
Ruprecht-Karls-Universität

Heidelberg

Neuphilologische Fakultät
Seminar für Computerlinguistik

Magisterarbeit

Classification of named entities in

a large multilingual resource using

the Wikipedia category system

Autor:

Johannes Knopp

Gutachter:

Prof. Dr. Anette Frank

Dr. Stefan Riezler

Heidelberg, den 25. Januar 2010

Danksagung

Meinen Eltern gilt der größte Dank. Sie haben mich immer auf jegliche Weise

unterstützt und mir das Studium ermöglicht. Danke.

Für die zahlreichen fruchtbaren Diskussionen, die Zusammenarbeit in tech-

nischen Dingen und die einhergehenden gemeinsamen Pausen danke ich Wolodja

Wentland. Andere Menschen, denen ich für ihre hilfreichen Hinweise bei der Ar-

beit an der Magisterarbeit danken möchte, sind Sascha Fendrich, Britta Zeller,

Matthias Hartung und mein Bruder Sebastian Knopp. Ein weiterer Dank gilt

Nora Borrusch, die dafür Sorge getragen hat, dass der entstandene Text den Regeln

der englischen Grammatik entsprechen sollte. Des Weiteren bedanke ich mich bei

Prof. Dr. Anette Frank für die Betreuung dieser Arbeit und für die langjährige

Unterstützung im Studium.

Table of Contents

1 Introduction 1

2 Named Entities 2

2.1 History of named entity tasks . 4

2.2 Types of named entities . 6

3 Learning and Classification 8

3.1 Features . 8

3.2 Learners . 12

4 Wikipedia 18

4.1 Structure . 18

4.2 Access to Wikipedia data . 22

4.3 Related work . 27

5 Classification of HeiNER’s named entities 29

5.1 Mapping Wikipedia categories to named entity types 29

5.2 Classification of named entities contained in HeiNER 36

5.3 Evaluation . 46

6 Conclusion and Outlook 54

Appendix 63

A Seed Categories 63

A.1 Persons . 63

A.2 Locations . 63

A.3 Organisations . 64

A.4 Miscellaneous . 66

1 Introduction

Over the last 15 years the role of named entities became more and more impor-

tant in natural language processing (NLP). Their information is crucial for tasks

in information extraction like coreference resolution or relationship extraction.

As recent systems mostly rely on machine learning techniques, their performance

is based on the size and quality of given training data. This data is expensive

and cumbersome to create because usually experts annotate corpora manually to

achieve high quality data. As a result, these data sets often lack coverage, are not

up to date and are not available in many languages.

To overcome this problem, semi-automatic methods for resource construction

from other available sources were deployed. One of these sources is Wikipedia,

a free collaboratively created online encyclopedia, which was explored for several

NLP tasks over the last years. Although it is not created by linguists, meta

information about articles such as translations, disambiguations or categorisations

are available. In addition, Wikipedia is growing fast: it is available in more than

260 languages and contains more than three million articles in the English version.

The structural features, its size and multilingual availability provide a suitable

base to derive specialised resources that can be used as training data for ma-

chine learning. One of them is HeiNER – the Heidelberg Named Entity Resource

(Wentland et al., 2008). HeiNER contains a huge multilingual collection of named

entities including their contexts taken from Wikipedia. However, there is one dis-

advantage: it has no knowledge of which type its named entities are. Hence, the

idea of this thesis is to add the named entity types Person, Organisation, Location

and Miscellaneous to HeiNER’s entries.

Wikipedia’s Category system is utilised to solve this problem. We identify

categories that unambiguously match a named entity type in order to classify

all articles found in them automatically. Counting the categories of these new

classified articles results in named entity type vectors that are used to classify the

yet unlabelled named entities that are members of HeiNER.

The structure of this thesis is as follows: Section 2 provides the definition of

named entities, which tasks and conferences dealt with them and which types are

used. Section 3 continues to tell about machine learning techniques that have been

1

applied to NE classification in prior work. Wikipedia as a resource and referential

work is presented in 4. Additionally, the Wikipedia API mwdb, which was written

in the course of this thesis, will be shown. How the classification of HeiNER’s

named entities was carried out is explained in section 5 followed by its evaluation

in 5.3. The resulting conclusions and an outlook are given in section 6. Further

information can be found in the appendix.

2 Named Entities

The term named entity (NE) was first introduced to the Natural Language Pro-

cessing community at MUC-6, i.e. the Sixth Message Understanding Conference

(Grishman and Sundheim, 1996). It refers to expressions describing entities with

a rigid designator1 like persons, locations and organisations called ENAMEX (”en-

tity name expression”). MUC-6 also included the numeric expressions (NUMEX)

money and percent and introduced time expressions (TIMEX) for time and date.

An example of annotated MUC-6 data can be seen in figure 1; later work intro-

duced other named entity types (see chapter 2.2).

The task of identifying named entities within texts is called named entity recog-

nition (NER) and labelling them with their type is known as named entity clas-

sification (NEC), which combines results in named entity recognition and classi-

fication (NERC)2. NERC is used in different fields like information retrieval or

question answering.

This chapter presents a brief overview of the development of named entity

recognition over the last 14 years. After explaining in more detail what a named

entity is, we document the shift from pattern based systems to automatic machine

learning and eventually list some of the more fine-grained named entity types that

were proposed.

1The term rigid designator was introduced by the philosopher Saul Kripke in his work Naming
and Necessity (Kripke, 1972): a term referring to the same thing in all possible worlds in which
that thing exists is a rigid designator. The presented work will not deal with the philosophical
view of named entities and MUC-6 did not use the term itself, but it gives the right idea of what
a named entity is.

2Often NER is used interchangeably with NERC because named entity recognition without
classification does not make sense in many cases.

2

Mr. <ENAMEX TYPE=”PERSON”>Dooner</ENAMEX>
met with <ENAMEX TYPE=”PERSON”>Martin
Puris</ENAMEX>, president and chief executive offi-
cer of <ENAMEX TYPE=”ORGANIZATION”>Ammirati
& Puris</ENAMEX>, about <ENAMEX
TYPE=”ORGANIZATION”>McCann</ENAMEX>’s acquiring
the agency with billings of <NUMEX TYPE=”MONEY”>$400
million</NUMEX>, but nothing has materialized.

Figure 1: Sample of MUC-6 annotation

NERC has developed into a task of its own in Natural Language Processing

because named entities contain a great deal of information. In order to understand

a text or represent its content correctly, systems must be able to answer questions

like who, what, when and where. Most of the answers are named entities: persons

or organisations act in locations at a particular time. These expressions do not

appear in ordinary dictionaries, which makes automatic detection and classification

necessary. Consider this sentence found in the Washington post:3

Pope Benedict XVI waded into a crowd of well-wishers in Rome on

Sunday, just days after he was knocked down by a woman at a Christ-

mas Eve Mass. It was the 82-year-old pontiff’s first appearance outside

the Vatican since the attack [. . .]

The news’ value lies in the named entities: “Pope Benedict XVI” is the acting

person, “Rome” his location and “Sunday” the date of his action. The action

itself – “wading into a crowd of well-wishers” – is not a named entity. The last

named entity in this example is “Vatican“.

Note that “the 82-year-old pontiff” in the second sentence is a reference to

the named entity “Pope Benedict XVI”. This implies that the expressions refer

to the identical entity, and thus one could think that “the 82-year-old pontiff”

should be mentioned as a named entity as well. But that fact is only inferred from

the context, as “the 82-year-old pontiff” could mean any bishop of that age and

is only used as a reference to a named entity. That is why the expression could

3Found on December 27th at http://www.washingtonpost.com/wp-dyn/content/article/
2009/12/27/AR2009122702024.html.

3

not be considered as a named entity when standing alone. It does not have a

rigid designator and thus is not a named entity, even in this context. Identifying

referring expressions in texts is a task called coreference resolution, but this work

does not deal with it as it is a research field of its own.

Not covered by the MUC-6 named entity types is “Christmas” although it has

a rigid designator: the birthday of Jesus. We will see in section 2.2 that other

definitions include this case, but also that it can be hard to draw a line between

named entities and non-named entities. For example ask yourself if you would

consider “December“ to be a named entity. It has a rigid designator – “the twelfth

month of the Gregorian calendar” –, but it is not clear without context which

year is meant, which adds some incertitude; so we have to ask what “rigid“ really

means. Nadeau and Sekine (2007) stated on that topic:

Rigid designators include proper names as well as certain natural kind

terms like biological species and substances. There is a general agree-

ment in the NERC community about the inclusion of temporal expres-

sions and some numerical expressions such as amounts of money and

other types of units. While some instances of these types are good

examples of rigid designators (e.g., the year 2001 is the 2001st year of

the Gregorian calendar) there are also many invalid ones (e.g., in June

refers to the month of an undefined year – past June, this June, June

2020, etc.). It is arguable that the named entity definition is loosened

in such cases for practical reasons. (Nadeau and Sekine, 2007, page 3)

We see that NER is not a trivial task, which is underlined by Fleischman and

Hovy (2002), who point out that, for instance, classifying entities into subtypes by

their context can be hard even for humans.

2.1 History of named entity tasks

Tasks dealing with named entities developed over time, starting with MUC-6 in

1996. The interest at that time focused on information extraction (IE) tasks to

find information on companies or defence-related activities in newspaper articles.

A multilingual setup was first introduced by the Multilingual Entity Task

(MET) (Merchant et al., 1996) with three languages: Spanish, Japanese and Chi-

4

nese. In 1999, MUC-7 and MET-2 (Chinchor, 1999) added another multilingual

setup using Japanese and Chinese as well. Up to this point the training and test

sets were restricted to one domain. This changed with IREX (Sekine and Isahara,

2000), which had a restricted and an unrestricted domain task. Sekine and Isa-

hara report three kinds of systems: 1. pattern based systems, in which patterns

are written by humans; 2. also pattern based, but the patterns are extracted

from a tagged corpus by some automatic means; and 3. fully automatic systems,

which do not use explicit patterns. None of the three types was outperforming

the others, but with the CoNLL shared tasks presented by Sang (2002) and Sang

and Meulder (2003), automatic systems came to the fore on the task of language-

independent named entity recognition. Since 2000, the Language Resources and

Evaluation Conference (LREC)4 also provides a platform for named entity tasks

and resources.

A new task definition appeared in the Automatic Content Extraction (ACE)

Program including “recognition of entities, not just names” (Doddington et al.,

2004, page 1). In other words: NER and tracking combine named entity recog-

nition with a coreference task. As more tasks on named entities were carried

out, different evaluation schemata grew. They rely on boundary detection (Is

a [multiword] named entity found correctly?) and classification (Is the correct

named entity type assigned?) to compute precision, recall and f-score of results

on a test set. The schemata differ in dealing with incorrect type assignments and

partial matches. An overview is given in Nadeau and Sekine (2007, chap. 4).5

All in all the complexity of NE tasks have grown over the years and the applied

systems shifted from pattern based approaches to machine learning techniques that

require training data. The underlying idea is the construction of learners that are

not suited for just one language, but try to find generalisations that help to analyse

a set of different languages. This development motivated researchers to focus on

the creation of useful resources and comparable evaluations that are discussed on

conferences like LREC.

Likewise to the development of named entity tasks, more named entity types

4http://www.lrec-conf.org
5Another read on this topic is a blog post by Christopher Manning in August 2006: “Doing

named entity recognition? Don’t optimize for F1” (http://nlpers.blogspot.com/2006/08/
doing-named-entity-recognition-dont.html , last checked on January 2nd 2010).

5

were introduced. The following section provides an insight into some of the ex-

plored types.

2.2 Types of named entities

Until now we have mentioned that named entities are distinguished by their type

and that MUC-6 introduced the ENAMEX, TIMEX and NUMEX types covering

proper names, time and numerical expressions. Other works divided these types or

classes6 in more fine-grained subtypes. Location can be split into city, state, coun-

try etc. (Fleischman, 2001) and a Person can be e.g. an entertainer, a politician

or a scientist amongst others (Fleischman and Hovy, 2002; Lee and Lee, 2005).

Even mixtures were introduced in the Automatic Content Extraction (ACE) Pro-

gram (Doddington et al., 2004), where facility subsumes entities that are of both

types Location and Organisation, and a Geo-Political entity represents a location

having a government such as a city or country. The CoNLL conferences (Sang

and Meulder, 2003) filed proper names which do not fit into the ENAMEX type

schema under Miscellaneous, including events, languages and types (not brands)

of objects. As this work will adhere to the CoNLL definition later (cf. chapter 5),

table 1 shows the complete annotation guidelines.7

Less general types were sometimes used for certain domains, e.g. e-mail address

and phone number (Witten et al., 1999) or in the field of bioinformatics protein,

DNA, RNA, cell line and cell type (Shen et al., 2003). Aside from the given types

exists the open domain NERC (Alfonseca and Manandhar, 2002; Evans, 2003),

which does not limit the possible types to extract.

The various mentioned types show that the decision what can be regarded as a

named entity is not answered in the same way in the different setups. Nevertheless,

automatic learning systems have to deal with this range of possible named entity

types. Automatic learning techniques for NER are presented in the following

chapter.

6The terms type and class are used interchangeably in this work.
7The table was created according to http://www.cnts.ua.ac.be/conll2003/ner/

annotation.txt (last checked on January 24th 2010).

6

Named Entity Type Generic Term Examples

Person
first, middle and last names of people,
animals and fictional characters
aliases

Organisation

companies press agencies, studios, banks, stock markets, man-
ufacturers, cooperatives

subdivisions of companies newsrooms
brands –
political movements political parties, terrorist organisations
government bodies ministries, councils, courts, political unions of

countries (e.g. the U.N.)
publications magazines, newspapers, journals
musical companies bands, choirs, opera companies, orchestras
other collections of people sports clubs, sports teams, associations, theaters

companies, religious orders, youth organisations

Location

roads streets, motorways
trajectories –
regions villages, towns, cities, provinces, countries, conti-

nents, dioceses, parishes
structures bridges, ports, dams
natural locations mountains, mountain ranges, woods, rivers, wells,

fields, valleys, gardens, nature reserves, allotments,
beaches, national parks

public places squares, opera houses, museums, schools, mar-
kets, airports, stations, swimming pools, hospitals,
sports facilities, youth centers, parks, town halls,
theaters, cinemas, galleries, camping grounds,
NASA launch pads, club houses, universities, li-
braries, churches, medical centers, parking lots,
playgrounds, cemeteries

commercial places chemists, pubs, restaurants, depots, hostels, hotels,
industrial parks, nightclubs, music venues

assorted buildings houses, monasteries, creches, mills, army barracks,
castles, retirement homes, towers, halls, rooms,
vicarages, courtyards

abstract “places” (e.g. the free world)

Miscellaneous

words of which one part is a location,
organisation, miscellaneous, or person

–

adjectives and other words derived from
a word which is location, organisation,
miscellaneous, or person
religions –
political ideologies –
nationalities –
languages –
programs –
events conferences, festivals, sports competitions, forums,

parties, concerts
wars –
sports related names league tables, leagues, cups
titles books, songs, films, stories, albums, musicals, TV

programs
slogans –
eras in time –
types (not brands) of objects car types, planes, motorbikes

Table 1: The CoNLL 2003 annotation guidelines.

