Querying Embedded RDF Data with XML Technology:
A Feasibility Study

Norman May, Heiner Stuckenschmidt
norman.may @sap.com, heiner @informatik.uni-mannheim.de

Abstract: XML has become the de facto standard for representing and accessing data
on the Web. At the same time RDF is becoming more and more popular for represent-
ing metadata. While RDF also has an XML-based syntax, storage and query technolo-
gies for the two formats are not compatible due to differences in the data model. This
is a potential problem when trying to query data that combine XML data with RDF-
based metadata annotations. In this paper, we investigate the feasibility of querying
such embedded RDF models with XML technologies. We motivate the problem using
the vision of intelligent content objects, describe an approach for querying RDF data
with XQuery and identify problems and opportunities based on experiments with real
world data.

1 Motivation

With the increasing importance of the Web, annotation languages for semi-structured in-
formation have rapidly gained importance. The extensible markup language (XML) is
definitely the most influential development in this direction, and a lot of attention has been
paid on the development of technologies for storing and querying large amounts of XML
data. Developments in this direction are mostly driven by the database community that
has proposed XPath and XQuery as standard languages for interacting with XML data. A
number of systems have been developed that support these languages (e.g. Tamino, Mon-
etDB, Berkeley DB, or Natix) and some fundamental research has been done on query
optimization, query execution, and XML storage for efficient retrieval of XML-based in-
formation. In parallel, the Resource Description Framework (RDF) has been proposed
as suitable data model for representing and reasoning about metadata on the Web. While
RDF comes with an XML-based syntax, it turns out that the underlying data models of
XML and RDF are different and not really compatible with each other. In fact, the RDF
community has spend significant effort to argue that RDF has fundamental differences
compared to XML [DvHF00]. Special technologies for storing and retrieving RDF data
have been developed completely independent from XML technologies. Meanwhile the
W3C standardizes an RDF query language, SPARQL, and a number of RDF systems exist
that implement this standard or variations of it (e.g. JENA, Joseki, RDFStore and Sesame).
As a result, there currently is a strict separation of XML and RDF data when it comes to
storing and querying data sources in the two representations.

As we will argue in this paper, there are numerous important use cases that would benefit
from a unified view on both worlds. Our results also show that an elegant and reasonable
efficient solution can be crafted to satisfy the requirements of these use cases.

Intelligent Content Objects The clear separation of XML and RDF data that is dictated
by the limitations of existing technology on both sides has some serious limitations with
respect to many application scenarios. Recently the notion of intelligent content objects
has gained a lot of attention, mostly in the connection with emerging multimedia standards
such as MPEG-7. The idea of intelligent contents is that of self-contained information that
does not only consist of the raw data, but also contains metadata describing the data. In
the case of video information, for example an MPEG 7 file will not only contain the video
data, but also a summary of the contents, information about the producer and descriptions
of scenes and characteristic features in the video that support automatic content analysis.
While most of an MPEG 7 file will be in XML format, it makes sense to represent content-
related metadata using RDF descriptions [WKO3]. In other multimedia standards, in par-
ticular SMIL 3.0, RDF is already used inside an XML file to represent metadata [BDO06].
The question we address in this paper is how to store and query descriptions like the one
above that consist of an XML document with embedded metadata in RDF format.

Querying Embedded RDF There are different options for dealing with the kinds of
documents shown above. In particular, these options are:

e We could use a specialized system that is tuned to a particular standard such as
MPEG-7 or SMIL. This is what we currently see in the multimedia area.

e We could regard the RDF part as a special data type and treat it as a black box
that can be accessed using special functions. This approach is supported by some
commercial database vendors to combine RDF with the relational model.

e We could extract the RDF-based metadata from the XML file and store and query it
in a dedicated RDF system separately from the XML part of the document.

