRAGO. The
same does not hold for the remaining algorithms. Reasoning in the context of an
extended terminology TCi→j

requires a mapping with an additional equivalence
bridge rule inMij and an additional concept Ci→j in terminology Tj . Minimiza-
tion and reduction requires the stepwise removal of bridge rules. But the reasoning
service interface does not offer any methods for applying changes to the hosted
terminology as well as to registered mappings.

Therefore, the following workaround has been implemented. Assume that al-
gorithm 6 is used to check entailment of a bridge rule i : C

v−→ j : D and
that Tj is hosted by DRP A. First of all a second DRP A′ is created serving as
some kind of temporary clone. The ontology and mapping files registered at A
are parsed, extended by image and eqivalence bridge rule, and written to the file
system as temporary files. These temporary files are registered at A′ and A′ is
started. The reasoning services of A′ can now be requested in order to compute
TCi→j |= j : Ci→j v D. Afterwards temporary files are deleted and A′ is not
needed anymore.

The same strategy has been chosen for the other algorithms that require mod-
ifications of ontologies or mappings. With respect to irreducibility and minimal-
ity the described procedure has to be applied iterative, resulting in numerous IO-
operations. This disadvantage hardly affects the overall runtime since the main
costs are always related to the reasoning tasks. Nevertheless, in future implemen-
tations the functionality of extending (or reducing) ontologies and mappings should
better be part of the reasoners functionality. But there is also an advantage of this
strategy. The reasoning services of A are not affected by checking mapping prop-
erties. Since A’s ontology and mappings are not modified, the results of reasoning
are still correct. The computational load for checking mapping properties is shifted
to the clone of A.

6.3 Comparing Runtimes

The goal of this section is to establish a better understanding of the algorithms and
their runtime from a theoretical point of view. Concrete runtime measurements
are presented in section 7.1. The reasoning services of DRAGO can be divided
into two groups of operations. The first group consists of method calls that force
DRAGO to compute the taxonomy of a terminology. This operation is executed
whenever the methods GETLOCAL/ DISTRIBUTEDSUPERCLASSES(T, i, C) and

20

Algorithm Worst case runtime
(1) ISCONSISTENT(T, i) |Ti| ∗ (SUBL(i) + SUBD(i))
(2) ISSTABLE(T, i) TAXL(i) + TAXD(i)

(3) ISEMBEDDING(T, i, j) |Ti| ∗ (SUBD(i) + SUBD(j))

(4) ISINVASIVE(T, i : C
R−→ j : D) TAXD(j) + TAXD(j)

(5) REDUCEFROMTO(T, i, j) (|Mij | + 1) ∗ TAXD(j)

(6) ISENTAILED(T, i : C
R−→ j : D) SUBD(j)

(7) MINIMIZEFROMTO(T, i, j) |Mij | ∗ SUBD(j)

Table 2: Worst case runtimes of the presented algorithms.

GETLOCAL/DISTRIBUTEDTAXONO MY(T, j) are called. Notice that the results of
the classification process are cached. This means that a second method call returns
the cached results as far as the same terminology is concerned. The second group
consists of all methods that are used to check entailment. Whenever satisfiabilty of
a concept or subsumption is checked, the same kind of operation is executed. In
this case DRAGO does not build a whole classification. Thus, calling a method of
the second group is less expensive than calling a method of the first group.

As explained in section 3, both kinds of operation can be executed in local and
distributed mode. Therefore, the runtime of the algorithms can be described with
respect to four basic operations.

• TAXL(j) - computes the local taxonomy of Tj
• TAXD(j) - computes the distributed taxonomy of Tj
• SUBL(j) - checks local concept subsumption in Tj
• SUBD(j) - checks distributed concept subsumption in Tj

These four basic operations have been introduced to enable a comparison between
the stated algorithms. This comparison is presented in table 2. In order to abstract
from minor differences, an expression like TAXD(j) denotes operations on Tj as
well as operations on variations of Tj . The extension of Tj by an image is an ex-
ample for a such a variation. With respect to runtime estimations these differences
can be neglected. For the sake of simplicity |Tj | is used to refer to the number of
concepts in Tj .