7

3 Learning and Classification

As we have seen, the task of NERC has developed over the years and likewise

have the applied methods. This chapter will present a general overview of learning

methods that were used to classify named entities. The intention is to describe

studied approaches to the task as opposed to the strategy that is applied in the

presented work because they provide the motivation for it. One major goal of

the classification of HeiNER’s named entities is to make training data available to

machine learning systems.

When starting with NERC, researchers had to think of ways to find unknown

words in texts. Named entities are unknown words because they can not be looked

up in any ordinary lexicon. To identify them in a machine learning scenario, a set

of distinct features is needed to tell positive and negative examples apart. First,

we introduce features for automatic NERC in the following subsection. After that

we concentrate on learning algorithms that rely on them.

3.1 Features

Features can be described as properties of texts. They provide information about

words, sentences or even complete documents. Compositions of features are called

feature vectors, which are an abstract representation of the underlying text. This

abstraction allows to find generalisations which is crucial for automatic classifica-

tion systems.

For example, consider these four common word level features: (I) the lowercase

word, (II) word length in characters, (III) capitalisation of the first character,

and (IV) position of the word in the sentence. The sentence “Heidelberg is a

city in Baden-Württemberg, Germany.”, taken from the Wikipedia article about

Heidelberg8 would be represented as a set of feature vectors in this way (leaving

out the punctuation):

8http://en.wikipedia.org/w/index.php?title=Heidelberg&oldid=338390932

8

<‘‘Heidelberg’’, 10, true, 1>, <‘‘is’’, 2, false, 2>,

<‘‘a’’, 1, false, 3>, <‘‘city’’, 4, false, 4>,

<‘‘in’’, 2, false, 5>, <‘‘Baden-Württemberg’’, 17, true, 6>,

<‘‘Germany’’, 7, true, 7>

The challenge for a NERC system is to find named entity candidates and assign

their respective types to them with the help of the features in the vectors. In order

to do this they have to know rules which they can apply. In this example the

candidate selection rule could be “if the word is capitalised, take it as a candidate”,

and the – rather simple – classification rule could be “if the word has more than

6 characters, it is a location”. For real-world sentences these rules can get very

complex and usually are not as explicit as the examples given above. More on the

learning of these rules is explained in subsection 3.2. Nadeau and Sekine (2007)

summarise four kinds of features that are presented in the subsequent sections:9

1. Word based features

2. List-lookup features

3. Document features

4. Corpus based features

3.1.1 Word-level Features

Considering a single word, there are some character based features we can look at:

• Case – Capitalisation of first/some/all letters (e.g. “Heidelberg”, “YouTube”,

“IBM”)

• Punctuation – period at end (e.g. “Mr.”) or in the word (e.g. “I.B.M.”),

internal apostrophe, hyphen or ampersand (e.g. “O’Reilly”)

• Significant character – possessive mark, first person pronoun, Greek letters

(e.g. “’s”, “α”, “β”, . . .)

9The features are presented as in the original paper, but the order has been rearranged
sometimes. Most of the examples are borrowed, too, but will not be labelled explicitly to keep
up the readability.

9

• Digit – cardinal and ordinal, Roman number, word with digits (e.g. “W3C”,

“26C3”. . .)

All of them are indicators for different kinds of information: Punctuation is a

sign for abbreviations, capitalised characters on other positions than the beginning

of the sentence indicate a proper name, and digits can express many different types

of information like a year (two and four digits) or a fraction (digits in combination

with a percentage sign). Other features need some analysis of the word first:

• Morphology – prefix, suffix, singular version, stem, common ending

• Part-of-Speech – proper name, verb, noun, foreign word

• Function – alpha, non-alpha, n-gram, lowercase/uppercase version, pattern,

summarised pattern, token/phrase length

Some of these features need explanation. Affixes and stems are computed by

a morphological analyser, and some of the prefixes can help to identify common

word endings. For example “-ish” and “-an” hint at nationalities and languages

(Spanish, Danish, Romanian), human professions often end in “-ist” (journalist,

dentist), and organisation’s names often end in “-ex”, “-tech” or “-soft” (Bick,

2004).

The function-features process a given word to represent it in a new way. For

example, the non-alpha representation of “A.T.&T.” is “..&.”. A so-called pattern

is a mapping of characters to a smaller set of character types to receive a uniform

word representation. For instance, uppercase characters could be mapped to “A”,

lowercase to “a”, punctuation to “-” and digits to “0”. The mapping of “G.M.”

would be “A-A-”, the one of “Machine-223” is “Aaaaaaa-000”. The summarised

pattern compresses repeated characters, which still results in “A-A-” for “G.M.”,

but “Machine-223” yields “Aa-0” as a summarised pattern.

3.1.2 Document and Corpora Features

Document features are not just properties of the content of a whole document,

but also rely on its structure and composition. Corpora are large collections of

10

documents, and statistics computed on them are used as features in the NERC

task, too:

• Multiple occurrences – other entities in the context, uppercased and lower-

cased occurrences, anaphora and coreference

• Local syntax – enumeration, apposition

• Meta information – URI, e-mail header, XML section,bulleted/numbered

lists, tables, figures

• Corpus frequency – word and phrase frequency, co-occurrences, multiword

unit permanency

An entity often occurs in a document several times, especially if it is a named

entity. A problem is that it might be referred to in different ways, for example a

person might be mentioned by their name, their title or an anaphora (most com-

monly a pronoun). “Coreference [. . .] describes the relation that holds between

two expressions that refer to the same entity”(Denis, 2007, page 3). If it is possible

to find all expressions referring to the same entity, we can extract information from

their contexts and derive deduce features from them.

Well structured meta information of a document can be used directly; for

example it is possible to find people’s names in email headers or extract the location

from the beginning of a news article.

Statistics about corpus frequencies of words, phrases and co-occurrences help

to estimate the importance of words found in a context.

3.1.3 List-Lookup Features

External knowledge sources are often used to look up candidates and use the

retrieved information to improve the classification performance. All sources are

subsumed under the term “list” here, although they might include more sophisti-

cated information such as taxonomic structure. This holds for ontologies such as

WordNet (Fellbaum, 1998), in particular.

• General list – general dictionary, stop/function words, capitalised nouns (e.g.

“January”, “Monday”)

11

• List of entities – organisations, governments, airlines, first names, last names,

celebrities

• List of entity cues – typical words in organisations, person titles, name pre-

fixes, post-nominal letters, location-typical words, cardinal points

A word at the beginning of a sentence can be looked up in a general dictionary

to decide whether it is commonly written capitalised or if it should be considered a

named entity candidate. A list of entities simply allows looking up named entities.

To recognise organisations, a list of words that typically appear in organisation

names are useful. For example, these names often include “-inc.” or “-corp” (Rau,

1991). WordNet is used in Fleischman and Hovy (2002) to add weights to topic

signature features.

So now that a general overview about features is given, the next chapter will

deal with the automatic learning systems that take advantage of them.

3.2 Learners

Over the years, beginning from MUC-6 to recent tasks on NERC, new methods

from the machine learning field became more and more popular, leaving behind

systems which use handcrafted rules. Machine learning techniques allow the au-

tomatic induction of rule-based systems or sequence labelling algorithms from al-

located training data. This is achieved by analysing the discriminative features of

positive and negative examples. Similar cases and repetitions occurring in the data

are merged into rules and hence gain abstraction over concrete examples. Three

different types of learning methods can be distinguished by their requirements for

the training data:

1. Supervised learning

2. Semi-supervised learning

3. Unsupervised learning

The following sections will present these methods in the field of NERC.

12

3.2.1 Supervised learning

Supervised learning methods rely on large annotated training corpora. They try to

identify the rules behind the feature vectors to be able to classify unseen data af-

terwards. Several algorithms have shown to be competitive. They are summarised

and provided with example references mostly taken from the CoNLL shared task

2003 in this section:10

A Hidden Markov Model (HMM) consists of a set of (hidden) states, transition

probabilities between them and observed output depending on the current state.

In the named entity classification setup this means that words in a text are the

observed output. The most probable sequence of hidden states (the named entity

types) that produced these words has to be inferred with help of the knowledge

of the annotated data. HMMs were first used for NERC by Bikel et al. (1997)

who presented a model where the internal states of the HMM matched the named

entity types of MUC-6 and had three additional states: “start-of sentence” and

“end-of-sentence” plus the state “not-a-name” for common words. They applied it

on English MUC-6 and Spanish MET data and reported f-scores of 90 and above

for this probabilistic model.

Sang and Meulder (2003) reported that most of the systems used in the CoNLL

shared task implemented Maximum Entropy Models (Berger et al., 1996). For ex-

ample, Bender et al. (2003) computed the probabilities of a named entity tag for a

given word by factorising “the posterior probability and determine the correspond-

ing NE tag for each word of an input sequence”(Bender et al., 2003, page 1). They

assumed that the decisions only depend on a limited window of two predecessor

tags.

Another automatic learning algorithm is a decision tree:

A decision tree can classify instances by sorting them down the tree

from the root to some leaf node, which provides the classification of the

instance. Each node in the tree specifies a test of some attribute [i.e.

a feature] of the instance, and each branch descending from that node

corresponds to one of the possible values for this attribute. (Mitchell,

1997, chap. 3.1)

10This selection does not claim to be complete.

13

For the example from page 9, the root of the decision tree of the rules would

ask for the value “capitalised”, leading to the classification “not a named entity”

when descending branch “no” and otherwise going for another node “len(word)

> 6” whose two branches lead to “organisation” or “not a named entity” for the

answers “yes” and “no”. As you can see a nice property of decision trees is that

they can be represented as sets of if-then rules to improve human readability.

Decision trees were used for NERC by Szarvas et al. (2006) in a multilingual

setup. The decision tree learning algorithm C4.5 (Quinlan, 1993) is used in combi-

nation with AdaBoost (Carreras et al., 2002), an algorithm that generates a set of

classifiers (of the same type) by applying bootstrapping11 on the original training

data set and deciding based on their votes. They report 2.32% error reduction on

the CoNLL shared task relative to the best model tested on the same data. This

improvement is significant because the best results already were in the region of

88% f-score (English test set).

Support Vector Machines (SVM) are a classification method that tries to find

a hyperplane to separate positive from negative training examples (the feature

vectors) of one type in a vector space. This allows the classification of new examples

by judging on which side of the hyperplane they reside and how far they are away

from the margin. Mayfield et al. (2003) participated in the CoNLL 2003 NERC

task with a SVM based system and reached the 7th (4th) position for the English

(German) language with an f-score of 84.67% (69.96%).

Another CoNLL participant were McCallum and Li (2003) who used Condi-

tional Random Fields (CRF) (Lafferty et al., 2001): “Conditional Random Fields

[. . .] are undirected graphical models used to calculate the conditional probability

of values on designated output nodes given values assigned to other designated

input nodes”(McCallum and Li, 2003, p. 1). In contrast to HMMs they are aware

of the complete sequence of input nodes. McCallum and Li (2003) try to maximise

the performance of their system by feature induction. That means features are

only added to the system if they seem to be beneficial because a “large number of

features can be prohibitively expensive in memory and computation”(McCallum

and Li, 2003, p. 3). In order to do that they consider a set of proposed new

features, add the candidates that will maximise the log-likelihood of the correct

11Cf. semi-supervised learning on page 15.

14

state paths and then train their weights. They report an overall f-score of 84.04%

on the English data set using 6,423 features. The same system using a fixed set of

conjunction patterns without feature induction results in a ∼10% lower f-score of

73.34% using about 1 million features. The lesson learned is that the selection of

features can change the performance of a system considerably. The quality of the

feature vector is more important than its size.

A popular system using CRFs is the Stanford Named Entity Recogniser12

(Finkel et al., 2005).

Note that the best participant of the CoNLL 2003 shared task – Florian et al.

(2003) – used a combination of classifiers: a robust linear classifier, maximum

entropy, transformation-based learning and a Hidden Markov Model. Additionally,

the system used a gazetteer13 and reached the first position for both English and

German with an f-score of 88.76% and 72.41% respectively. Consequently, it seems

to be a good idea to take advantage of the different properties of supervised learners

to build a superior system out of a combination of methods.

In conclusion, there are many ways to train a supervised learner and they all

have in common that their performance correlates with the amount of available

training data or as Nadeau and Sekine (2007) put it: “The main shortcoming of

supervised learning is the requirement of a large annotated corpus”(Nadeau and

Sekine, 2007, page 4).

3.2.2 Semi-supervised learning

Because of the disadvantage of supervised learners needing large annotated cor-

pora, semi- or weakly supervised learners were introduced. I. e. a system starts

with a small data set and tries to enhance it with new classified instances from

unlabelled data and then starts the process again. This iterative approach is called

bootstrapping and surmounts the need for large corpora which are expensive and

tedious to create.

Bootstrapping is used by Kozareva (2006) on the CoNLL data for two tasks: (i)

12http://nlp.stanford.edu/software/CRF-NER.shtml
13specialised lists describing an isa-relation. E.g. “Heidelberg” would be found in a location-

gazetteer.

15

to automatically induce a gazetteer of person names14 (ii) to compare a supervised

and a semi-supervised approach for NERC.

To create the gazetteer of person names, he takes a large unannotated corpus

and tries to find and validate common name patterns. Person names are found by

starting with the frequent Spanish first name “José” and looking for combinations

with last names in the corpus. Unseen name combinations with a frequency of

more than ten are split in first and last name and then added to the person-

gazetteer together with this information. The next iterations look for new name

combinations of first and last names with the required frequency and do the same

until no more new instances are found. In this way many names can be found

starting from only one seed entry. A similar approach is used in this work to

gather Wikipedia categories (cf. chapter 5.1.1, page 29 ff.).

NERC is accomplished in a supervised and a semi-supervised setup. Both use

two learners: instance based15 and decision trees. In the supervised version all of

the training data is labelled with correct named entity types and the learners are

trained on it. The semi-supervised setup is only provided with a set of annotated

seed samples to start bootstrapping. The training is done on the same data as in

the supervised setup but this time with hidden labels. For that reason the learners

classify the unlabelled training data, take the most confident classifications into

account and then start all over again until a maximum of 25 iterations is reached.

