
G-Hybrid Knowledge Bases

Stijn Heymans1, Livia Predoiu1, Cristina Feier1, Jos de Bruijn1, and Davy Van
Nieuwenborgh2⋆

1 Digital Enterprise Research Institute (DERI)
University of Innsbruck, Austria

{stijn.heymans,livia.predoiu,cristina.feier,jos.debruijn}@deri.org
2 Dept. of Computer Science

Vrije Universiteit Brussel, VUB
Pleinlaan 2, B1050 Brussels, Belgium

dvnieuwe@vub.ac.be

Abstract. Recently, there has been a lot of interest in the integrationof De-
scription Logics and rules on the Semantic Web. We defineg-hybrid knowledge
basesas knowledge bases that consist of a Description Logic knowledge base
and aguardedlogic program, similarly to theDL+log knowledge bases from
[24]. G-hybrid knowledge bases enable an integration of Description Logics and
Logic Programming where, unlike in other approaches, variables in the rules of
a guarded program do not need to appear in positive non-DL atoms of the body:
DL atoms can act asguardsas well. Decidability of satisfiability checking of
g-hybrid knowledge bases is shown for the particular DLDLRO−{≤}, which
is close to, and in some respects more expressive than, OWL DL, by a reduc-
tion to guarded programs under an open answer set semantics.Moreover, we
show 2-EXPTIME-completeness for satisfiability checking of thoseDLRO−{≤}

g-hybrid knowledge bases. Finally, we discuss advantages and disadvantages of
our approach compared withDL+log knowledge bases.

1 Introduction

There has been a lot of attention recently in the integrationof Description Logics with
rules for the Semantic Web [23, 24, 6, 22, 16]. R-hybrid knowledge bases [23], and the
extensionDL+log [24], is an elegant formalism based on combined models for De-
scription Logic knowledge bases and nonmonotonic logic programs. We propose a
variant of r-hybrid knowledge bases, calledg-hybrid knowledge bases, which do not
require standard names or a safeness restriction on rules. We show several computa-
tional properties by a reduction to guarded open answer set programming [13].

Open answer set programming (OASP) [14, 13] combines the logic programming
and first-order logic paradigms. From the logic programmingparadigm it inherits a
rule-based presentation and a nonmonotonic semantics by means of negation as failure.

⋆ The first four authors were partially supported by the European Commission under projects
Knowledge Web (IST-2004-507482) and DIP (FP6-507483) and by the FIT-IT under the
projectRW2 (FIT-IT 809250). The last author was supported by the Flemish Fund for Sci-
entific Research (FWO-Vlaanderen).

In contrast with usual logic programming semantics, see, e.g., the answer set semantics
[8], OASP allows for domains consisting of other objects than those present in the logic
program at hand. Such open domains are inspired by first-order logic based languages
such as Description Logics (DLs) [2] and make OASP a viable candidate for conceptual
reasoning. Due to its rule-based presentation and its support for nonmonotonic reason-
ing and open domains, OASP can be used to reason with both rule-based and conceptual
knowledge on the Semantic Web, as illustrated in [14].

The main challenge for OASP is to control undecidability of satisfiability checking,
a challenge it shares with DL-based languages. In [13], a decidable class of programs is
identified, so-calledguarded programs, for which decidability of satisfiability checking
is obtained by a translation to guarded fixed point logic [10]. In [12], we show the
expressiveness of such guarded programs by simulating a DL with n-ary roles and
nominals. In particular, we extend the DLDLR [4] with bothconcept nominals{o} and
role nominals{(o1, . . . , on)}, resulting inDLRO. The DLDLRO with the number
restrictions left out yieldsDLRO−{≤} and we show in [13] a reduction of satisfiability
of concept expressions w.r.t.DLRO−{≤} knowledge bases to guarded programs.

G-hybrid knowledge bases consist of Description Logic knowledge base and a
guarded program. TheDL+log knowledge bases from [24] areweakly safe, i.e., the
interaction between the program and the DL knowledge base islimited by imposing
that head variables should appear in atoms that cannot be DL atoms (i.e., concepts or
roles in the knowledge base). However, in g-hybrid knowledge bases such a restriction
does not hold; variables should appear in aguard of the rule but this guard can be a
DL atom as well. We show decidability of g-hybrid knowledge bases forDLRO−{≤}

DL knowledge bases by a reduction to guarded programs only, as well as provide a 2-
EXPTIME complexity characterization of such g-hybrid knowledge bases.DLRO−{≤}

includes a large fragment ofSHOIN , the Description Logic underlying OWL DL
[15]. Compared withSHOIN ,DLRO−{≤} does not include transitive roles and num-
ber restrictions, but does includen-ary roles and complex role expressions.

The remainder of the paper starts with an introduction to open answer set program-
ming and Description Logics in Subsections 2.1 and 2.2. Section 3 defines g-hybrid
knowledge bases, translates them to guarded programs when theDLRO−{≤} DL is
considered, and provides a complexity characterization for satisfiability checking of
these particular g-hybrid knowledge bases. In Section 4, wediscuss the relation of g-
hybrid knowledge bases withDL+log and point to other related work. We conclude
and give directions for further research in Section 5.

2 Preliminary Definitions: Open Answer Set Programming and
Description Logics

In this section, we introduce Open Answer Set Programming and the Description Logic
DLRO−{≤}.