Algorithm 5 by far has the worst runtime. The runtime of this algorithm is lin-
ear with respect to the number of bridge rules, but for each bridge rule a distributed
taxonomy has to be computed.3 Fortunately, algorithm 5 can be optimized by the

3Note that the runtime stated in table 2 is not a correct description of a direct implementation. The

21

use of proposition 3. Since every entailed bridge rule is non-invasive, the number
of checking invasiveness can be reduced. The optimized version is presented in
algorithm 8.

Algorithm 8
OPTREDUCEFROMTO(T, i, j)

1: for all b ∈Mij do
2: Mij ←Mij\{b}
3: if not ISENTAILED(T, b) then
4: if ISINVASIVE(T, b) then
5: Mij ←Mij ∪ {b}
6: end if
7: end if
8: end for
9: return Mij

If algorithm 8 is applied to a minimal mapping, a worse runtime compared
to algorithm 5 can be expected. In this case an unnecessary check of entailment
is executed for every bridge rule. But for mappings that have a relatively small
minimal subset of bridge rules algorithm 8 is definitely a better choice. This will
be proved in the context of the experimental evaluation.

Part III
7 Experimental Evaluation

The ontologies used in following experiments origin from the OntoFarm initia-
tive, described in [10].4 The OntoFarm ontologies have been created to provide a
set of rich ontologies that on the one hand describe a similar domain and on the
other reflect different conceptualisations of this domain. Therefore, the OntoFarm
ontologies are well-suited for creating non-trivial semantic mappings.

All ontologies are about the domain of conference organisation. They were
developed based upon (1) actual conferences and corresponding web pages, (2)
software tools for conference organisation support, and (3) experience of people
with personal participation in conference organisation. Six ontologies of the Onto-

formula in the table describes the runtime of a more efficient algorithm that computes the distributed
taxonomy of the initial situation only once and compares it to the taxonomy of every iteration.

4The ontology files and additional informations are available at http://nb.vse.cz/ svabo/oaei2006/.

22

Ontologie Based upon Classes Properties
TCRS Tool 14 17
TPCS Tool 23 38
TCMT Tool 36 59
TCONFTOOL Tool 38 36
TSIGKDD Web 49 28
TEKAW Experience 77 33

Table 3: Ontologies chosen from the OntoFarm collection.

Farm collection have been chosen for empirical evaluation. These ontologies are
described in table 3. For each pair of different test ontologies 〈Ti, Tj〉 the CtxMatch
matching tool5 has been used to create a mapping from Ti to Tj . The algorithm im-
plemented in CtxMatch is an algorithm for discovering semantic mappings across
hierarchical classifications (compare [12]).

The chosen OntoFarm ontologies and the generated mappings can be used to
construct different kinds of distributed terminologies. In section 7.1 distributed
terminologies are built of two ontologies Ti and Tj connected via one mapping
Mij . In this context Ti will be called source terminology and Tj will be called
target terminology. In section 7.2 more complex distributed terminologies with
multiple source terminologies will be constructed.

7.1 Mapping Diagnosis

An overview of the results and the runtime of the experiments discussed below is
presented in table 4. Each cell in the table represents a distributed source-target
terminology. Each row corresponds to the set of distributed terminologies that
share the same source terminology, while the distributed terminologies belonging
to the same column share the same target terminology. The second cell in the
first row, for example, refers to the distributed terminology that consistent of TCRS

(source terminoloy) and TPCS (target terminology). This distributed terminology
will be called TCRS−PCS . The same manner of speaking obtains for the other cells
respectively distributed terminologies.6

In the first line of each cell the size of mappings is noted in number of bridge
rules. The results for inconsistency, instability, and embedding can be found in

5CtxMatch is available at http://dit.unitn.it/ zanobini/downloads.html.
6Some entries in the table are empty. The corresponding computations have been stopped after an

hour since no progress could be detected. All tests have been realised with 512Kb ram on a Pentium
M 1400Mhz. For a detailed presentation of the results summarized in table 4 see appendix A.