Both setups were executed with and without including the induced gazetteers

as a list-lookup feature. The resulting systems were evaluated on an annotated

test set. The supervised method beats the bootstrapping approach with about

20% higher f-score. Still, the author states that the results for semi-supervised

learning are promising when thinking of tasks where no annotated data is available.

The automatically induced gazetteers prove to be useful increasing the quality of

classifications about 4%. If the named entities in HeiNER were classified they

would provide comparable gazetteers and additional training data.

14He also creates a gazetteer for locations but with a technique related to the idea of pattern
based information extraction first introduced by Hearst (1992) instead of bootstrapping.

15A method where all training instances are stored and classification is done by computing its
relationship to to the previously stored examples (Mitchell, 1997, chap. 8).

16

3.2.3 Unsupervised learning

In unsupervised learning the training data is not labelled and the classes that can

be learned are unknown to the system (Manning and Schütze, 2002, p. 232).

Thus, unsupervised learners try to find similar instances and cluster them by their

features into undefined classes.16 This does not mean that the output of such a

classifier cannot be interpreted. For example Shinyama and Sekine (2004) uses

the simultaneous appearance of a phrase in several news articles to identify rare

named entities in an unsupervised manner.

Sometimes the definition of unsupervised learning is incorrectly reduced on

stating that the data a system uses is not labelled. For example Collins and

Singer (1999) describe their system to be unsupervised although they start with

a set of seven rules to initially classify instances in the training data. Adding the

knowledge of rules and an initial classification makes the system semi-supervised

comparable to the gazetteer creation of Kozareva (2006) mentioned on page 16.

Because NERC is defined as the task of classifying instances into given named

entity types, unsupervised models are rarely used for it.

To summarise “Learning and Classification” we can state that machine learning

methods rely on two things: The quality and size of available training data and

the set of used features. The availability of needed data underlies strong variations

in different setups. There are many corpora dealing with news texts, some others

exist for specialised fields like bioinformatics but annotated data generally lack

in coverage of world knowledge while unlabelled data can not compete with their

quality. For this reason the free encyclopedia Wikipedia received a great deal of

attention of the NLP research community over the past years. It is semi-structured,

has a great number of entries and is available in several languages, which makes

it a useful source of information that may overcome the mentioned disadvantages

of other resources. Therefore, the next chapter presents Wikipedia: its structural

properties, how it can be accessed and which work related to this thesis already

took advantage of it.

16The classes are undefined in respect to the fact, that the classifier does not know which type
of instances is contained in the classes. It has no clue how the clusters could be labelled.

17

4 Wikipedia

Since the project started in 2001, Wikipedia (WP) has been known as the online

encyclopedia created collaboratively by volunteers, which by now is available in

269 languages. Of these languages 29 contain more than 100,000 articles, 160 have

more than 1000 entries17. The size, structure and free availability makes Wikipedia

a useful source for a variety of research topics and was utilised for named entity

recognition and disambiguation (Bunescu and Paşca, 2006), taxonomy induction

(Ponzetto and Strube, 2007), question answering (Lita et al., 2004; Buscaldi and

Rosso, 2006), ontology construction (Suchanek et al., 2007), information extraction

and enhancing other resources like Cyc18 (Medelyan and Legg, 2008) or WordNet19

(Ruiz-Casado et al., 2005).

Most of the non-multilingual work was performed on the English Wikipedia

(WPen) because it is, with more than 3 million articles, by far the largest version.

In comparison, the second biggest, WPde (German), has close to one million ar-

ticles, WPfr (French) on position three has 870,725 and from there the number

decreases fast as it can be seen in table 2.

4.1 Structure

The knowledge contained in Wikipedia is structured by two concepts: pages and

links between them. There are different types of pages to distinguish between the

kinds of information they provide. This structure is identical in every language

version of Wikipedia. Wikipedia page titles are represented by small capitals.

4.1.1 Pages

Everything a user can see browsing through Wikipedia is a page. Every page

lives within a namespace which denotes sections within Wikipedia and bears a

unique title in that namespace. For example the article with the title Heidelberg

lives in namespace Main, and its discussion page with the same title lives in the

17Information on statistics are taken from http://stats.wikimedia.org/EN/Sitemap.htm
on Dec 18. 2009.

18Lenat (1995)
19Fellbaum (1998)

18

Language
code

Language Article
Count

en English 3,106,727
de German 988,060
fr French 870,725
pl Polish 657,506
ja Japanese 640,698
it Italian 628,383
nl Dutch 567,408
es Spanish 558,041
pt Portuguese 525,253
ru Russian 453,608
sv Swedish 337,963
zh Chinese 274,402
no Norwegian 238,657
fi Finnish 223,110
ca Catalan 207,655
uk Ukrainian 180,893
hu Hungarian 150,858
cs Czech 143,960
tr Turkish 142,299
ro Romanian 134,476
eo Esperanto 122,027
ko Korean 121,394
da Danish 119,304
vo Volapük 118,781
id Indonesian 115,889
sk Slovak 111,136
vi Vietnamese 106,982
ar Arabic 106,225
sr Serbian 104,207

Table 2: Wikipedias with more than 100,000 articles sorted by size

19

namespace Talk. This is a general concept of Wikipedia: there are pages in the

basic namespaces and those in the talk namespaces to discuss them. Table 3 gives

an overview.

The generally interesting pages for NLP tasks are in the basic namespaces

Main and Category. If no other namespace is mentioned explicitly we are talking

about namespace Main whose articles describe one single, unambiguous entity.

Uniqueness of pages is useful property because entities occurring in free text often

are ambiguous and may be disambiguated by searching for a matching Wikipedia

article (Bunescu and Paşca, 2006).

Another property of a page is that it can be a redirect. Redirect pages have

a title which is common for a referred article, but the article itself is named else-

wise. For example Www redirects to World Wide Web. As redirects include

abbreviations, nicknames and other aliases, they can help to find multiple surface

referring to the same entity.

In case a term may describe several things, a disambiguation page is set up.

E.g. the disambiguation page “WWW (disambiguation)” informs that WWW

also may refer to an early web browser called WorldWideWeb, the theme park

Wild West World or amongst other suggestions Wicked Witch of the

West, a character from The Wonderful Wizard of Oz. Disambiguation pages can

help to identify matching candidates for named entity disambiguation.

As every title must be unique, entities with the same name are distinguished

by a descriptive word which is added in braces to the title. Often the most popular

entity has the title without that description. For example Michael Jackson pic-

tures the deceased American pop singer, but the disambiguation page Michael

Jackson (disambiguation) lists many people with a similar name, e.g.

Michael Jackson (actor), Michael Jackson (writer), Michael Jack-

son (radio commentator), Michael A. Jackson (sheriff), . . . and Michael

J. Jackson (actor).

20

Basic Namespace Talk Namespace
0 Main Talk 1
2 User User talk 3
4 Wikipedia Wikipdia talk 5
6 File File talk 7
8 MediaWiki MediaWiki talk 9
10 Template Template talk 11
12 Help Help talk 13
14 Category Category talk 15
100 Portal Portal talk 101

Table 3: Wikipedia namespaces and corresponding numerical values in the
database.

4.1.2 Links

The organising elements of Wikipedia pages are links between them. They are

just placed in the text of pages in Mediawiki20 markup style. A link to another

Wikipedia page in the same namespace is created when putting the title of the

page in brackets. Thus writing [[Ramones]] in the page’s source text results the

rendered page to show a link with the surface form “Ramones” to the article of

the punk band: http://en.wikipedia.org/wiki/Ramones.

In order to display another surface form, users can place so called piped links:

[[Ramones|punk band]] still links to the same article, but shows “punk band” in

the text. Because links point to pages they are unambiguous, too.

To link to another namespace users just have to prefix the desired namespace

together with a colon. A link to the discussion page of the article “Ramones” looks

like this: [[Talk:Ramones]]. Another example taken from the article Ramones is

a link to the category “American punk rock groups” [[Category:American punk

rock groups]]. A page linking to another page in namespace Category is considered

to be in this category.

Although language links are not a namespace of Wikipedia, they follow the

same syntax [[language code:Ramones]] where language code follows the abbre-

viations defined by ISO 63921. The result is a link to the article “Ramones”

20Mediawiki is the software Wikipedia is based on: http://www.mediawiki.org/wiki/
MediaWiki

21http://www.loc.gov/standards/iso639-2/php/code_list.php

21

in another language version of Wikipedia. The article title may differ between

languages, e.g. the catalan link is [[ca:The Ramones]]. Wikipedia editors are

adding language links manually which means that every page with a language link

provides a translation of the article for free.

All linking styles can be mixed.

4.2 Access to Wikipedia data

To solve a NLP task using Wikipedia, structured access to the content is needed.

The Wikimedia Foundation22 who runs the servers of Wikipedia provides down-

loadable database data in XML and SQL format on http://download.wikimedia.

org/. The pages-articles.xml files contain the current versions of article content

which means it is a snapshot of the database including every page in namespace

Main. This database dump includes all links, but they are hidden in the unparsed

article texts. This problem is overcome by the SQL files which are sorted by tables

of the database23 and allow to sort for pagelinks, languagelinks or categorylinks.

After all, there are three ways to access the data:

1. Query the web page

2. Work on the XML dumps

3. Work on a database

As querying the web page is discouraged24 and would be too slow for large

computational work anyway, we leave out that option. Working on the XML file

is fine for tasks that need to look at needed information only once because it can

be huge and needs to be parsed, which makes accessing random pages in adequate

time impossible. As this work needs dynamic access to articles and categories, an

Advanced Programming Interface (API) to the database is needed. Torsten Zesch

and Gurevych (2008) introduced the Java based Wikipedia API JWPL which suits

22http://wikimediafoundation.org/wiki/Home
23Visit http://www.mediawiki.org/wiki/Manual:Database_layout to learn about the

database layout and available tables.
24http://en.wikipedia.org/w/index.php?title=Wikipedia:Database_download&oldid=

335585023#Please_do_not_use_a_web_crawler

22

the task. It allows to access various kinds of information in an object oriented

manner. The only important feature it is lacking is easy multilingual access which

means a comprehensive way to follow language links. The initial idea of this thesis

included the utilisation of categories across languages. Consequently, a new API

with this functionality had to be written.

mwdb - a Python API for Wikipedia

The software mwdb is a Python API for Wikipedia (or Mediawikis in general)

granting object oriented access to articles, links and categories across different

language versions of Wikipedia. It was written together with Wolodja Wentland

and can be found at his github account under http://github.com/babilen/25.

Maybe the best way to talk about the functionality of mwdb is to present it

in an interactive Python session. Everything following >>> is user input, lines

without a prefix are program output and text following # is a comment to explain

what is happening. Python keywords are highlighted in boldface. To increase

readability some parts replaced by “. . . “ were left out and some of the output was

sorted. So let us have a look at the first steps using mwdb:

>>> import mwdb

#connect to a p o s t g r e s q l database and d i s cove r i n s t a l l e d Wikipedia databases

>>> mwdb. databases . d i s c o v e r (’ p o s t g r e s q l ’ , ’ psycopg2 ’ , username , password , host)

#dic t i onary o f found database o b j e c t s o f the d i f f e r e n t language ve r s i ons

>>> mwdb. databases

Databases ({
u ’ ru ’ : PostgreSQLDatabase (l o c a l h o s t , wp bs 20091114) ,

u ’ da ’ : PostgreSQLDatabase (l o c a l h o s t , wp da 20091114) ,

u ’ de ’ : PostgreSQLDatabase (l o c a l h o s t , wp de 20091110) ,

u ’ en ’ : PostgreSQLDatabase (l o c a l h o s t , wp en 20091103) ,

u ’ f r ’ : PostgreSQLDatabase (l o c a l h o s t , wp fr 20091111) ,

u ’ j a ’ : PostgreSQLDatabase (l o c a l h o s t , wp ja 20091117) ,

u ’ n l ’ : PostgreSQLDatabase (l o c a l h o s t , wp nl 20091112)

u ’ p l ’ : PostgreSQLDatabase (l o c a l h o s t , wp pl 20091116) ,

. . .

u ’ zh ’ : PostgreSQLDatabase (l o c a l h o s t , wp zh 20091112)}

#access to Eng l i sh Wikipedia

>>> enwp = mwdb. Wikipedia (’ en ’)

25Also on this page: The automatic Wikipedia download tool wp-download and the database
import tool wp-import.

23

#the Wikipedia o b j e c t

>>> enwp

Wikipedia (en)

#show methods o f enwp ob j e c t

>>> d i r (enwp)

[. . . , ’ g e t a r t i c l e ’ , ’ g e t c a t e g o r y ’ , ’ i t e r a r t i c l e s ’ ,

’ i t e r c a t e g o r i e s ’ , ’ language ’]

#load a r t i c l e page o b j e c t wi th the t i t l e ‘ ‘The Smurfs ’ ’

>>> smurfs = enwp . g e t a r t i c l e (u ’The Smurfs ’)

#a r t i c l e o b j e c t s are crea ted f o r every language dynamica l ly

>>> type (smurfs)

EN Art ic le (u ’ The Smurfs ’)

#access to a r t i c l e t e x t

>>> print smurf . raw text

. . .

’ ’ ’ ’ ’The Smurfs ’ ’ ’ ’ ’ (’ ’ Les Schtroumpfs [o r i g i n a l French/ Belg ian name for

them] ’ ’) are a f i c t i o n a l group o f smal l b lue c r e a t u r e s who l i v e in Smurf

V i l l a g e somewhere in the woods . The [[Belgium | Belg ian]] [[c a r t o o n i s t]]

[[Peyo]] int roduced Smurfs to the world in a s e r i e s o f [[comic s t r i p s]] ,

making t h e i r f i r s t appearance in the Belg ian [[Franco−Belg ian comics

magazines | comics magazine]] ’ ’ [[Spirou (magazine) | Spirou]] ’ ’ on October 23 ,

1958

#access to a r t i c l e s l i n k ed by the a r t i c l e o b j e c t

>>> print smurfs . a r t i c l e l i n k s

[EN PageLink (u ’ A Yabba Dabba Doo Celebration : 50 years o f Hanna−Barbera ’) ,

EN PageLink (u ’ Anders Hedberg ’) , EN PageLink (u ’Andr\xe9 Franquin ’) ,

EN PageLink (u ’ Animated ’) , EN PageLink (u ’ A n i m a t e d t e l e v i s i o n s e r i e s ’) , . . . ,

EN PageLink (u ’ Weekend Today ’) , EN PageLink (u ’ Yvan Delporte ’)]

#look ing f o r a r t i c l e s l i n k i n g to t h i s one r e s u l t s in a l i s t o f PageLink

#ob j e c t s . .