2.1 Decidable Open Answer Set Programming

We introduce the open answer set semantics from [13], modified as in [12] such that it
does not take on a unique name assumption for constants by default. Constants, vari-

ables, terms, andatomsare defined as usual. Aliteral is an atomp(t) or a naf-atom
not p(t).3 Thepositive partof a set of literalsα is α+ = {p(t) | p(t) ∈ α} and theneg-
ative partof α is α− = {p(t) | not p(t) ∈ α}. We assume the existence of binary pred-
icates= and 6=, wheret = s is considered as an atom andt 6= s asnot t = s. E.g., for
α = {X 6= Y, Y = Z}, we haveα+ = {Y = Z} andα− = {X = Y }. A regularatom
is an atom that is not an equality atom. For a setA of atoms,not A = {not l | l ∈ A}.

A program is a countable set of rulesα ← β, whereα andβ are finite sets of
literals, |α+| ≤ 1 (but α− may be of arbitrary size) , and∀t, s · t = s 6∈ α+, i.e.,α
contains at most one positive atom and this atom cannot be an equality atom.4 The set
α is theheadof the rule and represents a disjunction of literals, whileβ is called the
bodyand represents a conjunction of literals. Ifα = ∅, the rule is called aconstraint.
Free rulesare rules of the formq(t) ∨ not q(t) ← for a tuplet of terms; they enable
a choice for the inclusion of atoms. We call a predicatep free if there is a free rule
p(t) ∨ not p(t) ←. Atoms, literals, rules, and programs that do not contain variables
areground.

For a literal, rule, or programo, letcts(o) be the constants ino, vars(o) its variables,
andpreds(o) its predicates. Apre-interpretationU for a programP is a pair(D, σ)
whereD is a non-emptydomainandσ : cts(P) → D is a function that maps all
constants to elements fromD.5 We call PU the ground program obtained fromP by
substituting every variable inP by every possible element fromD and every constantc
by σ(c). E.g., for a ruler : p(X)← f(X, c) andU = ({x, y}, σ) whereσ(c) = x, we
have that the grounding w.r.t.U is

p(x)← f (x , x)
p(y)← f (y, x)

LetBP be the set of regular atoms that can be defined using the language of the ground
programP .

An interpretationI of a groundP is any subset ofBP . For a ground regular atom
p(t), we write I |= p(t) if p(t) ∈ I; for an equality atomp(t) ≡ t = s, we have
I |= p(t) if s andt are equal terms. We haveI |= not p(t) if I 6|= p(t). For a set of
ground literalsA, I |= A if I |= l for everyl ∈ A. A ground ruler : α← β is satisfied
w.r.t. I, denotedI |= r, if I |= l for somel ∈ α wheneverI |= β. A ground constraint
← β is satisfied w.r.t.I if I 6|= β.

For a ground programP without not, an interpretationI of P is amodelof P if I
satisfies every rule inP ; it is ananswer setof P if it is a subset minimal model ofP .
For ground programsP containingnot, theGL-reduct[8, 20] w.r.t.I is defined asP I ,
whereP I containsα+ ← β+ for α← β in P , I |= not β− andI |= α−. I is ananswer
setof a groundP if I is an answer set ofP I . Note that allowing for negation in the head
of rules leads to the loss of theanti-chain propertywhich says that no answer set can

3 We do not allow “classical” negation¬, however, programs with¬ can be reduced to programs
without it, see e.g. [21].

4 The condition|α+| ≤ 1 makes the GL-reduct non-disjunctive, ensuring that theimmediate
consequence operatoris well-defined, see [13].

5 In [13], we only use the domainD which is there a non-empty superset of the constants inP .
This corresponds to a pre-interpretation(D, σ) whereσ is the identity function onD.

be a strict subset of another answer set. In the presence of negation in the head answer
sets can be subsets of other answer sets. E.g, a rulea ∨ not a ← has the answer sets
∅ and{a} . However, we need negation in the head to be able to simulate afirst-order
behavior for certain predicates, e.g., when simulating Description Logic reasoning.

In the following, a program is assumed to be a finite set of rules; infinite pro-
grams only appear as byproducts of grounding a finite programwith an infinite pre-
interpretation. Anopen interpretationof a programP is a pair(U, M) whereU is a
pre-interpretation forP andM is an interpretation ofPU . An open answer setof P is
an open interpretation(U, M) of P with M an answer set ofPU . An n-ary predicate
p in P is satisfiableif there is an open answer set((D, σ), M) of P and ax ∈ Dn

such thatp(x) ∈M . A programP is satisfiable iff it has an open answer set. Note that
satisfiability checking of programs can be easily reduced tosatisfiability checking of
predicates:P is satisfiable iffp is satisfiable w.r.t.P ∪{p(X) ∨ not p(X)← }, where
p is a new predicate not inP andX is a tuple of variables. In the following, when we
speak of satisfiability checking we are referring to satisfiability checking of predicates,
unless specified otherwise.

Satisfiability checking w.r.t. the open answer set semantics is undecidable in gen-
eral. In [13], we identify a syntactically restricted fragment of programs, so-called
guarded programs, for which satisfiability checking is decidable and obtained by a re-
duction to guarded fixed point logic [10]. The decidability of guarded programs relies
on the presence of an atom in each rule that contains all variables of the rule, theguard
of the rule. Formally, a ruler : α ← β is guardedif there is an atomγb ∈ β+ such
thatvars(r) ⊆ vars(γb); we callγb a guardof r. A programP is aguarded program
(GP) if every non-free rule inP is guarded. E.g., a rulea(X, Y) ← not f(X, Y) is
not guarded, buta(X, Y) ← g(X, Y), not f(X, Y) is guarded with guardg(X, Y).
Satisfiability checking of predicates w.r.t. guarded programs under the open answer set
semantics is 2-EXPTIME-complete [13] – a result that stems from the corresponding
complexity in guarded fixed point logic.