23

TCRS TPCS TCMT TCONFTOOL TSIGKDD TEKAW

TCRS

38 71 80 57 219

0 (1.9) 2 (0.7) 27 (0.5) 0 (0.8) 29 (1.3)

2 (3.2) 2 (2.3) 27 (1.1) 10 (9.5) 64 (7.9)

0 (16.9) 0 (16.3) 6 (17.2) 0 (15.7) 5 (19.3)

45% (47.4) 30% (64.9) 12% (101.2) 40% (64.5) 9% (282.5)

8% (157.4) 6% (163.5) 6% (150.6) 21% (409.3) 6% (628.9)

TPCS

38 89 45 56 126

0 (0.3) 0 (0.8) 5 (0.6) 0 (0.8) 4 (1.2)

0 (1.3) 2 (3.3) 5 (4.0) 7 (8.1) 22 (12.6)

3 (26.5) 0 (27.2) 5 (26.9) 0 (25.8) 0 (28.9)

45% (42.7) 21% (86.9) 40% (54.3) 36% (65.3) 18% (165.7)

0% (89.6) 3% (232.7) 18% (199.2) 14% (390.4) 11% (685.2)

TCMT

71 92 62 66 138

1 (0.3) 0 (2.1) 3 (0.5) 0 (0.8) 4 (1.5)

1 (0.7) 6 (5.2) 3 (4.0) 7 (8.4) 22 (14.1)

2 (32.5) 1 (32.8) 0 (32.9) 1 (36.3)

28% (67.3) 27% (59.3) 24% (72.1) 16% (156.9)

4% (125.2) 10% (173.3) 14% (296.5) 8% (706.4)

TCONFTOOL

80 45 62 75 236

10 (0.2) 0 (0.4) 0 (0.4) 0 (0.6) 29 (1.6)

10 (0.2) 0 (1.6) 0 (1.9) 7 (8.3) 57 (9.6)

15 (43.1) 0 (42.0) 0 (42.1) 0 (42.5) 14 (53.7)

19% (93.2) 40% (51.1) 29% (55.9) 43% (87.5) 13% (321.2)

5% (124.9) 0% (127.6) 0% (131.6) 11% (393.5) 6% (516.2)

TSIGKDD

57 56 66 72 132

1 (0.3) 0 (0.4) 0 (0.5) 3 (0.5) 4 (2.4)

1 (0.7) 4 (1.9) 0 (2.2) 3 (4.0) 22 (20.2)

4 (56.6) 0 (55.1) 0 (55.7) 7 (59.1) 4 (67.5)

40% (70.3) 36% (79.6) 24% (76.2) 42% (83.6) 24% (150.2)

4% (121.9) 7% (119.1) 0% (158.3) 7% (252.7) 8% (772.5)

TEKAW

221 126 134 238 131

10 (0.5) 0 (1.4) 27 (1.3) 0 (1.9)

10 (0.2) 0 (3.4) 27 (1.3) 7 (10.4)

53 (99.3) 4 (94.4) 45 (112.5) 0 (97.8)

7% (230.2) 17% (126.9) 8% (279.9) 26% (141.8)

2% (284.2) 0% (322.1) 3% (368.4) 6% (601.4)

Table 4: Number of bridge rules; number of inconsistent, instable, and not em-
bedded concepts; reduction rate of minimality and irreducibility with respect to
number of bridge rules.

24

the next three lines. Consider the cell corresponding to TCRS−PCS again. The
second line means that there is no concept C in TPCS such that the mapping of
TCRS−PCS is inconsistent with respect to C. The subsequent value in parenthesis
refers to the runtime in seconds. In this case computing the set of inconsistent
bridge rules took 1.9 seconds. The same obtains for the third line in each cell with
respect to instability, and for the fourth line with respect to embedding.

Counting the cells with one or more inconsistent concepts results in 15 of 29
distributed terminologies with an inconsistent mapping. This means that approx-
imately half of the automatically generated mappings are defect with respect to
mapping consistency. Thus, the formal property of mapping consistency can be
successful used for detecting defective mappings. The runtimes for checking con-
sistency ranges between 0.3 and 2.4 seconds.