>>> smurfs . a r t i c l e l i n k s i n [0]

EN PageLink (u ’ The Smurfs ’)

#. . which we can ask f o r i t s source (the goa l i s ’ The Smurfs ’ , o b v i ou s l y) . The

#source page i s an a r t i c l e o b j e c t i t s e l f wi th the same methods as a r t i c l e page

#ob j e c t ‘ ‘ smurfs ’ ’

>>> smurfs . a r t i c l e l i n k s i n [0] . source page

EN Art ic le (u ’ Belgium ’)

Those are some basic functionalities of the article objects, more are available, but

will not be presented here. Note that data which is directly accessible via a table

24

in the database is realised as a property26, while data needing the consultation of

more tables or any computation is realised as a method usually starting with “get“

for elements or lists or ”iter“ for iterables. For example article.title is a property

and article.iter categories startwith(start string) is a method.

In order to keep article or page objects small, lazy loading is used to execute

article.raw text from the database, which means that it is only loaded when ac-

cessed. The continued interactive example shows access to categories and related

methods.

#access to the c a t e g o r i e s o f an a r t i c l e

>>> smurfs . c a t e g o r i e s

[. . . , , EN Category (u ’ F i c t i o n a l c h a r a c t e r s i n c o m i c s ’) ,

EN Category (u ’ F i c t i ona l dwarve s ’) , EN Category (u ’ F i c t i o n a l l i f e f o r m s ’) ,

EN Category (u ’ NBC network shows ’) , EN Category (u ’ Smurfs ’)]

#ge t t i n g ca tegory o b j e c t EN Category (u ’ F i c t i o n a l l i f e f o rm s ’)

>>> f i c t i o n a l l i f e f o r m s = smurfs . c a t e g o r i e s [−3]

#A category i s p laced in ca t e g o r i e s as we l l . .

>>> f i c t i o n a l l i f e f o r m s . c a t e g o r i e s

[EN Category (u ’ F i c t i o n a l ’) , EN Category (u ’ L i f e ’) , EN Category (u ’ Organisms ’)]

#. . and has su b ca t e go r i e s

>>> f i c t i o n a l l i f e f o r m s . s u b c a t e g o r i e s

[EN Category (u ’ D i s cwor ld peop l e s ’) , EN Category (u ’ Marve l Comics spec i e s ’) ,

EN Category (u ’ DC Comics species ’) , EN Category (u ’ S ta r Wars races ’) ,

EN Category (u ’ F i c t i o n a l a n i m a l s ’) , EN Category (u ’ L i s t s o f f i c t i o n a l s p e c i e s ’) ,

. . .

EN Category (u ’Pok\ xe9mon spec ies ’) , EN Category (u ’ Video game creatures ’)]

As we can see, walking through the category graph is very easy. Some other

methods, like gathering several levels of subcategories were implemented in this

thesis, but are not in mwdb yet.

By now you might have come across characters like \xe9 in e.g.

EN Category(u’Pok\xe9mon species’). They are just the Unicode representation

of a string which is used internally. In Python, the u in front of a string means that

it is a Unicode string. When printed, those characters are encoded and correctly

display EN Category(Pokémon species).

26Properties in Python are usually used to allow easy and comfortable access on variables of
objects. They are accessed via object.property name as opposed to object.method name()

25

The last snippet of the interactive session gives insight into the multilingual pos-

sibilities of mwdb:

#show the s to red language l i n k s o f an a r t i c l e

#note t ha t the method s t i l l opera te s on the Eng l i sh WP

>>> smurfs . l a n g u a g e l i n k s

[EN LanguageLink (u ’ a l s ’ , u ’ Les Schtroumpfs ’) ,

EN LanguageLink (u ’ ar ’ , u ’ \u0627\u0644\u0633\u0646\u0627\u0641\u0631 ’) ,

EN LanguageLink (u ’ br ’ , u ’ Schtroumpfed ’) ,

EN LanguageLink (u ’ bs ’ , u ’ \u0160trumpfovi ’) ,

EN LanguageLink (u ’ de ’ , u ’ Die Schl \xfcmpfe ’) ,

EN LanguageLink (u ’ es ’ , u ’ Los P i tu f o s ’) ,

EN LanguageLink (u ’ f r ’ , u ’ Les Schtroumpfs ’) ,

EN LanguageLink (u ’ j a ’ , u ’ \u30b9\u30de\u30fc \u30d5 ’) ,

EN LanguageLink (u ’ n l ’ , u ’ Smurf ’) ,

EN LanguageLink (u ’ p l ’ , u ’ Smerfy ’) ,

EN LanguageLink (u ’ ru ’ , u ’ \u0421\u043c\u0443\u0440\u0444\u044b ’) ,

. . .

EN LanguageLink (u ’ zh ’ , u ’ \u84dd\u7cbe\u7075 ’)]

#fo l l ow the language l i n k s to the ac tua l t r an s l a t e d a r t i c l e s c r ea t in g o b j e c t s

#in other Wikipedialanguage i n s t ance s

>>> l i s t (smurfs . i t e r t r a n s l a t i o n s ())

[ALS Art ic le (u ’ Les Schtroumpfs ’) ,

AR Artic le (u ’ \u0627\u0644\u0633\u0646\u0627\u0641\u0631 ’) ,

BR Artic le (u ’ Schtroumpfed ’) ,

BS Art i c l e (u ’ \u0160trumpfovi ’) ,

DE Art ic le (u ’ Die Sch l \xfcmpfe ’) ,

EO Artic le (u ’ Smurfo ’) ,

ES Art i c l e (u ’ Lo s P i tu f o s ’) ,

FR Art ic le (u ’ Les Schtroumpfs ’) ,

JA Art i c l e (u ’ \u30b9\u30de\u30fc \u30d5 ’) ,

NL Art ic le (u ’ Smurf ’) ,

PL Art i c l e (u ’ Smerfy ’) ,

RU Artic le (u ’ \u0421\u043c\u0443\u0440\u0444\u044b ’) ,

. . .

ZH Art ic l e (u ’ \u84dd\u7cbe\u7075 ’)]

Every page object in Wikipedia, including articles and categories, which has

language links, can load the according page object in another language if that

language is installed. Connections to other databases are opened dynamically

for this purpose. To our knowledge no other API provides multilingual access to

Wikipedia in such an easy way.

26

4.3 Related work

As Wikipedia is a valuable resource, many researchers have used it for different

tasks. This section presents some of the work related to this thesis. This can mean

that it either had some interesting and inspiring thoughts and conclusions or it

produced useful data.

In 2006 Razvan Bunsecu and Marius Paşca exploited the “high coverage and

rich structure of the knowledge encoded in an online encyclopedia”(Bunescu and

Paşca, 2006, page 1) for named entity disambiguation (NED). If an ambiguous

string, a phrase that can refer to several unique entities, is found in a text, NED

is the task of deciding which of the possible candidates is meant in this context.

They took the setup of a web search as an example of where NED is useful:

People searching for “Python” may refer to the snake, programming language

or movie. A common name like “John Williams” is carried by several persons

(composer, wrestler . . .), so the goal is to be able to improve the effectiveness

of a search by grouping the results by the different entities. They achieve it by

using correlations between entities in Wikipedia, their categories and contexts they

appear in to compute similarities between a query and its named entity candidates.

Most interesting in this paper was the generation of:

• a collection of named entities,

• a disambiguation dictionary consisting of proper names as keys and named

entities they may denote as values

• ambiguous contexts for different entities.

To detect all named entity articles ANE ∈ WPen Bunescu and Paşca (2006)

developed a simple but effective heuristic for named entity detection based on

capitalisation.

The disambiguation dictionary is constructed by use of redirect and disam-

biguation pages. It maps proper names to unique named entities they may refer

to. The keys of the dictionary are referring expressions and the values are al-

ways named entities. For example the key John Williams is mapped to John

Williams (composer), John Williams (wrestler),. . . and John Williams

(VC).

27

This dictionary allows to search for ambiguous contexts for different named

entities in Wikipedia. This was done by looking for links to a known named entity

article aNE with an ambiguous surface string within other articles. For example

if an article contains a link “[[John Williams (wrestler)|John Williams]]”

we know that John Williams (wrestler) is referred to. The disambiguation

dictionary allows to look up other named entities, which “John Williams” may

describe. By saving the contexts of these cases a useful collection of training

material for named entity disambiguation is created.

This idea was extended by Wentland et al. (2008) who presented HeiNER –

the Heidelberg Named Entity Resource. They realised that creating the disam-

biguation dictionary and the ambiguous contexts solely rely on Wikipedia’s linking

structure and therefore is language independent. Additionally because the context

data can be used as training material they decided that it should not be restricted

to ambiguous contexts, but include all occurrences. Consequently, they applied

the NER heuristic of Bunescu and Paşca (2006) to the English Wikipedia and used

interlanguage links to translate the named entities, which resulted in a collection

of translated named entities AHeiNER with more than 1.5 million named entity

articles in WPen. Then the disambiguation dictionaries and context datasets were

created for a chosen set of 16 languages27.

The evaluation of the NER heuristic showed a precision of 95% for the arti-

cles in AHeiNER after the CoNLL annotation guidelines and the context datasets

provide a median between four and seven contexts per named entity28. HeiNER’s

size and multilingualism makes it a valuable resource for tasks like named entity

recognition, disambiguation, translation and transliteration. Yet, it is not appli-

cable for NERC because it is missing named entity type labels. This problem will

be taken care of in the next chapter.

27The method allows the creation in all languages available in Wikipedia
28With the exception of Norwegian which had a median of two contexts per named entity

28

5 Classification of HeiNER’s named entities

The advantage of HeiNER’s data is that its collection of named entities is large and

there is a beneficial number of examples per entry. The downside is that nothing

is known about the named entities except for that they are named entities.

Common NERC systems rely on the size and quality of training data to learn

correct classifications of named entity types to be able to estimate the type of a

candidate in a given context. As HeiNER’s size and quality was shown, eliminating

its lack of named entity type assignments would increase its value significantly.

Thus, the goal of this research is to classify the named entities contained in HeiNER

with the help of Wikipedia’s category system abiding by the CoNLL annotation

guidelines shown on page 7 in order to create a multilingual training resource for

NERC. The CoNLL guidelines were chosen because the evaluation of HeiNER’s

named entities was done following them and reported a precision of 95% which

could not be guaranteed for other definitions. As the named entities and their

translations are known, it is sufficient to classify them in English to apply the

result to other languages covered by HeiNER as well.

Assigning NE types to articles is done in two steps. First, we collect well-

defined categories for named entity types and use them to gather an initial list

of classified named entities. Second, a bootstrapping approach is used to classify

the remaining articles. The idea is described in subsection 5.1 and carried out in

subsection 5.2 followed by its evaluation in 5.3.

5.1 Mapping Wikipedia categories to named entity types

Previous work has shown that the category system of Wikipedia offers useful infor-

mation which helps to collect and represent world knowledge. The categorisation

system of Wikipedia articles is very detailed and organised well. It should be

possible to classify named entity instances with its help.

5.1.1 Initialisation

The first step is to find mappings between the CoNLL annotation guidelines and

Wikipedia categories. For the named entity type Person there exists a similar

29

category People, Locations are found under Place names and Organisations

can be mapped to the category Organizations. Miscellaneous is more complex

and therefore covered by more than one category. So what can we do with these

coarse mapping on the way to classify the named entities in HeiNER? First, we

need some definitions:

Definition. With the set of named entity types T = { P, L, O, M } we distinguish

Person, Location, Organisation and Miscellaneous.

By C we denote the set of all categories in the English Wikipedia.

Subcategories are given as a relation S ⊂ C ×C with (x, y) ∈ S if and only if x is

a subcategory of y.

AH ⊂ A are all English articles in HeiNER.

Wikipedia provides a relation R ⊂ A×C that assigns articles to a set of categories

they are placed in.

The goal of this work is to find a mapping f : A → T that assigns a type to

each article. In essence, our approach consists of two steps. First, we determine a

set of categories for each type. Then, these are used to initialise a bootstrapping

algorithm that retrieves types for the articles.

We start with the set Ct of categories that belong to type t. We assume

that for each type t ∈ T and every relation (a, c) ∈ R it can be deduced that

c ∈ Ct ⇒ f(a) = t. In other words, every article that can be found in a category

of type t can be considered to belong to this type, too. If we thought of a way to

find categories with their denoted type, we would just have to look up the articles

placed in them to classify articles and subsequently create the desired mapping.

Because there are too many categories to build all category sets by hand, a semi-

automatic approach is needed.

As categories can have high number of subcategories, the idea occurs that a

set of seed categories denoted to a type may induce more categories for this type

by following subcategory links recursively. This could be done for every type t like

this:

Collect a set of seed categories C seedt and assemble all related categories

recursively. For this, we need all subcategories k with (k, c) ∈ S for some c ∈

30

C seedt. We add all these subcategories to the initial seeds and repeat the process

until no more new categories are found. The result is the set Ct of categories that

are related to t.

The seed categories can be identified manually and need to be of high quality.

On the one hand, the seeds have to be broad enough to be able to collect as many

articles as possible, on the other hand, they have to be selected properly, otherwise

every step in this chain could add elements not relevant to t. Section 5.2.1 will deal

with the details of collecting seeds. However, no matter how good the quality of

the manually selected seed categories is, it is unlikely for the derived Ct to comply

with the definition that all categories dealing with t are covered. There may exist

categories that can not be obtained by following subcategory links of the seed list.

Therefore the collected type-categories are not sufficient to classify all articles in

HeiNER by looking them up.

As much as the Ct are not perfect, in practice the lookup can still generate an

initial list of classified articles Ainitial t. This initialisation step leaves the set of

unclassified articles, Ainitial unclassified = AH − Ainitial t, so the new challenge is to

find a way to identify the types for the remaining unclassified articles starting from

Ainitial t. For that, we have to ask what new useful information Ainitial t contains.

5.1.2 Bootstrapping

All articles in the initial list of classified articles are inferred from the type-

categories Ct. Nevertheless, the inferred articles are placed in additional categories

that can not be reached from the seed list. By taking a look at all the categories

the articles in Ainitial t are placed in, we can collect these new categories. They

may help to identify the types of the left-over articles that are yet unclassified as

it was impossible to infer an appropriate type from C seedt. They can be seen as

a footprint or signature of a named entity type aligning concepts that are shared

between articles and moreover adding abstract knowledge to the concrete entities.