All of the these options are unsatisfactory for many practical situations. Specialized sys-
tems have a rather narrow application area and are often inflexible with respect to major
changes in the standard. Treating the RDF part as a black-box has the major disadvantage
that links between different embedded models possibly in different files cannot be treated
adequately. This is a major drawback as the most important feature of RDF is the ability
to specify links between entities and models. Currently the most viable option seems to be
to extract the metadata parts, process it separately from the XML document and integrate
the results a posteriori.

From a conceptual point of view, separating the evaluation of the XML and RDF data
is not a good idea because we lose the ability to evaluate or optimize queries across the
different parts of the document. Further, the extraction and upload of RDF data into an
external RDF storage as well as the re-integration of the results into a coherent answer
set comes with additional overhead. Ideally, we want to use the same language with a
single execution plan on the whole document. An obvious idea is to use the fact that
RDF is represented in an XML syntax and use XML technologies to query this part of the
information as well. This idea has been investigated in some early work on RDF but was
dropped eventually because the work claimed that querying RDF data with languages such
as XQuery is infeasible due to the differences in the underlying data model. To the best of
our knowledge, however, corresponding experiments that clearly support this claim where

never published. Our aim is to fill this gap by experimentally investigating the feasibility
of querying RDF data with XQuery as a basis for accessing intelligent content objects that
contain embedded RDF metadata. The contribution of this paper is the following:

e We present a general approach for translating RDF queries into XQuery that covers
a wide range of RDF query languages.

e We present performance experiments on real data sets.

e We discuss requirements and success factors of the approach.

In the following, we first present the general approach for translating RDF Queries into
XQuery based on an abstract algebra. We then present a use case and experiments for
querying real world data with XQuery. We conclude with a discussion of the feasibility of
the approach.

2 Translating RDF Queries to XQuery
2.1 The RDF Query Model

RDF querying can be seen as a special form of graph matching, where the graphs to be
matched have special properties. We use this view to get a language-independent repre-
sentation of an RDF query. In particular, we use a slightly simplified version of the formal
model of RDF queries proposed by Gutierrez et al. [GHMO04]. In the following, we give
some basic definitions connected to the abstract RDF query model:

Definition 1 (RDF Model) Let U be a set of URI references, B is a set of blank nodes and
L is a set of literals. An RDF model is a set of triples (s, p,0) € (UUB)xU x (UUBUL).

Definition 2 (Instance of an RDF Model) A mapping is a function p : (UU BU L) —
(UU BU L) such that u(u) = w, u(l) =l for all w € U,l € L. The mapping of an RDF
model G is defined as

(@) = {(u(s), (p), n(0))|(s,p,0) € G}

1(G) is called an instance of G if 1(G) is an RDF model in the sense of Definition 1.

We can define RDF queries in a similar way. For this purpose, we extend Definition 1 for
the case where some elements in a triple are variables rather than URIs, blank nodes, or
literals.

Definition 3 (RDF Query) Let V be a set of variables different from elements in (U U BU
L). An RDF pattern is a set of triple patterns (s,p,0) € (UUBUV) x (UUV) x (UU
BULUV). The set of all variables occurring in a pattern P is denoted as var(P), the set
of all blank nodes as blank(P). A pattern P is ground if blank(P) = (. An RDF query
is a pair of RDF patterns (H «— B) where var(H) C var(B) and B is ground. In this
query, H is the head, and B is the body.

The set of answers! for an RDF query can now be defined using the notion of an instance
given in Definition 2.

Definition 4 (Query Answer) Let ¢ = (H «— B) be an RDF query, D an RDF Model
andv : V — (U U B U L) a valuation function that assigns an element (a URI, a literal,
or a blank node) to each variable, then the set of answers for query q over RDF model D
is defined as

answer(q, D) = {v(H)|v(B)is an instance of D}

For technical reasons, we define that v(x) = x forv € (U U B U L)

This definition of a set of answers to a query captures the basic functionality of existing
RDF query languages. In particular, the notion of an RDF pattern is the direct counter-
part of path expressions that occur in various forms in different languages. Features that
go beyond this model are either language specific (distinction between explicit and im-
plicit statements) or represent higher level functionality that is based on this model (union,
intersection, etc.). It is straightforward to add these higher level constructs into our model.