We do not have a unique name assumption, i.e., it might be the case that for two
distinctc1 andc2, σ(c1) = σ(c2) for a pre-interpretation(D, σ).

2.2 The Description LogicDLRO
−{≤}

The DLDLR [4, 2] is a DL that supportsn-ary roles, instead of the usual binary ones.
We introduce the extension ofDLRwith nominals, calledDLRO, as in [12]. The basic
building blocks inDLR areconcept namesA andrelation namesP whereP denotes
arbitraryn-ary relations for2 ≤ n ≤ nmax andnmax is a given finite non-negative
integer. Role expressionsR and concept expressionsC can be formed according to the
following syntax rules:

R→ ⊤n | P | ($i/n : C) | ¬R | R1 ⊓R2 | {(o1, . . . , on)}

C → ⊤1 | A | ¬C | C1 ⊓ C2 | ∃[$i]R | ≤k[$i]R | {o}

where we assumei is between1 andn in ($i/n : C), and similarly in∃[$i]R and
≤k[$i]R if R is ann-ary relation. Moreover, we assume that the above constructs are
well-typed, e.g.,R1 ⊓R2 is defined only for relations of the same arity. The semantics

of DLRO is given by interpretationsI = (∆I , ·I) where∆I is a non-empty set, the
domain, and·I is an interpretation function such thatCI ⊆ ∆I , RI ⊆ (∆I)n for an
n-ary relationR, and the following conditions are satisfied (P,R,R1, andR2 have
arity n):

⊤I
n
⊆ (∆I)n

P
I ⊆ ⊤I

n

(¬R)I = ⊤I
n
\RI

(R1 ⊓R2)
I = R

I
1 ∩R

I
2

($i/n : C)I = {(d1, . . . , dn) ∈ ⊤I
n
| di ∈ CI}

⊤I
1 = ∆I

AI ⊆ ∆I

(¬C)I = ∆I\CI

(C1 ⊓ C2)
I = CI

1 ∩ CI
2

(∃[$i]R)I = {d ∈ ∆I | ∃(d1, . . . , dn) ∈ R
I · di = d}

(≤k[$i]R)I = {d ∈ ∆I | |{(d1, . . . , dn) ∈ R
I | di = d}| ≤ k}

{o}I = {oI} ⊆ ∆I

{(o1, . . . , on)}I = {(oI1 , . . . , oIn)}

Note that inDLRO the negation of role expressions is defined w.r.t.⊤I
n

instead of
(∆I)n. A DLRO knowledge base consists of terminological axioms and role axioms
defining subset relations between concept expressions and role expressions (of the same
arity) respectively. A terminological axiomC1 ⊑ C2 is satisfiedby I iff CI

1 ⊆ CI
2 . A

role axiomR1 ⊑ R2 is satisfiedby I iff R
I
1 ⊆ R

I
2 . An interpretation is amodelof a

knowledge base if all axioms are satisfied by the interpretation, in which case we call
the knowledge basesatisfiable. A concept expressionC is satisfiable w.r.t. a knowledge
baseΣ if there is a modelI of Σ such thatCI 6= ∅.

Note that for every interpretationI, one has

({(o1, . . . , on)})I = (($1/n : {o1}) ⊓ . . . ⊓ ($n/n : {on}))
I ,

such that we will restrict ourselves in the remainder of the paper to nominals of the form
{o} only.

We denote the fragment ofDLRO without the number restriction≤ k[$i]R as
DLRO−{≤}.

3 G-hybrid Knowledge Bases

G-hybrid knowledge bases are a variant of r-hybrid knowledge bases [23], based on
guarded programs, without the standard names assumption. Given a particular De-
scription LogicDL, we defineg-hybrid knowledge basesas pairs consisting of on the
one hand aDL knowledge base and on the other hand a guarded program (GP).

Definition 1. Given Description LogicDL, ag-hybrid knowledge baseis a pair(Σ, P)
whereΣ is aDL knowledge base andP is a guarded program.

Note that in the above definition there are no conditions on the occurrence of predi-
cates, however, by definition, we call the atoms and literalsin P that have underlying
predicates that correspond to concept names or role names inthe DL knowledge base,
DL atomsandDL literals respectively. Variables in rules are not required to appearin
positive non-DL atoms as is the case in, e.g., theDL+log knowledge bases in [24], the
r-hybrid knowledge bases in [23], or the DL-safe rules in [22]. DL-atoms can appear in
the head of rules, thus allowing for a bi-directional flow of information between the DL
knowledge base and the program.

Example 1.Consider theDLRO−{≤} knowledge baseΣ wheresocialDrinker is a
concept,drinks is a ternary role such that, intuitively,(x, y, z) is in the interpretation
of drinks if a personx drinks with persony somez:

socialDrinker ⊑ ∃[$1](drinks ⊓ ($3/3 : {wine})) .

The knowledge base indicates that social drinkers drink wine with someone. Consider
a GPP that indicates that someone has an increased risk of alcoholism if the person
is a social drinker and knows someone from the association ofAlcoholics Anonymous
(AA). Furthermore, we state thatjohn is a social drinker and knowsmichaelfrom AA.

problematic(X)← socialDrinker(X), knowsFromAA(X ,Y)
knowsFromAA(john,michael) ←

socialDrinker(john) ←

TogetherΣ andP form a g-hybrid knowledge base. The literalssocialDrinker(X)
andsocialDrinker(john) are DL atoms where the latter appears in the head of a rule
in P . The literalknowsFromAA(X,Y)appears only in the programP (and is thus not a
DL atom).