A named entity type can be represented by this category signature as a category

vector ~vt. The vector’s length is the number of distinct categories found by looking

up the categories that members of Ainitial t are placed in. The values are calculated

by counting all of the categories’ occurrences. The point of this vector is, that it

31

Castle_Bromwich_Assembly
Daimler_Armoured_Car
Daimler_Conquest
Daimler_Consort
...
Daimler_Sovereign
Jaguar_Advanced_Lightweight_Coupe_Concept
Jaguar_C-Type
Jaguar_Cars
Jaguar_D-Type
...
Jaguar_XKSS
Lanchester_Motor_Company
Owen_Sedanca

Figure 2: Excerpt of articles in Ajaguar

can be used to classify entities in Ainitial unclassified by computing its similarity to

the unclassified articles. A detailed description follows in section 5.2.3, but first,

step back and have a look at an example of how the set of categories is generated:

Consider Jaguar29 to be a named entity type for demonstrating purposes. For

this type the initial seed c seedjaguar is the category Jaguar which with all sub-

categories results in Cjaguar:

{Jaguar, Daimler, Daimler vehicles, Jaguar vehicles and Jaguar For-

mula One cars}.
Looking up the articles placed in the categories in Cjaguar results in a set of 60

classified articles Ainitial jaguar. Some of them can be seen in figure 2 (page 32). The

articles mainly list car types of the manufacturers Jaguar and Daimler Motor Com-

pany30. In this example the assumption that the articles placed in Cjaguar deal with

the type Jaguar as well seems to be correct: Lanchester Motor Company

was a car manufacturer that merged with Jaguar, Castle Bromwich Assembly

is a car factory owned by Jaguar and Owen Sedanca is a car type.

After that, the vector ~vjaguar is created by the algorithm presented in figure 3

with the help of the categories that the classified articles Ainitial jaguar are placed

29Jaguar denotes the car manufacturer, not the animal.
30A company owned by Jaguar, which should not to be mistaken for Daimler-Benz.

32

in. We step through every article and look at its categories. If a category is not

in ~vjaguar yet, we add it with a value of one, else we increment the current count

by one. The resulting category vector illustrated in figure 4 (page 34) consists of

135 distinct categories adding up to a sum of 336 mentions in Ainitial jaguar.

def compute vector (Ainitial t) :
c a t e g o r y v e c t o r = {} # ~vt s t o r e d as a d i c t i o n a r y
for a in Ainitial t :

for c in a.catgories :
i f c a t e g o r y v e c t o r . has key (c) :

c a t e g o r y v e c t o r [c] += 1
else :

c a t e g o r y v e c t o r [c] = 1
return c a t e g o r y v e c t o r

Figure 3: Python-Pseudocode algorithm of a function to build the category vector.
The vector is stored in a dictionary where the category name is the key and the
count its value.

Most categories are in a hypernym relation to their articles. Especially the more

frequent ones like Jaguar vehicles, Daimler vehicles and Sports cars

might be used as ontological concepts. Other categories help to organise the articles

by specific criteria like time (1960s automobiles, 1950s automobiles, Vehi-

cles introduced in 2006, . . .). All articles with unsourced statements

and All orphaned articles are exemplary for Wikipedia maintenance cate-

gories. They appear frequently and are set often automatically by bots to flag

articles which need attention by Wikipedia editors to improve their quality. As

they are widespread they do not tend to be more significant for one topic over

another.

Let’s recapitulate what happened up to this point: In order to create named

entity type vectors ~vt, the processing chain starts with manually selected seed

categories C seedt to create Ct via all of the seed’s subcategories. After that, it

collects the articles Ainitial t by looking them up in Ct. Examining the categories

of Ainitial t and counting their occurrences results in the type vectors ~vt.

The type of unclassified articles can now be identified by computing the sim-

33

{Jaguar_vehicles:38,
Rear_wheel_drive_vehicles:24,
Daimler_vehicles:13,
Sports_cars:13,
1960s_automobiles:11,
1950s_automobiles:9,
2000s_automobiles:8,
All_articles_with_unsourced_statements:7,
Sedans:7,
Rear_mid-engine,_rear-wheel_drive_vehicles:5,
...,
All_orphaned_articles:1
Vehicles_introduced_in_2006:1}

Figure 4: ~vjaguar resulting from Ajaguar.categories

ilarity between the type-vectors ~vt and the articles’ categories and assigning the

best matching type to them. This allows a bootstrapping approach to classify the

yet unclassified articles: We use ten iterations. In each iteration the similarity of

articles and the four NE type-vectors is computed and the type with the high-

est similarity score is assigned to the corresponding articles. The resulting list is

sorted descending by similarity scores and the ten percent of unclassified articles

with the highest scores are added to their matching named entity types and moved

from the list of unclassified articles to the classified ones. The categories of these

new classified articles are counted and added to the vectors of their respective NE

type. After that, we go to the next iteration step using the updated category

vectors for new similarity computations. The complete algorithm is described in

Python-Pseudocode on page 35.

By now we explored the idea how to carry out the classification of the named

entities in HeiNER. The next section will present the work on real data.

34

Aclassified = Ainitial

Aunclassified = Ainitial unclassified

n = 10 #i t e r a t i o n coun t

c per i = len (Aunclassified)/n #c l a s s i f i c a t i o n s p e r i t e r a t i o n
~VT = [~vperson, ~vorganisation, ~vlocation, ~vmiscellaneous]

for k in range (n) :

Anew classified = []

for a in Aunclassified :

candidate = b e s t s i m i l a r i t y t u p l e (a , ~VT) #se e f u n c t i o n b e l ow

Anew classified . append (candidate)

#s o r t d e s c e n d i n g by s i m i l a r i t y (t u p l e i n d e x 2)

Anew classified sorted = s o r t d e s c (Anew classified , key=2)

#i t e r a t e o v e r c p e r i (10%) o f t h e h i g h e s t r a t e d a r t i c l e s

for anew classified in Anew classified sorted [: c p e r i] :

article = anew classified [0]

i f article == ’ u n c l a s s i f i e d ’ :

break #no more c l a s s i f i e d a r t i c l e s l e f t i n Anew classified sorted

Aclassified . append (article)

Aunclassified . remove (article)

type = anew classified [1]
~Vtype = ~Vtype . a d d c a t e g o r i e s o f a r t i c l e (anew classified [0])

def b e s t s i m i l a r i t y t u p l e (a , ~VT) :

maximum = 0

best type = ’ u n c l a s s i f i e d ’

for vector in ~VT :

similarity = compute s im i l a r i t y (a.categories , vector)

i f similarity > maximum :

maximum = similarity

best type = vector . get type name ()

#r e t u r n t u p l e w i t h t h e r e s u l t

return (a , best type , maximum)

35

5.2 Classification of named entities contained in HeiNER

By now the idea of how to approach the classification of HeiNER’s named entities

is given, so it is time to present the work with real data. These are taken from

the English Wikipedia of November 3rd 2009. First, the NER of HeiNER was

run to generate an updated collection of named entities in Wikipediaen. A total of

2,225,193 were found31. Afterwards, 721 randomly chosen instances were manually

annotated and set aside to create an evaluation set (cf. Evaluation, section 5.3),

which left 2, 224, 472 in AHeinER. The next step is the collection of seed categories.

5.2.1 Collecting the seed categories

The seed categories were gathered by looking at several randomly chosen named

entity pages of every named entity type and travelling up the category tree until

the most abstract but as concrete as necessary category was found matching the

descriptions of CoNLL annotation guidelines (cf. table 1 on page 7). For example

to find seed categories for the type Person we start looking at the article of Barack

Obama and examine its categories, where we find Living People amongst many

others. As it is the most abstract and best fitting category we examine the cate-

gories Living People is placed in and continue with the selection leading to the

following chain:

Barack Obama ⇒ Living People ⇒ People by status ⇒ People

The next higher category would be Humans but as it contains other categories

covering a wide topic range like Human physiology or Human rights it is not

a useful choice for the named entity type Person. The same question has to be

asked for the category People: Do the subcategories introduce topics which do

not fit the named entity type? If there are categories which do not apply, throw

them away and take all the remaining subcategories at this level in order to avoid

noisy data. Those are some of the removed categories in People:

31The original work had 1,547,586 entries (Wentland et al., 2008). The difference is solely
based on the growth of Wikipediaen.

36

• Biography – deals with biographical books

• List of People – contains mostly ’List of’-articles which are not named

entities

• Categories named after actors – often leads to work of actors like

their films

• Personal timelines – only has articles about the timelines, not persons

themselves

In the end most of the remaining categories for Person had the form People

by XY, in which XY is an organisational topic like “occupation” or “religion”.

There are 15 categories in C seedperson. This manual work was done for every

named entity type. Finding the categories for other types was not always as clear

as for Person because some types have more than one suitable supercategory to

start from and thus have a broader set of seed categories taken into account.

So C seedorganisation ends up having 75 and C seedmiscellaneous 27 categories while

C seedlocation has 15. The complete categories found for the CoNLL classes are

listed in the Appendix on page 63 ff.

5.2.2 Initialising the named entity types

Starting with C seedt we can build Ct by computing all the subcategories of

C seedt as described on page 30. So we try to do that for C seedperson and find

Cperson to have more than 526,000 categories. The same result occurs with t =

Location. Checking WPen reveals that it has a total of 528,128 categories and all

of them were added to the respective Ct, which makes the collection useless. The

problem is that by taking all subcategories of the categories in C seedt we treat the

category system as a tree although it is a graph. The removal of seemingly noisy

categories was not sufficient to avoid going off the track and adding categories

which introduce unrelated parts of the category graph.

An easy way to overcome this problem is to restrict the depth of the search

for subcategories. The depth should be chosen deep enough to maximise the

ensuing collection of Ainitial t, but also avoid the introduction of wrong categories.

37

Examining the category system leads to the conclusion that a depth of two is

sufficient to reach most of the wanted categories dealing with t and flat enough

to exclude unrelated categories. Articles that could not be reached because of the

restriction of search depth are expected to be added later in the bootstrapping

part if they are related to a named entity type.

The algorithm in figure 5 shows how the subcategories are computed with a

depth restriction of two.

Ct = C seedt

for i in range (2) :
C subcatt = s e t ()
for ct ∈ Ct :
C subcatt = C subcatt.union(ct.subcategories)

Ct = Ct.union(C subcatt)
return Ct

Figure 5: Python-style pseudocode to build Ct with search depth = 2

As explained earlier, the initial set of classified articles is computed by looking

up articles in Ct. But not every found Wikipedia article should be added to

Ainitial t. Recall that Ainitial t should only contain articles of HeiNER so that the

signature of categories only consists of those assigned to named entity articles and

ignores articles about common words to improve the signature’s accuracy. Articles

about common words may introduce unwanted categories, e. g. the category

Choirs is used as a seed for Organisations. The article Show choir32 is placed

in Choirs and is not a named entity but a common word. Furthermore, the article

is placed in the category Dance. Because dancers like Alfredo Corvino33 are

placed in Dance, too, the category is associated with the named entity type

Person as well, which is a source for erroneous mixing of named entity types. We

do not want Alfredo Corvino to be associated with Organisation, so we avoid

adding erroneous common word entries by adding articles to Ainitial t that are also

contained in HeiNER.

32http://en.wikipedia.org/w/index.php?title=Show_choir&oldid=336334892
33http://en.wikipedia.org/w/index.php?title=Alfredo_Corvino&oldid=335208937

38

t C seedt C seedt.
subcategories

Ct Ainitial t
Ainitial t

Ct

Person 15 9,625 9,640 513,821 54.47
Location 15 2,783 2,798 45,000 16.08

Organisation 75 8,033 8,108 140,708 17.35
Miscellaneous 27 4,747 4,774 52,942 11.09

Table 4: Counts of categories and articles for a named entity type t derived from
seed categories. Double classifications are included.

Table 4 shows the results of the creation of Ainitial t starting from C seedt.

We can see that the number of seed categories is not necessarily important to

reach many subcategories: Person and Location have the same count of seed cate-

gories, 15, but Cperson is almost 3.5 times bigger than Clocation and has about 1,500

categories more than Corganisation which started with 75 seed categories. A conclu-

sion would be that persons have a very fine grained categorisation. Cmiscellaneous

remains in between the others with 4,747.

By far the most articles are found for Person. The motivation for this cannot

solely be based on the superior count of Cperson because Corganisation is not that

far behind, though Ainitial organisation is about 3.6 times smaller than Ainitial person.
Ainitial t

Ct
can be seen as the productivity of a category and tells that Cperson is about

5 times more productive than Cmiscellaneous. In other words, most of Wikipedia’s

contributers write articles about named entities of the type Person and categorise

them studiously.

Of the 2,224,472 articles in AH 720,032 are classified in the initialising step,

leaving 1,504,440 in Aunclassified. You might wonder why the numbers in row

“Ainitial t” of table 4 sum up to 752,471 and not 720,032. That is because some

of the articles are found in more than one Ct and end up classified twice or even

more. All of these ambiguous articles are removed and left unclassified in order

to avoid errors because we do not allow multiple types for one entry and cannot

easily decide which one of the assigned types is correct. This step leaves 502,173

entries in Person, 41,539 in Location, 128,433 in Organisation and 47,887 in Mis-

cellaneous. Table 5 presents how many overlapping articles per named entity type

pair occurred.

39

NE type Person Location Organisation Miscellaneous
Person X 768 8,371 2,870

Location 768 X 2,310 544
Organisation 8,371 2,310 X 1984
Miscellaneous 2,870 544 1984 X

Table 5: Combinations of the named entity types. The numbers describe the count
of articles which were assigned to both types.

Most of the double classified articles show up between Person and Organisa-

tion. One reason is that they hold most of the articles. Another one could be that

many people are closely connected to organisations (founders, important employ-

ees . . .) so that they are placed into categories also belonging to the organisation.

For example Bill Gates is in the categories Microsoft history and Bill &

Melinda Gates Foundation people which can be reached from the seed cat-

egories Companies by country or Foundations. But it is not safe to say that

the double categorisations tend to be of type Person for this combination because

this also happens the other way around when an organisation stands for people’s

names. For example Santana (band) is about the band of Carlos Santana and

not the person, although it is placed in the category People associated with

the hippie movement which can be looked up by following the seed category

People by century.

The pair of Person and Location tends to contain people who are associated

with a location, e.g. the city founder Prince Carl of Solms-Braunfels.

Less frequent are locations associated with people like Slaughterbridge, a set-

tlement in north Cornwall. The same tendency seems to apply to the pair with

the second most overlaps, Person and Miscellaneous, where people dealing with

one of the wide topics related to type Miscellaneous are listed for both. Those

may be authors, martyrs, veterans or athletes (cf. the CoNLL guidelines on page

7 to recall the various topics of Miscellaneous).