2.2 Abstract Evaluation Plan

The general structure of an RDF query in terms of a pair of RDF patterns that might
share variables allows us to consider the translation problem on a rather abstract level. In
particular, we can create an abstract evaluation plan based on the structure of the RDF
query that uses abstract operations that can be specified independent of a target language.
In the following, we discuss such abstract operators as well as a generic translation from
an RDF query given in terms of two patterns.

As we have seen in the previous section, the notion of an answer to an RDF query is based
on three models and two mappings between these models. The mapping function links the
body pattern with the RDF model by comparing URIs and literals. The valuation function
links the body and the head of the query by assigning values to variables. The following
diagrams illustrates the general situation.

DS BYLH

If we take an operational view on this situation, we can identify a number of abstract
operations that have to be carried out in order to compute answers in this scheme. We
chose to define these operators to be as closely as possible linked to the RDF data model
in order to support a straightforward translation.

Triple Selection The first kind of operator is very similar to the traditional selection
operator from the relational algebra. It establishes the mapping i between a single triple
pattern in the query body and the RDF model. A triple selection operation is specified in
terms of a triple pattern (s, p,0) € (UUBUV) x (UUV) x (UUBULUV). The input

Inote that our notion of answer is equivalent to the notion of a pre-answer in [GHM04]

to a selection operation is a set of valuations. The result is the subset of the valuations for
which the triple pattern is an instance of the RDF model the selection applies to.

select[s,p,0, D|({v1, - ,vn}) = A{wilp((wi(s),vi(p),vi(0))) € D} (1)

Note that in this case, D can be any RDF Model. This allows us to model the case where
we have more than one source file. The values s, p, and o can be either URIs literals,
blank nodes, or variables. This leaves us with eight different kinds of selection operations
ranging from the operation that selects the entire model (all three elements of the triple are
variables) to an operation that returns a single statement or the empty set if the specified
triple is not in the model (none of the three elements of the triple is a variable).

Triple Join The selection operator only works on the level of individual triples. In order
to match a complete pattern against the model, we have to be able to join triple sets that
have been selected. Due to the fixed arity of relational statements in RDF, the concept of a
join is quite different from the one in the relational model. Rather than defining the join in
terms of the triples involved, we define the join over two variables V; and V5 as a selection
over valuation functions that satisfy the requirement that the same value has to be assigned
to the same value to the two variables.

join[Vi, Vol({vn, -+« yum}) = A{wlvi(Vi) = vi(V2)} @)

Notice that selections and joins are fully composable. The definition of a join operation
in terms of a selection of valuations allows us to apply the join operation to the results of
several selection operations. These selections return sets of possible valuations that are
just restricted with respect to the variables that occur in the triple pattern that has been
used in the selection.

Triple Construction The advantage of using valuations as the basis for defining the ab-
stract operations is that there is a straightforward way of defining operators that construct
the result set. As we have seen above, the structure of the result set is defined in terms of
a set of triple patterns that have to be instantiated using a set of valuation functions. As
the other operators are used to determine the right set of valuation functions, the construc-
tion of the results with respect to a single triple pattern can be done by just applying all
valuation functions to the pattern resulting in a set of triples that are part of the result.

construct[s, p,o]({v1, - ,vx}) = {(wi(s),vi(p),vi(0))} 3)

Using the triple construction operator, the complete result set can be created by applying
construction operators for each triple pattern in the query head to the same set of valuation
functions. If this set of valuation functions has been created by a suitable combination
of selection and join operations, they already implement the requirements specified in the
query body leading to a correct result set.