We define the semantics of g-hybrid knowledge bases(Σ, P) using interpretations
(U, I, M). Given a DL interpretation(D, I) and a ground programP , defineΠ(P, I)
as theprojectionof P with respect toI obtained as follows: for every ruler in P ,

– if there exists a DL literal in the head of the form
• A(t) with t ∈ AI , or
• not A(t) with t 6∈ AI ,

then deleter,
– if there exists a DL literal in the body of the form
• A(t) with t 6∈ AI , or
• not A(t) with t ∈ AI , or

then deleter,
– otherwise, delete all DL literals fromr.

Intuitively, the projection of a ground program transformsthis grounded program by
removing rules and DL literals consistently withI; conceptually this is similar to the
GL-reduct which removes the rules and negative literals consistently with an interpre-
tation.

Definition 2. Let(Σ, P) be a g-hybrid knowledge base. Then(U, I, M) is an interpre-
tation of(Σ, P) iff

– U = (D, σ) is a pre-interpretation forP ,
– (D, I) is an interpretation ofΣ,
– M is an interpretation ofΠ(PU , I), and
– bI = σ(b) for every constant symbolb appearing both inΣ and inP ,

For (U = (D, σ), I, M) to be a model of a g-hybrid knowledge base, we require
that (D, I) should be a model of the Description Logic knowledge base andthat M
should be an answer set of the projection of the grounding of the program withU .

Definition 3. An interpretation(U, I, M) with U = (D, σ) is then amodelof (Σ, P)
iff

1. (D, I) is a model ofΣ, and
2. M is an answer set ofΠ(PU , I).

For p a concept expression fromΣ or a predicate fromP , we have thatp is satisfiable
w.r.t (Σ, P) if there is a model(U, I, M) such thatpI 6= ∅ or p(x) ∈ M for somex
fromD, respectively.

Example 2.Consider the g-hybrid knowledge base in Example 1. TakeU = (D, σ)
with D = {john,michael ,wine, x } andσ the identity function on the constant sym-
bols in(Σ, P). Furthermore, define·I as follows:

– socialDrinkerI = {john},
– drinksI = {(john, x ,wine)},
– wineI = wine.

andM ≡ {knowsfromAA(john,michael), problematic(john)}. Then(U, I, M) is a
model of this g-hybrid knowledge base. Note that the projection of the program will no
longer contain the rulesocialDrinker(john) ← .

We can translate the g-hybrid knowledge base from Example 1 to a GP such that the
knowledge base is satisfiable iff the logic program is satisfiable. The axiom

socialDrinker ⊑ ∃[$1](drinks ⊓ ($3/3 : {wine})) .

is translated to a constraint:

← socialDrinker(X),not (∃[$1](drinks ⊓ ($3/3 : {wine})))(X)

Thus, the concept expressions on either side of the⊑ symbol in an axiom are associ-
ated with a new unary predicate name. For convenience, we denote the predicates like
the corresponding concept expressions. The constraint simulates the behavior of the
DLRO−{≤} axiom. If the left-hand side of the axiom holds and the right-hand side
does not hold, we have a contradiction.

It remains to define those newly introduced predicates according to the DL seman-
tics. First, all the concept and role names occurring in the axiom above need to be

defined as free predicates, in order to simulate the first-order semantics of concept and
role names in DLs. Intuitively, in DLs a tuple is in the extension of a concept or role or
not; this behavior can be captured exactly by free predicates:

socialDrinker(X) ∨ not socialDrinker(X)←
drinks(X ,Y ,Z) ∨ not drinks(X ,Y ,Z)←

Note that concept names are translated to unary free predicates whilen-ary role names
are translated ton-ary free predicates.

The definition of the truth symbols⊤1 and⊤3 that are implicitly present in our
DLRO−{≤} axiom (since the axiom contains a concept name and a ternary role) are
defined as free predicates as well. Note that we do not need a predicate for⊤2 since the
axiom does not contain binary predicates.

⊤1 (X) ∨ not ⊤1 (X)←
⊤3 (X ,Y ,Z) ∨ not ⊤3 (X ,Y ,Z)←

We ensure that for the ternaryDLRO−{≤} role drinks , drinksI ⊆ ⊤I
3 holds by

adding the constraint:

← drinks(X ,Y ,Z),not ⊤3 (X ,Y ,Z)

To ensure that⊤I
1 = ∆I , we add the constraint:

← not ⊤1 (X)

For rules containing only one variable, we can always assumethat X = X is in
the body and acts as the guard of the rule such that the latter rule is a guarded rule
when regarded as the equivalent rule← not ⊤1 (X),X = X . Note that we can allow
for such an equality guard without affecting decidability as decidability for guarded
programs was shown in [13] by a translation to guarded fixed point logic where one
allows for guardsX = X as well [9].

We define the nominal{wine} by the rule

{wine}(wine)←

Intuitively, since this rule will be the only rule with the predicate{wine} in the head,
every open answer set of the translated program will only contain {wine}(x) with
σ(wine) = x if and only if the corresponding interpretation{wine}I = {x} for
wineI = x.

TheDLRO−{≤} role expression($3/3 : {wine}) indicates the ternary tuples for
which the third argument belongs to the extension ofwine, which translates to the
following rule:

($3/3 : {wine})(X ,Y ,Z)← ⊤3 (X ,Y ,Z), {wine}(Z)

Note that the above rule is guarded by the⊤3 literal.

Finally, the concept expression(drinks ⊓ ($3/3 : {wine})) can be represented by
the following rule:

(drinks ⊓ ($3/3 : {wine}))(X ,Y ,Z)← drinks(X ,Y ,Z),
($3/3 : {wine})(X, Y, Z)

The translation thus translates the DL constructor⊓ as conjunction in the body of a
rule.