Articles classified as Organisation and Location often are both: universities,

schools, libraries, prisons, capitals and cities can appear as organisations/govern-

ment bodies, as well as locations. They are disregarded though, because of the

restriction that only one classification is allowed per named entity. The overlap

40

between Location and Miscellaneous seems to contain many book titles that deal

with locations (A Journey to the Center of the Earth, The Restau-

rant at the End of the Universe, . . .) or articles referring to locations

with points of contact to Miscellaneous like Mount Meru (mythology). The

last combination, Organisation and Miscellaneous, does not seem to follow any

pattern.

While articles which were classified to be of three types were not analysed,

two articles stood out as they were found in every named entity type’s collection:

Gakhar Hindus, a “Punjabi community living in India with an ancient recorded

history”34 and Robert Owen, “a social reformer and one of the founders of so-

cialism and the cooperative movement”35. The article about the Gakhars deals

with all topics which allow to classify it by all named entity types. The respective

categories are Indian Family names (Person), Khatri clans (Organisation),

Jhangochi Dialect speaking areas (Location) and Hindu communities36

(Miscellaneous). Robert Owen should only be classified as Person. The categories

allowing him to enter the wrong types eventually are Welsh socialists (Loca-

tion), Founders of utopian communities (Organisations) and Spiritualism

(Miscellaneous).

The bottom line is, that the sorted out articles indicate that the general type

classification is correct, although the categorisation is not always easy. On this

first glance it looks like the approach of following the categories is promising. But

this was just Ainitial t; the next subsection shows the classification of the remaining

collection of unclassified articles.

5.2.3 Classification via bootstrapping

Starting from the 720,032 classified articles in Ainitial t, we use the algorithm as

described in section 5.1.2 (see figure 3 on page 33) to construct a vector ~vt for

every named entity type. Table 6 shows the results. Row “Ainitial t” lists the

initialised articles without the double classified entries (cf. section 5.2.2), the

third row presents the dimensions of the vector which are equal to the count of

34http://en.wikipedia.org/w/index.php?title=Gakhar_Hindus&oldid=330345945
35http://en.wikipedia.org/w/index.php?title=Robert_Owen&oldid=332973163
36Because it is eventually leading to the seed category Spiritual theories via Hinduism

41

unique categories in Ainitial t. Sum(~vt) is the addition of all categories found for

that type, or in other words
n∑
0

~vtn . The numbers support the statement that

persons seem to be classified very fine-grained with an average count of almost

eight categories per article in that class while the articles of other NE types have

between four and five categories on average.

NE type Ainitial t dimensions of ~vt

(unique categories)
sum(~vt)

sum(~vt)
Ainitial t

PER 502,173 132,098 4,037,634 7.86
LOC 41,539 35,880 228,468 5.08
ORG 128,433 72,184 694,523 4.94
MISC 47,887 33,110 229,438 4.33

Table 6: NE type vectors constructed from Ainitial t (without double classifica-
tions).

The vectors enable us to start the bootstrapping with the algorithm of section

5.1.2. It relies on a similarity measure between the initialised vectors and an article.

The latter forms a comparable vector by taking the dimensions of the named entity

type vector and putting the value one at the positions that correspond to the

categories of the article. Other positions are filled with zeros which leaves a binary

article vector. It follows, that we will always compare a binary article vector to a

weighted type vector. That means, that the choice of the similarity measure has

a big influence on the results. Thus, two different similarity measures are used in

two setups to compute the similarity between the type vectors and categories of

an article:

1. Cosine similarity

2. Dice’s coefficient

The cosine similarity between two vectors x and y is defined as follows:

cosine(~x, ~y) =

∑n
k=1 xkyk√∑n

k=1 x
2
k ·

√∑n
k=1 y

2
k

It computes the angle between the two vectors. That means, that only the di-

rections of the vectors are taken into account and not their length. Because no

negative examples exist the resulting similarity ranges between zero and one.

42

Similarities in terms of the Dice’s coefficient is computed like this:

dice(~x, ~y) =
2 ·

∑n
k=1(weightxk · weightyk)∑n

k=1weightxk +
∑n

k=1 weightyk

The Dice’s coefficient includes the count of shared elements in relation to all

elements that are not zero. It considers the weights of the vectors by multiplying

the shared elements37. The factor 2 keeps the result range between zero and one.

Dice’s coefficient was chosen over the similar Jaccard coefficient, because the latter

punishes a small amount of shared non-zero entries which are likely in this scenario.

The described bootstrapping is done for each similarity measure starting from

the initialised type vectors. Ten percent of the unclassified articles with the highest

similarity scores are added to their respective class in every step, which includes

an update of the type vectors before the next step starts. Because only articles

with any categories can be classified by this method, 7,033 articles that are not

placed in a category were removed from the unclassified articles leaving 1,497,407

to be classified.38 Table 7 on page 44 shows the numbers of added articles per class

in every step.

The first row show the runs or steps in the bootstrapping iterations. Rows

two to five show the counts of new classified named entity articles. The highest

amount of added articles is marked boldface in each line. “UNCL“ presents the

number of articles which are left to be classified. It decreases by 10% (=149,740)

of the initially unclassified articles in each iteration. The last row, ”no similarity“,

contains the number of articles where no class was found with a similarity value

greater than zero.

The first bootstrapping step of both similarity measures starts with the classi-

fication of many locations. This indicates that the seed categories missed many of

them, but the introduced vector for that type allows the automatic classification to

fix that problem. Subsequent iterations show that there is no general bias towards

locations which supports this analysis.

37As we multiply with a binary vector we just decide whether to add the value of the non-binary
vector at that position or not.

38The story of this number in short: we started with 2,224,472 unclassified articles found by
the heuristics, removed 720,032 because they were classified in the initialisation which results
in 1,504,440. Minus the 7,033 articles without any categories leaves 1,497,407 articles to be
classified.

43

run PER LOC ORG MISC UNCL no similarity
setup 0 0 0 0 2,217,439 –
initial 502,173 41,539 128,433 47,887 1,497,407 –

Cosine
1 3,999 120,641 23,469 1,631 1,347,667 268,979
2 1,216 11,456 42,997 94,071 1,197,927 138,481
3 1,414 56,725 38,220 53,381 1,048,187 55,302
4 33,664 11,763 39,064 65,249 898,447 40,133
5 50,990 10,690 17,511 70,549 748,707 35,007
6 44,166 24,131 22,569 58,874 598,967 30,329
7 14,924 39,565 33,347 61,904 449,227 26,988
8 4,482 45,417 37,201 62,640 299,487 24,531
9 3,392 38,138 38,711 69,499 149,747 22,322
10 4,057 26,395 38,719 60,913 19,663 19,663

Bootstrap 162,304 384,921 331,808 598,711 – –
Total 664,477 426,460 460,241 646,598 – –
Plus 32% 927% 258% 1250% – –

Dice’s coefficient
1 5,271 137,051 6,406 1,012 1,347,667 268,979
2 17 25 138,578 11,120 1,197,927 154,585
3 1,266 58,780 65,593 24,101 1,048,187 61,319
4 36,595 16,952 56,017 40,176 898,447 40,755
5 67,975 31,508 25,819 24,438 748,707 35,919
6 38,196 56,745 45,219 9,580 598,967 31,076
7 16,166 67,458 54,813 11,303 449,227 28,301
8 8,969 67,890 52,944 19,937 299,487 24,941
9 5,581 65,655 46,860 31,644 149,747 22,337
10 5,751 41,301 56,864 26,323 19,508 19,508

Bootstrap 185,787 543,365 549,113 199,634 – –
Total 687,960 584,904 677,546 247,521 – –
Plus 37% 1,308% 427% 417% – –

Table 7: Bootstrapping with the similarity measures cosine and Dice’s coefficient.
The percentages in the Plus-lines are rounded.

44

Cosine similarity seems to be biased towards Miscellaneous because on average

about 60,000 articles are added to this type per iteration. In eight out of ten times

the lion’s share of the new classified articles is added to it. The reason for that could

be, that cosine similarity depends on the angle between two vectors. That means,

a type vector that shares many categories with an article would be preferred over

a vector sharing less but possibly higher weighted categories. Miscellaneous might

have thematically wide spread categories supporting that effect. Nevertheless,

the bias towards that type can not solely be based on this property, because the

initialised vector is the one with the least dimensions in comparison to the others

(cf. table 6 on page 42).

Bootstrapping using the Dice’s coefficient tends to be biased towards Location

and Organisation, the former showing an overall gain of 1,308 percent39 (543,365

articles). In four of the iterations Organisations wins the majority of new classified

articles, Locations is in advantage in five of the iterations leaving Person one major

gain in the fifth run. Because Dice’s coefficient takes the counts of categories into

account, it is likely that the unclassified articles are placed in some of the categories

that have a high count for Locations and Organisations.

The count of articles added to Person develops remarkably similar for both

measures. They start with few new articles in the first three iterations, rise to

many more additions in steps four, five and six to slow down again in the left

iterations. In both cases eventually Person is the named entity type with the least

added articles (cf. lines “Bootstrap“), but still the biggest count when summing it

up with the initial count (cf. lines ”Total“). No other named entity type shows such

a strong correlation between the two different similarity measures. This indicates

that most of the articles were already classified in the initialisation proving the

seed categories for that type to be of high quality.

The row “no similarity” informs how many of the unclassified articles are not

found similar to any of the named entity type vectors. It develops likewise for

cosine similarity and Dice’s coefficient. The steadily decreasing count proves an

increase of coverage of the type vectors. One would expect a decrease in precision

there as well. The counts of left unclassified articles – 19,663 for cosine and 19,508

39This growth is narrowed a little bit by the fact that it started with the smallest count of
articles (41,539).

45

for Dice – show that there is a collection of articles placed in categories that are

not shared by any of the classified articles. Their slight difference is explained by

different type vectors in iteration nine. These vectors are used for the classification

of articles in iteration ten. Thus, the vectors in the setup with Dice’s coefficient

contain categories of articles that were not yet added to the vectors of iteration

nine in the cosine setup.

In conclusion, both bootstrapping versions are able to classify almost all of the

unclassified named entities, but differ a lot in their results with the exception of

the type Person.

5.3 Evaluation

As mentioned earlier at the beginning of section 5.2 (page 36 ff.), there were

721 randomly chosen instances of HeiNERen manually annotated and set aside

to create an evaluation set. They include 295 instances of type Person, 192 of

Location, 122 of Miscellaneous and 110 articles describing an Organisation. To

measure the quality of the method, we classify the instances in the evaluation set

by computing the similarity between them and the type vectors and assign the

most similar type to the instance just as it would have been in the bootstrapping

process. First, a closer look is taken at the results from the vectors that were

generated by the initialisation step. After that, the bootstrapping is analysed in

the same way.

5.3.1 Initialisation

The result is shown as a confusion matrix for each similarity measures in table

8. The rate of correct classifications varies from 35.25% (Miscellaneous, Dice’s

coefficient) to 81.02% (Person, Dice’s coefficient). It is not surprising that Person

is the best performing named entity type when we remember the earlier statement

that articles of that type are categorised with high detail and that this named

entity type has by far the highest count of instances after the initialisation (cf.

page 39). This is underlined by the fact that almost no instances were classified

incorrectly as a person in the other evaluation sets. Consequently, there is no much

confusion between persons and other named entity types.

46

Eval. set PER LOC ORG MISC UNCL
Cosine

PER (295) 232 (78.64%) 17 (5.76%) 25 (8.47%) 19 (6.44%) 2 (0.68%)
LOC (192) 0 (0%) 116 (60.42%) 21 (10.94%) 14 (7.29%) 41 (21.35%)
ORG (110) 1 (0.91%) 17 (15,45%) 74 (67.27%) 9 (8.18%) 9 (8.18%)
MISC (122) 1 (0.82%) 10 (8.2%) 47 (38.52%) 46 (37.7%) 18 (14.75%)

Dice’s coefficient
PER (295) 239 (81.02%) 18 (6.1%) 23 (7.8%) 13 (4.41%) 2 (0.68%)
LOC (192) 0 (0.0%) 123 (64.06%) 19 (9.9%) 9 (4.69%) 41 (21.35%)
ORG (110) 2 (1.82%) 21 (19.09%) 71 (64.55%) 7 (6.36%) 9 (8.18%)
MISC (122) 4 (3.28%) 12 (9.84%) 45 (36.89%) 43 (35.25%) 18 (14.75%)

Table 8: Confusion matrix for the CoNLL named entity types. Members of evalu-
ation sets for every type were classified by computing similarities to the initialised
named entity type vectors. The overall highest values (cosine and Dice similarity)
are marked as boldface. The numbers in braces show the fraction of the absolute
numbers that are given in the first row.

Considering that 21.35% of the articles were left unclassified, only 18.23% (co-

sine) and 14.59% (Dice) of the locations were explicitly classified wrong. Unclas-

sified articles art those, where none of the instances in the evaluation set Location

had categories that could be found in any of the named entity type vectors. This

could either mean that the seed categories for this type were not chosen broad

enough or that articles of type Location are placed in categories that are wide

spread over Wikipedia’s category graph and cannot be grouped easily. The boot-

strapping results of table 7 on page 44 indicated that the former case is more

likely.

Organisations are classified correctly with a chance of 67.27% (cosine) and

64.55% (Dice) leaving an error rate of 24.55% (cosine) and 27.27% (Dice). Cosine

outperforms the Dice’s coefficient on that class.

The CoNLL definitions of Miscellaneous do not seem to correspond well with

Wikipedia categories. For the evaluation set of type Miscellaneous more instances

were classified as an organisation in both setups. That indicates a high probability

to confuse members of Miscellaneous with Location which is not that surprising,

recalling that the definition of this type is “words of which one part is a location,

organisation, miscellaneous or person”. Further investigation would be necessary

to judge whether type overlaps are just caused by incorrect classifications or if the

47

articles really do belong to that class and maybe should be allowed to be classified

as both Miscellaneous and Location. Remember the example of books dealing with

places like “The Restaurant at the End of the Universe“, which could

benefit from a double classification because depending on the context it may serve

as the one or the other.

The results of the initialisation step show that the MUC named entity types can

be classified with this approach reasonably well with 60.42% (Location, cosine) as

lower and 81.02% (Person, Dice) as an upper bound. This does not work out as well

for Miscellaneous, but still the lower bound of 35.25% (Dice) beats a baseline with

randomly assigned types that would result in 25% correct classifications. Thus,

the initially constructed type vectors are useful for NEC of Wikipedia articles. At

this time it is not possible to say which of the similarity measures returns better

results.

5.3.2 Bootstrapping

The quality of the bootstrapping method is evaluated similar to the initialisation.

The members of every annotated set of named entity types were classified by their

similarity to the type vectors of every bootstrapping step. The results adapt to

the learned vectors and show if the general development of them leads towards

the right direction. For every named entity type the following pages present tables

with the results for both similarity measures.