Plan Generation Given an RDF Query ¢ = (H < B) over an RDF model D, we can
now generate an abstract evaluation plan based on the operators defined above. The idea
of the plan generation is the following:

1. We start with the set of all possible assignments of variables to URISs, literals and
blank nodes in the given model (denoted as U p)

2. For every triple pattern (s, p,0) € B, we apply a corresponding selection function
select[s,p, 0, D](Vp), (s,p,0) € B

3. For all shared variables V; in B, we apply a join operation on the union of the
selection results:

join[V;, ViJ(| select[s, p, 0, D](Vp)), Vi shared in B
(s,p,0)€EB

4. For each triple pattern (s’,p’,0’) € H we apply a construction operator on the
intersection of the results of the join operations:

construct[s’, p’, o] (ﬂ join[V;, Vi](U select[s, p, 0, D|(Vp))
V; shared in B (s,p,0)€B

5. The result set of the query is the union of the results of the construct operators. The
corresponding abstract evaluation plan for an RDF query has the following form:

U construct[s’, p’, o'](ﬂ join[V;, Vi](U select[s, p, 0, D](Up)))

(s',p',0')EH V; shared in B (s,p,0)€B

This abstract evaluation plan is the basis for generating a concrete evaluation plan in a
specific target language. In the following section we show how the abstract plan can be
implemented using XQuery expressions that directly work on a normalized XML repre-
sentation of an RDF model.

3 XQuery-based Implementation of Operators

The ability to match trees or even graphs on XML documents and to construct arbitrarily
structured XML qualifies XQuery as a natural target language for our translation. In this
section, we develop the XQuery queries needed to answer general queries on RDF data
stored in its XML syntax. We assume that the XML syntax of the RDF data is stored in a
normalized form, i.e.

e all statements about a resource are contained in a single Description element.
o there is no nesting of Descriptions.

e blank Nodes are identified by node identifiers and specified using description ele-
ments.

e types of resources are described using type statements.

e all deducible information is explicitly contained in the descriptions, i.e. we work on
the intensional database.

As an advantage of establishing the normal form, we need not handle the wealth of syn-
onymous serializations of RDF in XML, see [CS04] for a discussion. The serialization,
we have characterized above is used, e.g. by Jena, as RDF/XML serialization format. A
similar approach was taken before us [Rob01, PSS03].

3.1 Implementing Triple Patterns

First, we show how to retrieve the complete (extensional) database from the document.
Then, we extend the resulting query to support variable bindings in triple patterns. An
immediate extension will be support for chains of triple patterns. Finally, we show how
to handle complex head conditions using constructors in XQuery. Notice that we employ
the unordered ordering mode to signal the XQuery processor document order is not
relevant when we query RDF data. As a consequence, the XQuery processor can compute
the XQuery expressions much faster.

Triple Selection First, we show how we implement triple selection as defined in Eqn. 1.
We start with a basic query that retrieves the extensional database, i.e. the triple pattern
in the body of the query only contains variables. The XQuery statement below computes
all triples of subjects, predicates and objects, i.e. Up mentioned in Section 2.2. For each
subject, all contained predicates are obtained. Our normalizes RDF representation assures
that all information about a subject is contained in its descendants. Finally, the object is
bound to variable obj. The if statement handles objects that either refer to a resource or
are literals. We discuss function 1ocal :printNormalized at the end of this section.
It constructs the result in normalized RDF/XML format.

unordered {
for $subj in $doc//*[@rdf:about or @rdf:ID],
$pred in $subj/descendant::x

let $obj := if($pred/@rdf:resource | $pred/@rdf:ID)
then ($pred/@rdf:resource | $pred/@rdf:1D)
else $pred/text ()

return

local:printNormalized ($subj , $pred , $obj)

}

When we are only interested in triples that match some condition, we add a filter to the
where clause of the XQuery statement. In the predicates below, we use abstract conditions
for the subject, predicate, or object, e.g. ”’S” as condition for the subject. Notice that
the conditional in the query fragment above already distinguishes between literals and
references to resource. These conditions replace a variable in the triple pattern by a valid
value as defined in Definition 1.