Besides consistency, the property of embedding provides a second possibil-
ity to sort out defective mappings. 15 of 28 mappings are not embedding their
source terminology into their target ontology. Combining the results for both prop-
erties only 11 mappings are free from formal errors with respect to consistency or
embedding. Remember that consistency and embedding are hard criteria for the
evaluation of mappings. This means that about 60% of the generated mappings
definitely have to be judged as incorrect for formal reasons.

Can the property of instability also be used in the context of mapping diag-
nosis? In the column for target terminology TSIGKDD there are three distributed
terminologies (source terminologies TPCS , TCMT , and TCONFTOOL) that have
instable but consistent mappings. For all of them there are seven instable concepts,
and these concepts, listed in the following enumeration, are the same for all of
them.

• Registration SIGMOD Member
• Registration Student
• Registration NonMember
• Registration SIGKDD Member
• Deadline Author notification
• Best Student Paper Award
• Conference hall

By comparing the local taxonomy of TSIGKDD to the distributed taxonomy of
TSIGKDD it shows that for all of the three distributed terminologies the listed con-
cepts have become subclasses of Person. Obviously, this cannot be correct. The
listed concepts are subclasses of registration fees, deadlines, and places. Thus, by
manually checking instable concepts, further defective mappings can be detected.

The fifth and the sixth line present the reduction rate that results from comput-
ing the minimal respectively the irreducible mapping from source to target termi-

25

nology. Notice that the size of the minimal mapping is between 10% and 45% of
the original size. This means that a significant part of the automatically generated
bridge rules does not yield any new information and is thus redundant. The irre-
ducible subset of bridge rules is even smaller. Notice also that, in accordance to
proposition 2, the irreducible set of bridge rules is empty if the original mapping is
stable. Figure 3 and 4 present a visualization of an original mapping and the corre-
sponding minimal mapping.7 Comparing both figures gives a good impression of
minimization effects.

A more compact mapping is an advantage in the context of mapping debugging.
Consider for example the irreducible mapping of TPCS−SIGKDD. This mapping
consists of the following eight bridge rules.

• PCS : PERSON
≡−→ SIGKDD : Person

• PCS : PERSON
w−→ SIGKDD : Registration SIGMOD Member

• PCS : PERSON
w−→ SIGKDD : Registration Student

• PCS : PERSON
w−→ SIGKDD : Registration NonMember

• PCS : PERSON
w−→ SIGKDD : Registration SIGKDD Member

• PCS : PERSON
w−→ SIGKDD : Deadline Author notification

• PCS : PERSON
w−→ SIGKDD : Best Student Paper Award

• PCS : PERSON
w−→ SIGKDD : Conference hall

These bridge rules are exactly the bridge rules that force the concepts listed above
to become subclasses of SIGKDD : Person. For each instable concept there is
a pair of bridge rules, that consists of the first bridge rule and one of the remaining
bridge rules, such that SIGKDD : Person subsumes this concept even if only
these two bridge rules would be used in distributed reasoning. But since the first
bridge rule expresses a correct semantic relation, the remaining bridge rules have
to be incorrect. Therefore, the property of irreducibilty can be used to focus on a
small subset of bridge rules that results in the unwanted effect of instability.

Meilicke, Stuckenschmidt and Tamilin have introduced the notion of an irre-
ducible conflict set (see [6]), that is closely related to the notion of irreducibility.
The authors have shown that automated mapping repairing can be realized by step-
wise removing elements from irreducible conflict sets. By applying this procedure
inconsistent mappings become consistent. There is some evidence that a similar
strategy can be applied with respect to certain subsets of irreducible sets to stabi-
lize a mapping.

Remember that there are two alternatives for computing irreducibility, the di-
7The tool that was used to create these visualizations has been developed by Andrei Tamilin and

is not part of the authors work.

26

Figure 3: Mapping from TCONFTOOL to TCMT before minimization. Arrows
captioned with > indicate onto bridge rules, arrows captioned with < indicate
into bridge rules, and arrows captioned with = indicate equivalence bridge rules.
Multiple occurences of the same concept (concept has different superclasses) are
written in grey font. Arrows are only drawn to the first occurence of the concept.