TheDLRO−{≤} role∃[$1](drinks ⊓ ($3/3 : {wine})) can be represented by the
following rule:

(∃[$1](drinks ⊓ ($3/3 : {wine})))(X)← (drinks ⊓ ($3/3 : {wine}))(X ,Y ,Z)

Indeed, the elements that belong to the extension of∃[$1](drinks ⊓ ($3/3 : {wine}))
are exactly those that are connected with the role($3/3 : {wine}) as specified in the
rule.

This concludes the translation of the DL knowledge base partof the g-hybrid knowl-
edge base in Example 1. The program part can be considered as is, since, by definition
of g-hybrid knowledge bases, this is already a GP.

We define the formal translation from g-hybrid satisfiability checking to satisfiabil-
ity checking w.r.t. programs using the notion ofclosure. Define theclosureclos(Σ) of a
DLRO−{≤} knowledge baseΣ as the smallest set satisfying the following conditions:

– ⊤1 ∈ clos(Σ),
– for eachC ⊑ D an axiom inΣ (role or terminological),{C, D} ⊆ clos(Σ),
– for everyD in clos(Σ), clos(Σ) should contain every subformula that is a concept

expression or a role expression,
– if clos(Σ) containsn-ary relation names, it must contain⊤n.

Formally, we defineΦ(Σ) for aDLRO−{≤} knowledge baseΣ to be the following
program:

– For each terminological axiomC ⊑ D ∈ Σ, add the constraint

← C(X), not D(X) (1)

– For each role axiomR ⊑ S ∈ Σ whereR andS aren-ary, add the constraint

← R(X1, . . . , Xn), not S(X1, . . . , Xn) (2)

– For each⊤n ∈ clos(Σ), add the free rule

⊤n(X1, . . . , Xn) ∨ not ⊤n(X1, . . . , Xn)← (3)

Furthermore, for eachn-ary relation nameP ∈ clos(Σ), we add the constraint

← P(X1, . . . , Xn), not ⊤n(X1, . . . , Xn) (4)

Intuitively, the latter rule ensures thatP
I ⊆ ⊤I

n
. We add a constraint

← not ⊤1(X) (5)

which enforces that for every elementx in the pre-interpretation,⊤1(x) is true in
the open answer set. The latter rule ensures that⊤I

1 = D for the corresponding
interpretation. The rule is implicitly guarded withX = X .

– Next, we distinguish between the types of concept and role expressions that appear
in clos(Σ). ForD ∈ clos(Σ):
• if D is a concept nominal{o}, add

D(o)← (6)

This will ensure that{o}(x) holds in an open answer set iffx = σ(o) = oI for
an interpretation of(Σ, P).
• if D is a concept name, add

D(X) ∨ not D(X)← (7)

• if D is ann-ary relation name, add

D(X1, . . . , Xn) ∨ not D(X1, . . . , Xn)← (8)

• if D = ¬E for a concept expressionE, add

D(X)← not E(X) (9)

Note that we can again assume that such a rule is guarded byX = X .
• if D = ¬R for ann-ary role expressionR, add

D(X1, . . . , Xn)← ⊤n(X1, . . . , Xn), not R(X1, . . . , Xn) (10)

Note that if negation was defined w.r.t. toDn instead of⊤I
n
, we would not be

able to write the above as a guarded rule.
• if D = E ⊓ F for concept expressionsE andF , add

D(X)← E(X), F (X) (11)

• if D = E ⊓ F for n-ary role expressionsE andF, add

D(X1, . . . , Xn)← E(X1, . . . , Xn),F(X1, . . . , Xn) (12)

• if D = ($i/n : C), add

D(X1, . . . , Xi, . . . , Xn)← ⊤n(X1, . . . , Xi, . . . , Xn), C(Xi) (13)

• if D = ∃[$i]R, add

D(X)← R(X1, . . . , Xi−1, X, Xi+1, . . . , Xn) (14)

We now show that this translation preserves satisfiability.

Theorem 1. Let (Σ, P) be a g-hybrid knowledge base whereΣ is a DLRO−{≤}

knowledge base. Then, a predicate or concept expressionp is satisfiable w.r.t.(Σ, P)
iff p is satisfiable w.r.t.Φ(Σ) ∪ P .

Proof. (⇒) Assumep is satisfiable w.r.t.(Σ, P), i.e., there exists a model(U, I, M)
of (Σ, P) whereU is the pre-interpretation(D, σ) that givesp a non-empty extension.
Construct then the open interpretation(V, N) of (Σ, P) such thatV = (D, σ′) with
σ′ : cts(Φ(Σ) ∪ P) → D defined such thatσ′(x) = σ(x) for a constant symbolx
from P andσ′(x) = xI for a constant symbol fromΣ. Note thatσ′ is well-defined
since for constant symbolsx that are in bothΣ andP , we have thatσ(x) = xI . The
setN is defined as follows:

N ≡M ∪ {C(x) | x ∈ CI , C ∈ clos(Σ)}

∪ {R(x1, . . . , xn) | (x1, . . . , xn) ∈ R
I , R ∈ clos(Σ)}

with C andR concept expressions and role expressions respectively.
It is easy to verify that(V, N) is an open answer set ofΦ(Σ) ∪ P that satisfiesp.
(⇐) Assume(V, N) is an open answer set ofΦ(Σ)∪P with V = (D, σ′) such that

p is satisfied. Define a tuple(U, I, N), with

– U ≡ (D, σ) whereσ : cts(P) → D with σ(x) ≡ σ′(x) (note that this is possible
sincects(P) ⊆ cts(Φ(Σ) ∪ P)). U is then a pre-interpretation forP .