(: subject bound :)
some $s in $subj satisfies fn:contains(fn:string($s), ”S”)

(: predicate bound :)
some $p in $pred satisfies fn:contains(fn:name($p),”P”)

(: object bound :)

some $0 in $obj satisfies fn:contains(fn:string($o), "0”)

With the conjunction of these conditions, we can construct all 8 possible instances to filter
triple patterns.

Triple Join To implement the triple join as defined in Eqn. 2, we retrieve two triples
from the RDF model and add join predicates to the query. Notice that we can join triples
that originate from different XML documents. For example, we use the following query
for the triples {S P1 01} {s P2 02}:
unordered {
for $subjl in S$doc//x[rdf:about],
$predl in $subjl/descendant::x
let $objl := if($predl/@rdf:resource)
then $predl/@rdf:resource
else $predl/text()
for $subj2 in $doc//*[rdf:about],
$pred2 in $subj2/descendant::x
let $o0bj2 := if($pred2/@rdf:resource)
then $pred2/@rdf:resource
else $pred2/text()
where
$subjl = $subj2 and S$objl != S$obj2
return
local:printNormalized ($subjl , $predl , $objl)
}

Triple Construction Notice that triple construction, defined in Eqn 3, is the final op-
erator of an evaluation plan. Thus, we assume that every result triple is computed before
calling the result construction function. Every invocation of this function generates exactly
one result triple. Thus, we can turn the constructed result into our normalized represen-
tation by grouping triples by their subject and adding all contained predicates and objects
as children. The constructed result obeys to our RDF normal form. Consequently, query
results may again serve as inputs to other queries.

declare function local:printNormalized ($subj as node(),
$pred as node(),
$obj as node()) as node() {
element rdf:Description {
attribute rdf:about {$subj},
element { fn:name($pred/self::node()) } {
$obj
}

}

}s

The basic building blocks triple selection and triple join allow us to query the extentional
database. It is not difficult to generalize the query pattern of the triple join to compute
transitive closures. Therefore, we construct a recursive XQuery function that given all
found triples and the triple detected in the last recursive call, detects new triples until a
fix point is reached [BR86]. The ability to compute transitive closures allows us to infer
information from given the extensional data.

4 Performance Evaluation

We now study the feasability of our approach. Therefore, we combine XML metadata
stored both in RDF or in XML. We also compare the performance of querying the XML
text files using XQuery with querying RDF data stored and preprocessed in an RDF rea-
soning system.

www. uni-mannheim.de

DC Metadata

ahref

DC Metadata

foaf:workplaceHomepage

foaf:workinfoHomepage I

FOAF:Heiner [~
7 foaf:knows

ki.informatik.uni-mannheim.de

DC Metadata

FOAF:Norman
FOAF:Matthias

db.informatik uni-mannheim.de

Figure 1: Embedded RDF Metadata

4.1 Analyzing Blogs

In our scenario, shown in Figure 1, we are interested in blogs on the Web, e.g. what are the
hottest topics currently discussed, who contributes to the content of some blog, looking
for keywords in the text of the blogs. The answers to these queries might be interesting to
a company that wants to measure the success of its PR campaign.

Among the different formats for storing blogs, RSS is the most popular. RSS is an RDF
vocabularly that is based on Dublin Core. Hence, we can load RSS feeds into an RDF store
and query it using an RDF query language. At the same time, the syntax of RSS is XML,
and it is natural to analyze it with XQuery. Typical blog entries contain information about
the author, the title of the blog entry and some description. Blog entries may reference
external content, e.g. via XLink or links in XHTML, but technically every RSS feed is
self-contained.

However, references to external content are beyond the scope of an RDF reasoner. If we
want to analyze social networks, we might be interested in the relationships of some author.
Therefore, we might explore friend-of-a-friend (FOAF) relationships. This analysis may
yield interesting background information, e.g. the academic track of some discussant might
help to interpret his arguments.

Consider Figure 1, where a blog contains references to us via our FOAF identifier. You
might be interested, who else we know. Given our flexible translation scheme, it is possible
to combine the queries developed in Section 3 with application specific queries to analyze
our FOAF data to find out.