27

Figure 4: Mapping from TCONFTOOL to TCMT after minimization.

28

rect application of invasiveness (algorithm 5) and the optimized variant (algorithm
8). The runtimes stated in table 4 are based on applying algorithm 8. Additional
experiments have shown that the optimized variant is up to five times faster.8 Nev-
ertheless, in some cases the direct algorithm is as fast as or even slightly faster than
its optimized variant. This depends on the number of entailed bridge rules. If the
irreducible mapping, for example, is computed based on a minimal mapping, the
direct approach will always be faster.

7.2 Reasoning with Minimal and Irreducible Mappings

In this section the properties of minimality and irreducibilty will be discussed with
respect to their effects on the runtime of typical reasoning requests. The main
idea of this section is quite simple. A mapping with less bridge rules allows faster
reasoning since, in the context of the distributed tableau algorithm, less branches
can cross the border of a local terminology. Thereby cost-intensive distributed
reasoning is reduced. Before the emprical verification of this assertion can be
discussed, a few theoretical observations have to be made.

For the following considerations let Tmin and Tred denote a modified dis-
tributed terminology T with original mappings replaced by minimal respectively
irreducible mappings. Remember that minimality is based on the notion of entail-
ment. A bridge rule b is entailed if every model of the distributed terminology also
satisfies b. Thus, any model for Tmin is also a model for T and vice versa. The
same does not hold with repect to Tred. Working with Tred only guarantees that
the distributed taxonomies of Tred’s terminologies are equal to the distributed tax-
onomies of T’s terminologies. Therefore, the relation between T and Tred could
be denoted as weak equivalence while the relation between T and Tmin could be
denoted as (strong) equivalence.

Reasoning in Tmin always yields the same results as reasoning in T. Thus, for
any kind of application a distributed terminology T can be replaced by its minimal
equivalent Tmin. But it depends on the kind of reasoning requests if T can also
be replaced by Tred.9 Such a replacement is not always possible and it has to be
decided in consideration of certain aspects of the application. This difference be-
tween minimal and irreducible mappings has to be comprehended before empirical
results can be discussed.

Three different distributed terminologies have been chosen as testcases. Each
distributed terminology consists of one target terminology and two source ter-
minologies. TCRS , TCMT and TSIGKDD have been chosen as building blocks

8See appendix A for detailed runtime measurements.
9The actual version of the DRAGO system only offers reasoning services that yield the same

results for Tred and T.

29

of the distributed terminologies refered to as TCRS+, TCMT+, and TSIGKDD+.
TCRS+, for example, consists of target terminology TCRS and source terminolo-
gies TCMT and TSIGKDD. An equivalent structure has been chosen for TCMT+

and TSIGKDD+. The mappings connecting the sources with the target are the
mappings that have been created by the use of CtxMatch. In the following these
mappings will be called the original mappings. In section 7.1 corresponding min-
imal and irreducible mappings have been computed. These mappings will now be
compared with respect to their influence on the runtime of certain reasoning tasks.

The minimal and irreducible mappings from section 7.1 have been computed
with respect to a simple distributed terminology consisting of just one source and
one target connected via one mapping. A minimal respectively irreducible map-
ping computed in such a context will be called a pairwise computed mapping.
In the context of a more complex distributed terminology, like introduced in this
section, pairwise computed mappings are not necessarily minimal or irreducible.
Consider the following example in the context of TCRS+. Assume that the same
modification in the distributed taxonomy of TCRS is caused by a subset M′ of
MCMT−CRS as well as byMSIGKDD−CRS . If first of all the irreducible set of
bridge rules corresponding to MCMT−CRS is computed, the bridge rules in M′

will not be contained in the resulting irreducible set. These bridge rules can be re-
moved without affecting the distributed taxonomy of TCRS sinceMSIGKDD−CRS

is strong enough to force the modification mentioned above upon the taxonomy of
TCRS . Nevertheless, M′ could be a subset of the pairwise computed irreducible
mapping because, restricted to MCMT−CRS , it might be the only causer of the
modification.