– An interpretation functionI defined such thatAI ≡ {x | A(x) ∈ N} for concept
namesA, R

I ≡ {(x1, . . . , xn) | R(x1, . . . , xn) ∈ N} for n-ary role namesR
andoI = σ′(o), for o a constant symbol inΣ (note thatσ′ is indeed defined ono).
(D, I) is then an interpretation ofΣ.

– M ≡ N \{p(x) | p ∈ clos(Σ)}, such thatM is an interpretation ofΠ(PU , I).

Moreover, for every constant symbolb appearing both inΣ and in P , bI = σ(b),
making(U, I, M) an interpretation of(Σ, P).

It is easy to verify that(U, I, M) is a model of(Σ, P) that satisfiesp. ⊓⊔

Theorem 2. Let (Σ, P) be a g-hybrid knowledge base whereΣ is a DLRO−{≤}

knowledge base. Then,Φ(Σ) ∪ P is a GP, with a size that is polynomial in the size
of (Σ, P).

Proof. Observing the rules that originate fromΣ, it is clear that they are guarded. Fur-
thermore, the programP itself is a GP such thatΦ(Σ) ∪ P is as well.

The size ofclos(Σ) is of the ordern log n wheren is the size ofΣ. Indeed, in-
tuitively, given that the size of an expression isn, we have that the size of the set of
its subexpressions is at most the size of a tree with depthlog n where the size of the
subexpressions at a certain level of the tree is at mostn. The size of the GPΦ(Σ) is
polynomial in the size ofclos(Σ). However, note that we assume here that the size of
Σ increases such that then in an addedn-ary role expression is polynomial in the size
of the maximal arity of role expressions inΣ. If we were to add a relation nameR
with arity 2n, wheren is the maximal arity of relation names inC andΣ, the size of
Σ would increase linearly, but the size ofΦ(Σ) ∪ P would increase exponentially: one
needs to add, e.g., rules

⊤2n(X1, . . . , X2n) ∨ not ⊤2n(X1, . . . , X2n)← ,

which introduce an exponential number of arguments while the size of the roleR does
not depend on its arity. ⊓⊔

Note that in g-hybrid knowledge bases, we consider the fragmentDLRO−{≤} of
DLRO without the expressions≤ k[$i]R since such expressions cannot be simulated
with guarded programs. E.g., consider the concept expression≤ 1[$1]R whereR is a
binary role. One can simulate the≤ by negation as failure:

≤ 1[$1]R(X)← not q(X)

for some newq with q defined such that there are at least 2 differentR-successors:

q(X)← R(X, Y1), R(X, Y2), Y1 6= Y2

However, the latter rule is not a guarded rule – there is no atom that containsX , Y1, and
Y2. So, in general, expressing number restrictions such as≤ k[$i]R is out of reach for
GPs. From Theorems 1 and 2 follows:

Corollary 1. Satisfiability checking w.r.t. g-hybrid knowledge bases where the DL part
is aDLRO−{≤} knowledge base can be polynomially reduced to satisfiability checking
w.r.t. GPs.

Since satisfiability checking w.r.t. GPs is 2-EXPTIME-complete [13], we have the
same 2-EXPTIME characterization for g-hybrid knowledge bases. We first make explicit
a corollary of Theorem 1.

Corollary 2. LetP be a GP. Then,p is satisfiable w.r.t.P iff p is satisfiable w.r.t.(∅, P).

Theorem 3. Satisfiability checking w.r.t. g-hybrid knowledge bases where the DL part
is aDLRO−{≤} knowledge base is 2-EXPTIME-complete.

Proof. Membership in 2-EXPTIME follows from Corollary 1. Hardness follows from 2-
EXPTIME-hardness of satisfiability checking w.r.t. GPs and the reduction to satisfiability
checking in Corollary 2. ⊓⊔

4 Relation with DL+log and other Related Work

In [24], so-calledDL+log knowledge bases combine a Description Logic knowledge
base with aweakly-safedisjunctive logic program. Formally, for a particular Descrip-
tion LogicDL, aDL+log knowledge baseis a pair(Σ, P) whereΣ is aDL knowledge
base consisting of aTBox(a set of terminological axioms) and anABox(a set ofasser-
tional axioms), andP contains rulesα← β such that for every ruler : α← β ∈ P :

– α− = ∅,
– β− does not contain DL atoms (call thisDL-positiveness),
– each variable inr occurs in an atom fromβ+ (Datalog safeness), and
– each head variable inr occurs in a non-DL atom fromβ+ (weak safeness).

The semantics forDL+log is the same as it is for g-hybrid knowledge bases6, with
some exceptions:

6 Strictly speaking, we did not define answer sets of disjunctive programs, however, the defini-
tions of Subsection 2.1 can serve for disjunctive programs without modification. Also, we did
not consider ABoxes in our definition of DLs in Subsection 2.2. However, the extension of the
semantics of DL knowledge bases with ABoxes is straightforward.

– We do not have astandard name assumptionsuch as [24] has, which basically
assumes every interpretation is over the same infinitely countable number of con-
stants. Neither do we have the impliedunique name assumption, making the se-
mantics for g-hybrid knowledge bases more in line with current Semantic Web
standards such as OWL [3] where neither the standard names assumption nor the
unique names assumption holds.

– Furthermore, we defined an interpretation as a triple(U, I, M) instead of a pair
(U, I ′) whereI ′ = I ∪M ; this is, however, equivalent to [24].