4.2 Experimental Setup

We have downloaded eleven blogs randomly from the Web. The overall size of the exper-
imental data is 800KB resulting in an RDF model of 6206 triples.

In our experiments, we use Galax 0.7.2 [Gal07] as the test plattform for XQuery. Galax
loads all data into a main-memory representation and performs all query evaluation in
main memory. Its implementation targets completeness of the XQuery standard rather
than efficiency.

The other competitor is Jena 2.5.2 [Jen07]. Jena is a Java API for processing RDF in-
cluding functions to construct, browse or even query RDF models. RDF models can
either be accessed via a main-memory representation but they can also be stored in re-
lational databases, e.g. MySQL, PostgreSQL, or Derby. Queries can be expressed in the
RDF query language SPARQL. If a persistent data store is used, Jena can push predi-
cates into the relational engine. However, in our experiments, we restrict ourselfs to the
main-memory representation of the RDF model.

The experiments were carried out on a simple 2.4 GHz Pentium PC running SuSE Linux
10.2 with 1GB RAM. Jena was executed with Sun Java 2 version 1.5 with up to 512MB
heap size.

4.3 Performance Results

We have executed example queries for every basic query pattern, identified in Section 2.2.
Table 1 contains a summary of our results; below we discuss them. We report the average
execution times of ten invocations of every query.

RDF Loading Time A first interesting question is the time to generate the main-memory
representation used during query processing because both evaluators perform all evalua-
tion in main memory. Galax parses every XML document accessed in a query before the
query is evaluated. Thus, we can measure the parsing time when we measure the time to
evaluate a query that evaluates to an empty result without traversing the document. Since
the Jena API allows us to trigger this operation explicitly, we can isolate the loading time
of Jena. Both systems also support persistent data store and, thus, the effort for parsing
can be reduced.

Our experimental results show that Galax needs 3.6 seconds to load the XML data into
main memory while Jena only needs 2.6 seconds. It is likely that Galax needs longer
because the XQuery data model includes much more information than then the triple store
of RDF, e.g. structural relationships between XML nodes.

Queries We now discuss the performance of processing queries that implement the basic
patterns, we have identified.

Query Q1 selects a specific subject, in our case a certain blog entry. Thus, this query
is a very selective one because only 101 out of 6205 triples exist for the desired subject.
Galax performs a complete traversal over the whole document requiring 10.5 seconds to

’ Query H Description result size \ XQuery \ Jena ‘

Loading 6206 0.6s 2.6s
Ql select a single subject 101 10.0s 3.1s
Q2 select all triples with a given predicate 2810 2.0s 3.8s
Q3 search for content in an object 24 2.1s 3.3s
Q4 join triples 244 443s 3.4s

Table 1: Performance Summary

evaluate this query. Jena is much faster and answers this query in 3.2 seconds.

Query Q2 finds all triples with predicate “'title”. The selectivity of this query is approx.
1/3. Evidently, Galax is faster than Jena in returning rather large fragments of the RDF
model .

Query Q3 performs a selection on objects. Particularly, it finds all triples that contain
the string literal "Web Service”. This string pattern match is more expensive to evaluate
than the remaining selections. For our data it returns only 24 result triples. Again, Galax
returns the query result faster than Jena.

Query Q4 computes the join over two triples. In a first experiment, we tried to return all
pairs of triples that refer to the same subject but to distinct objects. However, Galax did
not finish this query within 45 minutes, and Jena ran out of memory.

Thus, we restricted the query to titles (dc:title) that contain the text “Memory Leak”. Now,
Jena clearly outperforms Galax. While the execution time of Jena only needs 3.4s, Galax
needs more than 100 times longer.