So why not compute the minimal respectively irreducible subsets in the context
of the more complex distributed terminologies? There is a big advantage in using
pairwise computed mappings. If one of the reasoning peers hosting a source termi-
nology is not availabe negative effects should be as small as possible. This is guar-
anteed when using pairwise computed mappings. The assistance of other mappings
is not necessary since all of the invasive power has been preserved in the pairwise
computed irreducible mapping. Using irreducible mappings that have been com-
puted in a multi source environment is also problematic when new sources are
added. To ensure that the mappings are still in a strict sense irreducible a recom-
putation has to take place in such a situation.

Table 5 comprises the results of reasoning with original and pairwise com-
puted minimal respectively irreducible mappings. Two kinds of operations have
been chosen as examples for standard reasoning tasks. The first task is the compu-
tation of a distributed taxonomy. The second task is the computation of the set of
all mapping inconsistent concepts (see algorithm 1). Computing mapping incon-
sistency is no standard DRAGO operation. Nevertheless, it yields a good measure

30

Distributed
terminology and
mappings

TCRS+ TCMT+ TSIGKDD+

ir
re

du
ci

bl
e

m
in

im
al

or
ig

in
al

ir
re

du
ci

bl
e

m
in

im
al

or
ig

in
al

ir
re

du
ci

bl
e

m
in

im
al

or
ig

in
al

Taxonomy (Order 1) 2.22 3.81 4.55 6.49 7.92 9.22 30.71 37.11 39.53

Taxonomy (Order 2) 1.95 3.38 3.93 6.35 7.91 8.78 31.15 38.51 40.03

Consistency (Order 1) 1.19 2.21 2.73 1.36 2.09 2.51 2.40 3.09 3.83

Consistency (Order 2) 0.62 1.30 1.63 1.06 1.72 2.34 3.20 4.22 5.22

Table 5: Runtime comparison using original, minimal and irreducible mapping.

for checking multiple times distributed satisfiability. For both operations table 5
states the runtime in seconds.

There is also a distinction between two different orders. Remember that ev-
ery terminology Tj is hosted by a reasoning peer. Another terminlogy Ti becomes
known to a reasoning peer if a mappingMij is registered at the peer hosting Tj .
A reasoning peer stores mappings in the order of their registration. Whenever re-
quests are propagated to known terminologies this order is maintained. Therefore,
different orders of mapping-registration can have effects on the runtime of reason-
ing.10

First consider the runtimes for computing the distributed taxonomy. For all
testcases the irreducible mapping performs better than the minimal mapping, which
again performs better than the original mapping. The runtimes using the irreducible
mapping range between 50% and 80% of the runtimes using the original mapping.
The profit of minimization is much smaller. Between 85% and 95% of the original
runtimes are reached. With respect to mapping consistency the effects of minimal-
ity and irreducibility are stronger. Using the irreducible mapping results in 40% to
65% of the original runtimes. Minimization optimizes the runtime up to 75% and
even in the worst case the minimal mapping is still 19% faster than the original
mapping.

These results show that the properties of minimality and irreducibility can be
used to improve the performance of standard reasoning tasks. But do the demon-
strated improvements justify a cost-intensive computation of minimal or irreducible
mappings? Consider the following example. Suppose that there is a complex dis-
tributed peer network structured as tree with n levels. In such a situation a coeffi-

10Order 1: TCRS usesMCMT−CRS beforeMSIGKDD−CRS , TCMT usesMCRS−CMT be-
foreMSIGKDD−CMT , TSIGKDD usesMCRS−SIGKDD beforeMCMT−SIGKDD . Order 2 is
the reversion of order 1.

31

cient like 0.5 soon becomes interesting with growing n. It can be concluded wether
to use or not to use minimal or irreducible mappings depends among other factors
also on the strucure of the distributed terminology.

Part IV
8 Summary and Discussion

Both theoretical and experimental investigations have been described in part II and
part III of this thesis. The results of these investigations and the contribution to the
research questions stated in the first section can be summarized as follows.