Table 9 (page 49) presents the first type Person. For cosine similarity we can

observe a steady decrease of correct classification from former 78.64% to 73.22%

in the last run. Location and Organisation undergo only small variations after the

4th iteration. From that iteration, no article is left unclassified any more, but the

number of articles incorrectly labelled as Miscellaneous increases and grows about

ten percent. Dice’s coefficient seems to be more robust and although its number of

correctly classified articles decreases, too, the variation is less than three percent.

Location and Miscellaneous do not change significantly, but we can see that the

Dice measure prefers Organisation which gains 6% compared to the initial vector.

Still, the resulting 78.31% of correct classifications with Dice’s coefficient are close

to the initial 78.64% using cosine similarity.

48

Run Person Location Organisation Miscellaneous Unclassified
Cosine

initial 232 (78.64%) 17 (5.76%) 25 (8.47%) 19 (6.44%) 2 (0.68%)
1 232 (78.64%) 1 (0.34%) 24 (8.14%) 36 (12.2%) 2 (0.68%)
2 233 (78.98%) 10 (3.39%) 27 (9.15%) 23 (7.8%) 2 (0.68%)
3 216 (73.22%) 9 (3.05%) 23 (7.8%) 46 (15.59%) 1 (0.34%)
4 227 (76.95%) 10 (3.39%) 19 (6.44%) 39 (13.22%) 0 (0.0%)
5 222 (75.25%) 10 (3.39%) 20 (6.78%) 43 (14.58%) 0 (0.0%)
6 222 (75.25%) 10 (3.39%) 21 (7.12%) 42 (14.24%) 0 (0.0%)
7 220 (74.58%) 10 (3.39%) 20 (6.78%) 45 (15.25%) 0 (0.0%)
8 216 (73.22%) 10 (3.39%) 20 (6.78%) 49 (16.61%) 0 (0.0%)
9 216 (73.22%) 10 (3.39%) 19 (6.44%) 50 (16.95%) 0 (0.0%)
10 216 (73.22%) 10 (3.39%) 19 (6.44%) 50 (16.95%) 0 (0.0%)

Dice’s coefficient
initial 239 (81.02%) 18 (6.1%) 23 (7.8%) 13 (4.41%) 2 (0.68%)

1 239 (81.02%) 14 (4.75%) 37 (12.54%) 3 (1.02%) 2 (0.68%)
2 233 (78.98%) 10 (3.39%) 46 (15.59%) 5 (1.69%) 1 (0.34%)
3 234 (79.32%) 10 (3.39%) 43 (14.58%) 7 (2.37%) 1 (0.34%)
4 235 (79.66%) 14 (4.75%) 40 (13.56%) 6 (2.03%) 0 (0.0%)
5 230 (77.97%) 16 (5.42%) 42 (14.24%) 7 (2.37%) 0 (0.0%)
6 232 (78.64%) 16 (5.42%) 40 (13.56%) 7 (2.37%) 0 (0.0%)
7 232 (78.64%) 15 (5.08%) 41 (13.9%) 7 (2.37%) 0 (0.0%)
8 232 (78.64%) 15 (5.08%) 40 (13.56%) 8 (2.71%) 0 (0.0%)
9 232 (78.64%) 15 (5.08%) 40 (13.56%) 8 (2.71%) 0 (0.0%)
10 231 (78.31%) 15 (5.08%) 40 (13.56%) 9 (3.05%) 0 (0.0%)

Table 9: Similarities created from annotated persons.

49

Run Person Location Organisation Miscellaneous Unclassified
Cosine

initial 0 (0.0%) 116 (60.42%) 21 (10.94%) 14 (7.29%) 41 (21.35%)
1 0 (0.0%) 105 (54.69%) 22 (11.46%) 54 (28.13%) 11 (5.73%)
2 0 (0.0%) 100 (52.08%) 21 (10.94%) 66 (34.38%) 5 (2.6%)
3 0 (0.0%) 101 (52.6%) 18 (9.38%) 69 (35.94%) 4 (2.08%)
4 0 (0.0%) 96 (50.0%) 20 (10.42%) 73 (38.02%) 3 (1.56%)
5 0 (0.0%) 95 (49.48%) 20 (10.42%) 75 (39.06%) 2 (1.04%)
6 0 (0.0%) 93 (48.44%) 19 (9.9%) 78 (40.63%) 2 (1.04%)
7 0 (0.0%) 94 (48.96%) 20 (10.42%) 76 (39.58%) 2 (1.04%)
8 0 (0.0%) 96 (50.0%) 17 (8.85%) 77 (40.1%) 2 (1.04%)
9 0 (0.0%) 97 (50.52%) 18 (9.38%) 75 (39.06%) 2 (1.04%)
10 0 (0.0%) 96 (50.0%) 19 (9.9%) 75 (39.06%) 2 (1.04%)

Dice’s coefficient
initial 0 (0.0%) 123 (64.06%) 19 (9.9%) 9 (4.69%) 41 (21.35%)

1 0 (0.0%) 147 (76.56%) 26 (13.54%) 7 (3.65%) 12 (6.25%)
2 0 (0.0%) 121 (63.02%) 53 (27.6%) 13 (6.77%) 5 (2.6%)
3 0 (0.0%) 126 (65.63%) 46 (23.96%) 16 (8.33%) 4 (2.08%)
4 0 (0.0%) 123 (64.06%) 47 (24.48%) 19 (9.9%) 3 (1.56%)
5 0 (0.0%) 121 (63.02%) 48 (25.0%) 21 (10.94%) 2 (1.04%)
6 0 (0.0%) 123 (64.06%) 44 (22.92%) 23 (11.98%) 2 (1.04%)
7 0 (0.0%) 124 (64.58%) 39 (20.31%) 27 (14.06%) 2 (1.04%)
8 0 (0.0%) 126 (65.63%) 37 (19.27%) 27 (14.06%) 2 (1.04%)
9 0 (0.0%) 128 (66.67%) 35 (18.23%) 27 (14.06%) 2 (1.04%)
10 0 (0.0%) 128 (66.67%) 35 (18.23%) 27 (14.06%) 2 (1.04%)

Table 10: Similarities created from annotated locations.

50

Classification results for Location can be found in table 10 (page 50). For both

kinds of similarity computing, not one run misclassified an instance as a person.

With 21.35% this evaluation set has by far the most unclassified articles after

the initialisation step. Their count drop down to ∼6% after the first run which is

caused by the classification of many locations as described in section 5.2.3 (page 43

ff.). This indicates, that those classifications were correct and increase the quality

of the results. Another indicator is that this happens for both similarity values.

However, the increase of coverage showed by decreasing counts of unclassified

articles in every run is shared by all valuation sets. This was what both similarities

have in common. They differ remarkably in the correct classification of Location:

Cosine’s performance is getting worse from the initialisation to the last run with

a decline of 10% in correct classifications while Dice’s coefficient improves ∼ 2.6%

to result in 66.67% in the tenth iteration. Its maximum is 76.56% in the first run.

Cosine seems to suffer from its bias towards Miscellaneous in this evaluation set.

Dice’s coefficient shows high variation on classifying the locations incorrectly as

Organisation in a range from ∼10% to 27.6%.

The next evaluation is done for Organisation. Table 12 (page 53) shows the

results. Again we can see that the confusion with a person is not likely in both

setups. Similar to Location, cosine performance decreases with more iterations

while Dice’s performance raises 10%. In the end, Dice’s coefficient outperforms

cosine similarity by significant ∼14%. Looking at the other types cosine still

favours Miscellaneous, while Dice most likely confuses Location with Organisation.

51

Run Person Location Organisation Miscellaneous Unclassified
Cosine

initial 1 (0.91%) 17 (15.45%) 74 (67.27%) 9 (8.18%) 9 (8.18%)
1 1 (0.91%) 9 (8.18%) 71 (64.55%) 24 (21.82%) 5 (4.55%)
2 2 (1.82%) 11 (10.0%) 66 (60.0%) 29 (26.36%) 2 (1.82%)
3 1 (0.91%) 13 (11.82%) 68 (61.82%) 27 (24.55%) 1 (0.91%)
4 1 (0.91%) 13 (11.82%) 69 (62.73%) 26 (23.64%) 1 (0.91%)
5 1 (0.91%) 14 (12.73%) 67 (60.91%) 27 (24.55%) 1 (0.91%)
6 1 (0.91%) 13 (11.82%) 67 (60.91%) 28 (25.45%) 1 (0.91%)
7 1 (0.91%) 13 (11.82%) 67 (60.91%) 28 (25.45%) 1 (0.91%)
8 1 (0.91%) 14 (12.73%) 66 (60.0%) 28 (25.45%) 1 (0.91%)
9 1 (0.91%) 14 (12.73%) 67 (60.91%) 27 (24.55%) 1 (0.91%)
10 1 (0.91%) 14 (12.73%) 67 (60.91%) 27 (24.55%) 1 (0.91%)

Dice’s coefficient
initial 2 (1.82%) 21 (19.09%) 71 (64.55%) 7 (6.36%) 9 (8.18%)

1 3 (2.73%) 15 (13.64%) 78 (70.91%) 7 (6.36%) 7 (6.36%)
2 1 (0.91%) 13 (11.82%) 87 (79.09%) 7 (6.36%) 2 (1.82%)
3 2 (1.82%) 20 (18.18%) 84 (76.36%) 3 (2.73%) 1 (0.91%)
4 1 (0.91%) 24 (21.82%) 81 (73.64%) 3 (2.73%) 1 (0.91%)
5 1 (0.91%) 22 (20.0%) 82 (74.55%) 4 (3.64%) 1 (0.91%)
6 1 (0.91%) 21 (19.09%) 83 (75.45%) 4 (3.64%) 1 (0.91%)
7 1 (0.91%) 21 (19.09%) 83 (75.45%) 4 (3.64%) 1 (0.91%)
8 1 (0.91%) 21 (19.09%) 83 (75.45%) 4 (3.64%) 1 (0.91%)
9 1 (0.91%) 22 (20.0%) 82 (74.55%) 4 (3.64%) 1 (0.91%)
10 1 (0.91%) 22 (20.0%) 82 (74.55%) 4 (3.64%) 1 (0.91%)

Table 11: Similarities created from annotated organisations.

52

Run Person Location Organisation Miscellaneous Unclassified
Cosine

initial 1 (0.82%) 10 (8.2%) 47 (38.52%) 46 (37.7%) 18 (14.75%)
1 1 (0.82%) 3 (2.46%) 35 (28.69%) 70 (57.38%) 13 (10.66%)
2 0 (0.0%) 8 (6.56%) 28 (22.95%) 78 (63.93%) 8 (6.56%)
3 0 (0.0%) 9 (7.38%) 29 (23.77%) 78 (63.93%) 6 (4.92%)
4 0 (0.0%) 9 (7.38%) 36 (29.51%) 72 (59.02%) 5 (4.1%)
5 0 (0.0%) 9 (7.38%) 37 (30.33%) 72 (59.02%) 4 (3.28%)
6 0 (0.0%) 9 (7.38%) 36 (29.51%) 75 (61.48%) 2 (1.64%)
7 0 (0.0%) 9 (7.38%) 36 (29.51%) 75 (61.48%) 2 (1.64%)
8 0 (0.0%) 9 (7.38%) 35 (28.69%) 76 (62.3%) 2 (1.64%)
9 0 (0.0%) 9 (7.38%) 36 (29.51%) 75 (61.48%) 2 (1.64%)
10 0 (0.0%) 9 (7.38%) 36 (29.51%) 75 (61.48%) 2 (1.64%)

Dice’s coefficient
initial 4 (3.28%) 12 (9.84%) 45 (36.89%) 43 (35.25%) 18 (14.75%)

1 4 (3.28%) 11 (9.02%) 44 (36.07%) 48 (39.34%) 15 (12.3%)
2 0 (0.0%) 10 (8.2%) 73 (59.84%) 32 (26.23%) 7 (5.74%)
3 0 (0.0%) 25 (20.49%) 53 (43.44%) 38 (31.15%) 6 (4.92%)
4 0 (0.0%) 28 (22.95%) 50 (40.98%) 39 (31.97%) 5 (4.1%)
5 0 (0.0%) 25 (20.49%) 53 (43.44%) 41 (33.61%) 3 (2.46%)
6 0 (0.0%) 26 (21.31%) 50 (40.98%) 43 (35.25%) 3 (2.46%)
7 0 (0.0%) 22 (18.03%) 53 (43.44%) 45 (36.89%) 2 (1.64%)
8 0 (0.0%) 21 (17.21%) 52 (42.62%) 47 (38.52%) 2 (1.64%)
9 0 (0.0%) 21 (17.21%) 52 (42.62%) 47 (38.52%) 2 (1.64%)
10 0 (0.0%) 21 (17.21%) 50 (40.98%) 49 (40.16%) 2 (1.64%)

Table 12: Similarities created from annotated miscellaneous.

53

The last evaluation set, Miscellaneous, is presented in table 12 (page 53). It

has in common with Location and Organisation that its almost never confused

with Person independent of the similarity measure. The tendency of cosine sim-

ilarity to classify more candidates as Miscellaneous in every iteration increases

its performance in the evaluation to 61.48%. An interesting fact is that the best

result of 63.93% is already reached in run two and three. It decreases after that

which is remarkable because the majority of articles were added to Miscellaneous

in iterations four to ten. They do not seem to increase the quality of the category

vector. Dice’s coefficient improves its performance by ∼5% from the initialisation

to the tenth bootstrapping step. Still, it classifies more articles incorrect than

correct choosing Organisation with a chance of 40.98%.

Finally, the best results after bootstrapping are:

• Person: Dice 78.31% (cosine 73.22%)

• Location: Dice 66.67% (cosine: 50%)

• Organisation: Dice 74.55% (cosine: 60.91%)

• Miscellaneous : Cosine 61.48% (Dice: 40.16%)

In conclusion, Dice coefficient performs better than cosine similarity for three

out of four named entity types, which implies that taking statistical evidence into

account improves the performance of the classification. The numbers indicate that

cosine similarity, which ignores the number of occurrences of a category, beats Dice

coefficient at the classification of Miscellaneous because it is biased.

6 Conclusion and Outlook

In the presented magister thesis we have shown a method to classify more than

two million named entities in the multilingual lexical resource HeiNER (Wentland

et al., 2008) in two steps, adhering tho the CoNLL definition of named entities

(Sang, 2002; Sang and Meulder, 2003). First, we initialised 700,032 classified

named entities utilising the category system of Wikipedia starting with a set of

132 manually annotated seed categories. Second, the categories of these classified

54

articles were used to create named entity type vectors to classify yet unlabelled

articles by computing the similarities between the vectors and unclassified arti-

cles’ categories. This was done via bootstrapping in two setups that work with

different similarity measures, cosine similarity and Dice’s coefficient. The results

were evaluated on manually annotated data for both similarity scores. It was

shown that the type vectors created from the initialisation step easily outperform

a random baseline and that the method is suited well for the named entity types

used in MUC-6 (Grishman and Sundheim, 1996) but that the additional CoNLL

class Miscellaneous shows a gap in quality because it is harder to map the latter

to Wikipedia categories. The evaluation of bootstrapping iterations reveals that

Dice’s coefficient is a better similarity measure than cosine for this particular task.