5 Discussion

In this paper, we motivate the need for an integrated approach to process RDF data. Users
want to combine metadata represented in RDF with other data stored in XML [Bat04,
Bat06]. Thus, we propse an algorithm that translates RDF queries into XQuery. We present
the relevant building blocks to implement selections on single triples, joins over serveral
triples, and construction of new triples. Any query language that supports these three
primitives can be the used to evaluate queries over RDF models. We argue for a mapping
into XQuery because in this case querying can be performed directly on RDF serialized
as XML. As a result, it now becomes possible to query accross diverse data sources that
store RDF, or any other XML data. Our experiments show that the resulting queries can
be evaluated with similar performance as RDF data. This is a very encouraging result
because we have not considered query optimization or physical optimizations yet that may
even speed up this integrated approach to query diverse XML data sources.

By mapping of RDF data model into the XQuery data model, we follow previous work that
attempted to answer queries over RDF data with XQuery [Rob01, PSS03]. However, in
their studies, they were not concerned with performance. Our contribution includes a first

performance assessment of the resulting queries. Our results indicate that we can expect
similar query performance for typical RDF queries when we answer them in XQuery.
Others tried to discover users intents by defining a canonical interpretation of XML data
in terms of RDF [Mel99a, Mel99b, HawO1].

The XQuery patterns we propose work on an normalized XML representation. Evidently,
our normal form is to some extent an arbitrary choice as there are many different ways to
serialize RDF graphs as XML. We refer to [CS04] for a discussion on this topic. Thus,
when RDF graphs are represented in a different format, our query patterns need to be
adjusted. Nevertheless, our processing model still remains functional, and thus we assume
that the various XML representations of RDF can be transformed into our normal form.
Moreover, the fundamental performance characteristics we have identified in this paper
will not change.

References

[Bat04] S. Battle. Round-tripping between XML and RDF. In 3rd Int. Semantic Web Confer-
ence, 2004.

[Bat06] S. Battle. Gloze: XML to RDF and back again. In 1st JENA User Conference, 2006.

[BDO06] D. Bulterman and M. DeMeglio. The SMIL 3.0 Metainformation Module. W3C Rec-
ommendation, 2006.

[BR86] F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive query pro-
cessing strategies. SIGMOD Rec., 15(2):16-52, 1986.

[CS04] J. J. Carroll and P. Stickler. RDF Triples in XML. In Extreme Markup Languages,
2004.

[DVHF+ 00] S. Decker, F. van Harmelen, D. Fensel, M. Klein, J. Broekstra, M. Erdmann, and I. Hor-
rocks. The Semantic Web: The Roles of XML and RDF. IEEE Internet Computing,
4(5):63-74, 2000.

[Gal07] Galax XQuery implementation. http://www.galaxquery.org/, 2007.

[GHMO04] C. Gutierrez, C. Hurtado, and A. O. Mendelzon. Foundations of Semantic Web
databases. In ACM PODS, pages 95-106, 2004.

[HawO1] S. Hawke. XML with Relational Semantics: Bridging the Gap to RDF and the Seman-
tic Web. Technical report, W3C, 2001.

[Jen07] Jena: A Semantic Web Framework for Java. http://jena.sourceforge.net/, 2007.

[Mel99a] S. Melnik. Bridging the Gap between RDF and XML. Technical report, Stanford
University, 1999. http://infolab.stanford.edu/ melnik/rdf/fusion.html.

[Mel99b] S. Melnik. Simplified Syntax for RDF. Technical report, Stanford University, 1999.
http://www-db.stanford.edu/ melnik/rdf/syntax.html.

[PSS03] P. Patel-Schneider and J. Simeon. The Yin/Yang Web: A Unified Model for XML
Syntax and RDF Semantics. IEEE Trans. on Knowledge and Data Engineering, 15(3),
2003.

[Rob01] J. Robie. The Syntactic Web: Syntax and Semantics on the Web. In XML Conference,
2001.

[WKO3] U. Westermann and W. Klas. An analysis of XML database solutions for the manage-
ment of MPEG-7 media descriptions. ACM Comput. Surv., 35(4):331-373, 2003.