Theoretical framework Besides restating some of the definitions suggested in
[9], further mapping properties have been introduced. These are the properties of
stability, invasiveness, and irreducibility. Several propositions have been stated to
describe dependencies between mapping properties. These propositions are not
merely of theoretical interest. Realizing that every entailed bridgerule is also a
non-invasive bridge rule (see proposition 3), has been the key for the optimized
version of the algorithm for computing irreducible sets (algorithm 8). The rela-
tion between stability and irreducibility (see proposition 2) enables one to check
if the irreducible set of bridge rules is empty without cost-intensive computation
of this set. The understanding of dependencies and differences between mapping
properties results in the classification presented in table 1.

Algorithms For every property a corresponding algorithm has been stated as well
as implemented as DRAGO extension. This implementation has been used in the
scope of the experimental evaluation and is delivered as part of this thesis.11 The
results in table 4 show that the runtime performance of the algorithms is acceptable
as far as concerned with operations of preprocessing. Thus, this thesis yields both
an abstract description and a concrete implementation of efficient algorithms for
deciding mapping properties.

Mapping Diagnosis Based on experiments with a set of automatically generated
mappings, it has been shown that the properties of inconistency and embedding can
be used to detect defective mappings. This is an important feature in the context
of automated mapping generation. It has also been demonstrated that the notions

11See appendix A for further information.

32

of stability and irreducibility constitute an assistance in detecting subsets of bridge
rules that are causing defects in a mapping. It has already been argued by Meil-
icke, Stuckenschmidt and Tamilin that a variant of this approach can be extended
towards automated mapping debugging (compare [6]).

Runtime The last topic of research is concerned with minimal and irreducible
mappings and their effects on runtime performance. Performance improvements
up to a factor of 0.4 (irreducibility) respectively 0.75 (minimality) have been mea-
sured. There is some evidence that in complex distributed terminololgies even
small improvements will result in significant benefits.

There are also a few points of criticism worth mentioning. One should notice that
the stated propositions do not exhaustively describe the theoretical dependencies
between the introduced mapping properties. Remember, for example, that there
is more than just one irreducible or minimal set of bridge rules corresponding to
a particular mapping. But there is some evidence that for stable mappings the
minimal set is uniquely determined. This has to be proved, and there might be
further interesting dependencies that should be detected and proved. Nevertheless,
this thesis yields a compact and coherent general view of the theoretical framework.

Most of the algorithms stated in section 6.1 are direct applications of the cor-
responding definitions. Thus, there are possibly better algorithmic solutions. A
need for omptimization is also suggested by the results of the empirical evaluation.
Especially the runtimes of computing minimality and irreducibility are very high.
This will become problematic with growing size of terminologies and mappings.
Thus, further research on optimizing algorithms might be necesarry. But, remem-
ber that runtimes being problematic for standard reasoning request are acceptable
in the stage of preprocessing.

On might criticise that all of the mappings used as testcases were produced with
the same matching tool. Thus, the results collected in table 4 cannot be generalized.
On the one hand this point of criticism is applicable. Further investigations will
have to show if similar results are obtained by the use of other matching tools. On
the other hand a matching tool that guarantees the avoidance of inconsistent and
non-embedding mappings will implicitly make use of the introduced properties.
The existence of such a tool is not yet known to the author.

33

References

[1] GRIGORIS ANTONIUS AND FRANK VAN HARMELEN. Web Ontology Lan-
guage: OWL. In: Handbook on Ontologies. Cambridge University Press,
2003.

[2] FRANZ BAADER, IAN HORROCKS, AND ULRIKE SATTLER. Basic Descrip-
tion Logic. In: Handbook on Ontologies. Cambridge University Press, 2003.

[3] FRANZ BAADER AND WERNER NUTT. Basic Description Logic. In: The
Description Logic Handbook - Theory, Implementation and Applications.
Cambridge University Press, 2003.

[4] P. BOUQUET, F. GIUNCHIGLIA, F. VAN HARMELEN, L. SERAFINI, AND

H. STUCKENSCHMIDT. C-owl: Contextualizing ontologies. In: Proceedings
of the 2nd International Semantic Web Conference ISWC’03, Lecture Notes
in Computer Science, Sanibal Island, Florida. Springer Verlag, 2003.