We balance the key differences of the two approaches:

– In [24] the head of a rule is of the formp1(X1) ∨ . . . ∨ pn(Xn) with n possibly
0, i.e., the requirement|α+| ≤ 1 does not hold as it does for our programs. On the
other hand, this implies that|α−| = 0 in [24], while there is no such restriction in
our case.

– Instead of Datalog safeness we haveguardedness, i.e., while with Datalog safeness
every variable in the rule should appear in some positive atom of the body of the
rule, guardedness requires that there is a positive atom that contains every variable
in the rule. E.g.,a(X)← b(X), c(Y) is Datalog safe sinceX appears inb(X) and
Y appears inc(Y) but it is not guarded since there is no atom that contains both
X andY in its arguments. Note that we could easily extend the approach taken in
this paper toloosely guarded programswhich require that every two variables in
the rule should appear together in a positive atom, however,this would still be less
expressive than Datalog safeness.

– We do not have the requirement for weak safeness, i.e., head variables do not need
to appear positively in a non-DL atom. The guardedness may beprovided by a DL
atom.

Example 3.Example 1 contains the rule

problematic(X)← socialDrinker(X), knowsFromAA(X ,Y)

This allows to deduce thatX might be a problem case even ifX knows some-
one from the AA but is not drinking with that person, indeed, as illustrated by the
example model in Example 1,john is drinking wine with some anonymousx and
knowsmichael from the AA. More correct would be the rule

problematic(X ,Z)← drinks(X ,Y ,Z), knowsFromAA(X ,Y)

where we explicitly say thatX andY in thedrink andknowsFromAA relation
should be the same and we extend theproblematic predicate with the kind of drink
thatX has a problem with. Then, the head variableZ is guarded by the DL atom
drinks and the rule is thus not weakly-safe but it is guarded nonetheless. Thus,
the resulting knowledge base is not aDL+log knowledge base but is a g-hybrid
knowledge base.

– We do not have the requirement for DL-positiveness, i.e., DLatoms may appear
negated in the body of rules (and also in the heads of rules). However, one could

allow this inDL+log knowledge bases as well, sincenot A(X) in the body of
the rule has the same effect asA(X) in the head, where the latter is allowed in
[24]. Vice versa, we can also loosen our restriction on the occurrence of positive
atoms in the head (which allows at most one positive atom in the head), to allow
for an arbitrary number of positive DL atoms in the head (but still keep the number
of positive non-DL atoms limited to one). E.g., a rulep(X) ∨ A(X) ← β, where
A(X) is a DL atom, is not a valid rule in the programs we considered since the
head contains more than one positive atom. However, we can always rewrite such
a rule as the rulep(X)← β,not A(X), which contains at most one positive atom
in the head.
Arguably, DL atoms should not be allowed to occur negatively, because DL predi-
cates are interpreted classically and thus the negation in front of the DL atom is not
nonmonotonic. However, Datalog predicates which depend onDL predicates are
also (partially) interpreted classically.

– We do not take into account ABoxes in the DL knowledge base like [24] does.
However, the DL we consider includes nominals such that one can simulate the
ABox using terminological axioms. Moreover, even if the DL does not include
nominals the ABox can be written as ground facts in a program and ground facts
are always guarded.

– Decidability for satisfiability checking7 of DL+log knowledge bases in [24] is
guaranteed if decidability of the conjunctive query containment problem is guaran-
teed for the DL at hand. However, we relied for showing decidability on a trans-
lation of DLs to guarded programs, and, as explained in the previous section, e.g.,
DLs with number restrictions cannot be translated to them.

[18] and [25] simulate reasoning in DLs with a LP formalism byusing an interme-
diate translation to first-order clauses. In [18],SHIQ knowledge bases are reduced to
first-order formulas, on which basic superposition calculus is then applied.

[25] translatesALCQI concept expressions to first-order formulas, grounds them
with a finite number of constants, and transforms the result to a logic program. One can
use a finite number of constants by the finite model property ofALCQI; in the presence
of terminological axioms this is no longer possible since the finite model property is
lost.

In [19], the DLALCNR (R stands for role intersection) is extended with Horn
clausesq(Y)← p1 (X1), . . . , pn(Xn) where the variables inY must appear inX1∪
. . . ∪Xn; p1, . . . , pn are either concept names, role names, or ordinary predicates not
appearing in the DL part, andq is an ordinary predicate. There is no safeness in the sense
that every variable must appear in a non-DL atom (i.e., with an ordinary predicate), as
it is in, e.g., [22]. The semantics is as in [22]: extended interpretations that satisfy both
the DL and clauses part (as FOL formulas). Query answering isundecidable if recursive
Horn clauses are allowed, but decidability can be regained by restricting the DL part or
by enforcing that the clauses are role safe (each variable ina role atomR(X, Y) for
a roleR must appear in a non-DL atom). Note that the latter restriction is less strict

7 [24] considers satisfiability checking of knowledge bases instead of predicate satisfiability
checking as we do, however, the former can easily be reduced to the latter.

than the DL-safeness of [22], where also variables in concept atomsA(X) need to
appear in non-DL atoms. On the other hand, [22] allows for themore expressive DL
SHOIN (D), and the head predicates may be DL atoms as well. In relation with our
work: we needed the guardedness and not just role safeness asin [19].

An AL-log [5] system consists of two subsystems: anALC knowledge base and
a set of Horn clauses of the above form, where variables in thehead must appear in
the body, only concept names besides ordinary predicates are allowed in the body (thus
no role names), and there is a safeness condition as in [22] saying that every variable
appears in a non-DL atom.