This can be attributed to its property of taking the weights of the vectors’ values

into account in contrast to cosine’s property of only observing the angle between

two vectors ignoring their lengths. After all, two lists of named entities were cre-

ated for each of the types Person, Location, Organisation and Miscellaneous, one

by cosine and one by Dice similarity.

Additionally we presented mwdb, a new API for Wikipedia written in Python.

It provides access to Mediawiki databases in an object oriented way and supports

multilingual methods with a comprehensive interface. The aforementioned meth-

ods were implemented using mwdb.

Thinking about future work, the quality of the entities could be evaluated

externally by applying them in a NERC setup. For example the lists should be

useful as a gazetteer feature as it was used by Kozareva (2006) (cf. page 15 ff.).

Keeping in mind that HeiNER contains the translations of its named entities, it

is easy to generate the gazetteers for other languages as well. By that, maybe it

is possible to introduce the gazetteer feature to languages where no comparable

resource was available before. The same applies for training data: as HeiNER

tracks many contexts per named entity, they can be used as training data for

language independent NER systems. This would probably not produce perfect

results; still it is an option to get started in a resource poor language with one of

the learners presented in section 3.

Also, it would be interesting to investigate the category vectors in detail and

show, for example, which categories are the best indicators for which class. The

55

vectors may be used as features as well. E. g. a NER system could look up

candidates it has to classify in Wikipedia and compute the similarities to the

introduced type vectors. Including the results in the system’s feature vector could

improve its classification performance.

Because the method to create the initial classified articles only relies on a set

of seed categories in Wikipedia it can be applied to fine grained classification of

articles with a modicum of effort.

Another interesting option would be to enhance other resources like Wordnet

(Fellbaum, 1998), Cyc (Lenat, 1995) or the Wikipedia Taxonomy by Ponzetto and

Strube (2007) with the classified instances from HeiNER.

56

References

E. Alfonseca and S. Manandhar. An unsupervised method for general named

entity recognition and automated concept discovery. In Proceedings of the 1st

International Conference on General WordNet, Mysore, India, 2002.

Oliver Bender, Franz Josef Och, and Hermann Ney. Maximum entropy models for

named entity recognition. In Proceedings of the seventh conference on Natural

language learning at HLT-NAACL 2003, pages 148–151, Morristown, NJ, USA,

2003. Association for Computational Linguistics.

A.L. Berger, V.J.D. Pietra, and S.A.D. Pietra. A maximum entropy approach to

natural language processing. Computational linguistics, 22(1):71, 1996.

E. Bick. A named entity recognizer for Danish. In Proc. of 4th International Conf.

on Language Resources and Evaluation, pages 305–308, 2004.

D.M. Bikel, S. Miller, R. Schwartz, and R. Weischedel. Nymble: a high-

performance learning name-finder. In Proceedings of the fifth conference on

Applied natural language processing, pages 194–201. Association for Computa-

tional Linguistics Morristown, NJ, USA, 1997.

Razvan Bunescu and Marius Paşca. Using encyclopedic knowledge for named

entity disambiguation. In Proceedings of the 11th Conference of the European

Chapter of the Association for Computational Linguistics (EACL-06), Trento,

Italy, pages 9–16, April 2006.

Davide Buscaldi and Paolo Rosso. Mining knowledge from wikipedia for the ques-

tion answering task. In European Language Resources Association (ELRA),

editor, Proceedings of the Fifth International Language Resources and Evalua-

tion Conference(LREC’06), may 2006.

X. Carreras, L. Marquez, and L. Padro. Named entity extraction using AdaBoost.

In Proceedings of the 6th conference on Natural language learning-Volume 20,

page 4. Association for Computational Linguistics, 2002.

57

Nancy A. Chinchor. Overview of muc-7/met-2. In Message Understanding Confer-

ence Proceedings MUC-7, 1999. URL http://www.itl.nist.gov/iad/894.02/

related_projects/muc/proceedings/muc_7_proceedings/overview.html.

M. Collins and Y. Singer. Unsupervised models for named entity classification. In

Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural

Language Processing and Very Large Corpora, pages 189–196, 1999.

Pascal Denis. New Learning Models for Robust Reference Resolution. PhD thesis,

University of Texas at Austin, 2007.

G. Doddington, A. Mitchell, M. Przybocki, L. Ramshaw, S. Strassel, and

R. Weischedel. The Automatic Content Extraction (ACE) Program–Tasks,

Data, and Evaluation. Proceedings of LREC 2004, pages 837–840, 2004.

Richard Evans. A Framework for Named Entity Recognition in the Open Domain.

pages 137–144, 2003.

Christiane Fellbaum. WordNet: An Electronic Lexical Database (Language,

Speech, and Communication). The MIT Press, May 1998.

J.R. Finkel, T. Grenager, and C. Manning. Incorporating non-local information

into information extraction systems by gibbs sampling. Ann Arbor, 100, 2005.

Michael Fleischman. Automated subcategorization of named entities. In ACL

(Companion Volume), pages 25–30, 2001.

Michael Fleischman and Eduard Hovy. Fine grained classification of named en-

tities. In Proceedings of the 19th international conference on Computational

linguistics, pages 1–7, Morristown, NJ, USA, 2002. Association for Computa-

tional Linguistics.

R. Florian, A. Ittycheriah, H. Jing, and T. Zhang. Named entity recognition

through classifier combination. In Proceedings of CoNLL-2003, volume 58, 2003.

Ralph Grishman and Beth Sundheim. Message understanding confer-

ence: A brief history. In Proceedings of the 16th International Con-

58

ference on Computational Linguistics (COLING), pages 466–471, 1996.

http://acl.ldc.upenn.edu/C/C96/C96-1079.pdf.

M.A. Hearst. Automatic acquisition of hyponyms from large text corpora. In

Proceedings of the 14th conference on Computational linguistics-Volume 2, pages

539–545. Association for Computational Linguistics Morristown, NJ, USA, 1992.

Z. Kozareva. Bootstrapping named entity recognition with automatically gener-

ated gazetteer lists. In Proceedings of the Eleventh Conference of the European

Chapter of the Association for Computational Linguistics: Student Research

Workshop, pages 15–21. Association for Computational Linguistics, 2006.

Saul Kripke. Naming and necessity. In Donald Davidson and Gilbert Harman,

editors, Semantics of Natural Language, pages 253–355. Reidel, Dordrecht, 1972.

Reprinted as Kripke (1980).

Saul Kripke. Naming and Necessity. Harvard University Press, Cambridge, MA,

1980.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random

fields: Probabilistic models for segmenting and labeling sequence data. In In-

ternational Conference on Machine Learning (ICML), 2001.

Seungwoo Lee and Gary Geunbae Lee. Heuristic methods for reducing errors of

geographic named entities learned by bootstrapping. In Second International

Joint Conference on Natural Language Processing, 2005. URL http://aclweb.

org/anthology/I/I05/I05-1058.pdf.

Douglas B. Lenat. Cyc: a large-scale investment in knowledge infrastructure.

Commun. ACM, 38(11):33–38, 1995.

Lucian Vlad Lita, Warren A. Hunt, and Eric Nyberg. Resource analysis for

question answering. In The Companion Volume to the Proceedings of 42st An-

nual Meeting of the Association for Computational Linguistics, pages 162–165,

Barcelona, Spain, July 2004. Association for Computational Linguistics.

C.D. Manning and H. Schütze. Foundations of statistical natural language pro-

cessing. MIT Press, 2002.

59

J. Mayfield, P. McNamee, and C. Piatko. Named entity recognition using hundreds

of thousands of features. In Proceedings of the seventh conference on Natural

language learning at HLT-NAACL 2003-Volume 4, page 187. Association for

Computational Linguistics, 2003.

Andrew McCallum and Wei Li. Early results for named entity recognition with

conditional random fields, feature induction and web-enhanced lexicons. In

Seventh Conference on Natural Language Learning (CoNLL), 2003.

O. Medelyan and C. Legg. Integrating Cyc and Wikipedia: Folksonomy meets

rigorously defined common-sense. In Proceedings of the WIKI-AI: Wikipedia

and AI Workshop at the AAAI, volume 8, 2008.

R. Merchant, M.E. Okurowski, and N. Chinchor. The multilingual entity task

(MET) overview. In Proceedings of a workshop on held at Vienna, Virginia:

May 6-8, 1996, page 447. Association for Computational Linguistics, 1996.

Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

David Nadeau and Satoshi Sekine. A survey of named entity recognition and

classification. Linguisticae Investigationes, 30(1):3–26, January 2007.

Simone Paolo Ponzetto and Michael Strube. Deriving a large scale taxonomy from

Wikipedia. In Proceedings of the 22nd National Conference on the Advancement

of Artificial Intelligence (AAAI-07), pages 1440–1447, July 2007. URL http:

//www.cl.uni-heidelberg.de/~ponzetto/pubs/ponzetto07b.pdf.

J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 1993.

Lisa Rau. Extracting company names from text. In Seventh IEEE Conference on

Artificial Intelligence Applications, 1991. Proceedings., volume 1, 1991.

M. Ruiz-Casado, E. Alfonseca, and P. Castells. Automatic Assignment of

Wikipedia Encyclopedic Entries to WordNet Synsets. In Advances in web intel-

ligence: Third International Atlantic Web Intelligence Conference, AWIC 2005,

Lodz, Poland, June 6-9, 2005: proceedings, page 380. Springer-Verlag New York

Inc, 2005.

60

Erik F. Tjong Kim Sang. Introduction to the CoNLL-2002 shared task: Language-

independent named entity recognition. In Proceedings of Conference on Natural

Language Learning, 2002.

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003

Shared Task: Language-independent Named Entity Recognition. In Proceedings

of the 7th Conference on Natural language Learning at HLT-NAACL 2003, pages

142–147, Morristown, NJ, USA, 2003.

Satoshi Sekine and H. Isahara. IREX: IR and IE Evaluation project in Japanese.

2000.

D. Shen, J. Zhang, G. Zhou, J. Su, and C.L. Tan. Effective adaptation of a hidden

markov model-based named entity recognizer for biomedical domain. In Proceed-

ings of the ACL 2003 workshop on Natural language processing in biomedicine-

Volume 13, page 56. Association for Computational Linguistics, 2003.

Y. Shinyama and S. Sekine. Named entity discovery using comparable news arti-

cles. In Proc. the International Conference on Computational Linguistics (COL-

ING), pages 848–853, 2004.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of

semantic knowledge. In WWW ’07: Proceedings of the 16th international con-

ference on World Wide Web, pages 697–706, New York, NY, USA, 2007. ACM.

ISBN 978-1-59593-654-7.

G. Szarvas, R. Farkas, A. Kocsor, et al. A multilingual named entity recognition

system using boosting and c4. 5 decision tree learning algorithms. Lecture Notes

in Computer Science, 4265:267, 2006.

Christof Müller Torsten Zesch and Iryna Gurevych. Extracting lexical se-

mantic knowledge from wikipedia and wiktionary. In Proceedings of the

Sixth International Language Resources and Evaluation (LREC’08). Euro-

pean Language Resources Association (ELRA), may 2008. http://www.lrec-

conf.org/proceedings/lrec2008/.

61

Wolodja Wentland, Johannes Knopp, Carina Silberer, and Matthias Hartung.

Building a multilingual lexical resource for named entity disambiguation, trans-

lation and transliteration. In European Language Resources Association

(ELRA), editor, Proceedings of the Sixth International Language Resources and

Evaluation (LREC’08), Marrakech, Morocco, may 2008.

I.H. Witten, Z. Bray, M. Mahoui, and W.J. Teahan. Using language models for

generic entity extraction. In Proceedings of the ICML Workshop on Text Mining,

1999.

62

Appendix

A Seed Categories

The seed categories sorted by their named entity type.

A.1 Persons

People by association

People by behaviour

People by century

People by ethnicity

People by gender

People by language

People by medical or psychological condition

People by nationality

People by occupation

People by place

People by political orientation

People by religion

People by status

Human names

Fictional characters

A.2 Locations

Settlements

Regions

Fictional locations

Astronomical objects

Country subdivisions

Landmarks

Mythological places

63

Place names

Paranormal places

Places with restrictions on photography

Protected Areas

Religious places

Rocket Launc sites

Waystations

Buildings and structures

A.3 Organisations

Companies by affiliation

Companies by city

Companies by continent

Companies by country

Companies by industry

Companies by stock exchange

Companies by type

Companies by year of establishment

Corporate subsidiaries by company

Fictional companies

Defunct companies

Private equity portfolio companies

Re-established companies

Royal Warrant

Organizations by activity

Organizations by establishing entity

Organizations by location

Organizations by membership

Collectives

Cooperatives

Foundations

64

Legal entities

Illegal organizations

Mutual organizations

Non-governmental organizations

Non-profit organizations

Defunct organizations

Proposed organizations

Organizations by subject

Organizations by type

Organizations by year of disestablishment

Organizations by year of establishment

Nobel laureates that are organizations

Communities

Brands

Magazines by country

Magazines by interest

Magazines by language

Magazines by owner

Magazines by publication frequency

Magazines by year of establishment

Defunct magazines

Advertising-free magazines

Alternative magazines

African magazines

Downloadable magazines

Free magazines

Independent magazines

Online magazines

Professional and trade magazines

Propaganda newspapers and magazines

65

Zines

Musical groups by genre

Musical groups by nationality

Musical groups by numbers

Musical groups by time period

Musical groups by year of disestablishment

Musical groups by year of establishment

Musical groups by year of reestablishment

Bands with fictional stage personas

Boy bands

Military bands

Animated musical groups

Child musical groups

Choirs

Family musical groups

Fictional musical groups

Women’s musical groups

Musical groups founded by married couples

Supergroups

Musical collectives

Opera companies

Vocal ensembles

Schools

Universities and colleges

A.4 Miscellaneous

Spiritual theories

Ethical theories

Epistemological theories

Economic ideologies

66

Constructed languages

Ancient languages

Languages by country

Languages by geographical region

Organized events

Events by location

Fictional events

Future events

Current events

Recurring events

Social events

Incidents

Wars by continent

Fictional wars

Sports competitions by sport

Books by author

Books by country

Books by year

Upcoming books

Slogans

Automobile models

Motorcycles by brand

Aircraft by type

67