[5] ALEX BORGIDA AND LUCIANO SERAFINI. Distributed Description Logics:
Assimilating Information from Peer Sources. In: Journal of Data Semantics,
2003.

[6] CHRISTIAN MEILICKE, HEINER STUCKENSCHMIDT, AND ANDREI

TAMILIN. Improving Automatically Created Mappings using Logical Rea-
sonings. Submitted to the ISWC’06 workshop on Ontology Matching,
Athens, Georgia, USA, 2006.

[7] LUCIANO SERAFINI AND ANDREI TAMILIN. DRAGO: Distributed reason-
ing architecture for the semantic web. In: Proceedings of the Second Euro-
pean Semantic Web Conference (ESWC05). Springer-Verlag, 2005.

[8] LUCIANO SERAFINI AND ANDREI TAMILIN. Local tableaux for reasoning
in distributed description logics. In: Proceedings of the 2004 Int. Workshop
on Description Logics (DL2004), CEUR-WS, 2004.

[9] HEINER STUCKENSCHMIDT, LUCIANO SERAFINI, AND HOLGER WACHE.
Reasoning about Ontology Mappings. In: Proceedings of the ECAI-06 Work-
shop on Contextual Representation and Reasoning, 2006.

[10] ONDREJ SVAB, VOJTECH SVATEK, PETR BERKA, DUSAN RAK, AND

PETR TOMASEK. OntoFarm: Towards an Experimental Collection of Par-
allel Ontologies. In: Poster Processings of the International Semantic Web
Conference 2005, 2005.

34

[11] ALEX BORGIDA AND LUCIANO SERAFINI. Distributed Description Logics
- Preliminary Investigations. In: Proceedings of the 2002 Int. Workshop on
Description Logics, 2002.

[12] PAOLO BOUQUET, LUCIANO SERAFINI, AND STEFANO ZANOBINI. Se-
mantic coordination: a new approach and an application. In: Proceedings of
the Second Internatinal Semantic Web Conference, volume 2870 of Lecture
Notes in Computer Science. Springer Verlag, 2003.

35

Appendix
A Program Code and Additional Experimental Results

The source code, a documentation, some usage examples, and additional testresults
can be found on the compact disc delivered as part of this thesis. The program
has been written in java 1.5, is realized as package de.unima.mapping.ram and
delivered as jar-file. It has been tested and developed on a windows system. There
are no experiences available using other operating systems. To run the examples
copy the directory ram\ from compact disc to partition C on your hard drive.12

The content of the subdirectories is described in the following enumeration.

• C:\ram\distribution - Contains jar-files of the ram package, jar-files
of the DRAGO system, all further necessary libraries, and some usage ex-
amples. 13

• C:\ram\documentation - Contains a documentation of the user inter-
face (the classes RAM and RAMException) provided by the ram package.

• C:\ram\sourcecode - Contains the source code of the ram package.

• C:\ram\terminologies - Contains ontologies chosen from the Onto-
Farm collection and generated mappings. All mappings are also available as
minimal and irreducible mappings.

• C:\ram\testresults - Contains additional experimental results. Open
the contents of this directory in your browser for detailed informations.

The content of the file C:\ram\distribution\instructions.txt ex-
plains in detail how to compile and run the usage examples.

12It is important to maintain the paths used in this description. Otherwise modifications of the
usage examples and/or modifications of the mapping files are necessary.

13Notice that slight modifications have been applied to the DRAGO system. Therefore, the deliv-
ered jar files have to be used instead of the original versions of the DRAGO system.

36

Ehrenwörtliche Erklärung

Ich versichere, dass ich die beiliegende Bachelorarbeit ohne Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt und
die den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche
kenntlich gemacht habe. Diese Arbeit hat in gleicher oder ähnlicher Form noch
keiner Prüfungsbehörde vorgelegen. Ich bin mir bewusst, dass eine falsche Er-
klärung rechtliche Folgen haben wird.

Bensheim, den 31.08.2006 Unterschrift