In [6, 7] Description Logic programsare introduced; atoms in the program compo-
nent may bedl-atomssuch that one can query the knowledge in the DL part and each
query can also provide the DL with information that the rule part deduced, yielding a
bi-directional flow of information.

Finally, SWRL [17] is aSemantic Web Rule Languageand extends the syntax and
semantics of OWL DL (i.e.,SHOIN (D)) with unary/binary Datalog RuleML [1], i.e.,
Horn-like rules. This extension is undecidable [16].

5 Conclusions and Directions for Further Research

We defined g-hybrid knowledge bases which combine Description Logic (DL) knowl-
edge bases with guarded programs. In particular, we combined knowledge bases of the
DL DLRO−{≤}, which is close to OWL DL, with guarded programs and showed de-
cidability of this framework by a reduction to guarded programs under the open answer
set semantics [13]. We discussed the relation withDL+log knowledge bases: g-hybrid
knowledge bases overcome some of the limitations ofDL+log, such as the unique
name assumption, the requirement for DL-positiveness, Datalog safeness, and weak
DL-safeness, but introduces the requirement of guardedness. At present, a significant
disadvantage of our approach is the lack of support for DLs with number restrictions
which is inherent to the use of guarded programs as our decidability vehicle. A solu-
tion for this would be to consider other types of programs, such asconceptual logic
programs[11]. This would allow for the definition of an hybrid knowledge base(Σ, P)
whereΣ is aSHIQ knowledge base andP is a conceptual logic program sinceSHIQ
knowledge bases can be translated to conceptual logic programs.

At present, there is no implemented system for open answer set programming avail-
able; this is part of future research.

Acknowledgments

We thank the anonymous reviewers for their useful feedback.

References

1. The Rule Markup Initiative. http://www.ruleml.org.
2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider.The Description

Logic Handbook. Cambridge University Press, 2003.

3. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P. F.
Patel-Schneider, and L. A. Stein. OWL Web Ontology LanguageReference.
http://www.w3.org/TR/owl-ref/, 2004.

4. D. Calvanese, G. De Giacomo, and M. Lenzerini. Conjunctive Query Containment in De-
scription Logics withn-ary Relations. InProc. of the 1997 Description Logic Workshop
(DL’97), pages 5–9, 1997.

5. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog and
Description Logics.J. of Intell. and Cooperative Information Systems, 10:227–252, 1998.

6. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits.Combining Answer Set Program-
ming with DLs for the Semantic Web. InProc. of KR 2004, pages 141–151, 2004.

7. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits.Well-Founded Semantics for De-
scription Logic Programs in the Semantic Web. InProc. of RuleML 2004, number 3323 in
LNCS, pages 81–97. Springer, 2004.

8. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. InProc.
of ICLP’88, pages 1070–1080, Cambridge, Massachusetts, 1988. MIT Press.

9. E. Grädel, C. Hirsch, and M. Otto. Back and Forth Between Guarded and Modal Logics.
ACM Transactions on Computational Logic, 3:418–463, 2002.

10. E. Grädel and I. Walukiewicz. Guarded Fixed Point Logic. In Proc. of LICS ’99, pages
45–54. IEEE Computer Society, 1999.

11. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Conceptual logic programs.Annals of
Mathematics and Artificial Intelligence (Special Issue on Answer Set Programming), 2006.

12. S. Heymans, D. Van Nieuwenborgh, D. Fensel, and D. Vermeir. Reasoning with the Descrip-
tion LogicDLRO−{≤} using Bound Guarded Programs. InProc. of Reasoning on the Web
workshop (RoW 2006), Edinburgh, UK, 2006.

13. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. GuardedOpen Answer Set Program-
ming. InLPNMR 2005, number 3662 in LNAI, pages 92–104. Springer, 2005.

14. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Nonmonotonic Ontological and Rule-
Based Reasoning with Extended Conceptual Logic Programs. In Proc. of ESWC 2005, num-
ber 3532 in LNCS, pages 392–407. Springer, 2005.

15. I. Horrocks and P. Patel-Schneider. Reducing OWL Entailment to Description Logic Satisfi-
ability. J. of Web Semantics, 2004. To Appear.

16. I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules Language. InProc. of
WWW 2004. ACM, 2004.

17. I. Horrocks, P. F. Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A Semantic
Web Rule language Combining OWL and RuleML, May 2004.

18. U. Hustadt, B. Motik, and U. Sattler. ReducingSHIQ− Description Logic to Disjunctive
Datalog Programs. FZI-Report 1-8-11/03, Forschungszentrum Informatik (FZI), 2003.

19. A. Y. Levy and M. Rousset. CARIN: A Representation Language Combining Horn Rules
and Description Logics. InProc. of ECAI’96, pages 323–327, 1996.

20. V. Lifschitz. Answer Set Programming and Plan Generation. AI, 138(1-2):39–54, 2002.
21. V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Programs.ACM Trans-

actions on Computational Logic, 2(4):526–541, 2001.
22. B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules. InProc. of

ISWC 2004, number 3298 in LNCS, pages 549–563. Springer, 2004.
23. R. Rosati. On the decidability and complexity of integrating ontologies and rules.Web

Semantics, 3(1):41–60, 2005.
24. R. Rosati. DL+log: Tight integration of description logics and disjunctive datalog. InPro-

ceedings of the Tenth International Conference on Principles of Knowledge Representation
and Reasoning (KR 2006), 2006. To appear.

25. T. Swift. Deduction in Ontologies via Answer Set Programming. In Vladimir Lifschitz and
Ilkka Niemelä, editors,LPNMR, volume 2923 ofLNCS, pages 275–288. Springer, 2004.

