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Abstract. Recently, there has been a lot of interest in the integradfobe-
scription Logics and rules on the Semantic Web. We dejitgbrid knowledge
basesas knowledge bases that consist of a Description Logic kedgd base
and aguardedlogic program, similarly to thédL+Ilog knowledge bases from
[24]. G-hybrid knowledge bases enable an integration otBgison Logics and
Logic Programming where, unlike in other approaches, faée&in the rules of
a guarded program do not need to appear in positive non-Dhsatd the body:
DL atoms can act aguardsas well. Decidability of satisfiability checking of
g-hybrid knowledge bases is shown for the particular DERO~{=}, which
is close to, and in some respects more expressive than, OWLbyh reduc-
tion to guarded programs under an open answer set semaviticsover, we
show 2exPTIME-completeness for satisfiability checking of th@@eRO~ 1=}
g-hybrid knowledge bases. Finally, we discuss advantageslisadvantages of
our approach compared withL+log knowledge bases.

1 Introduction

There has been a lot of attention recently in the integrasfddescription Logics with
rules for the Semantic Web [23, 24, 6, 22, 16]. R-hybrid kremigle bases [23], and the
extensionDL+log [24], is an elegant formalism based on combined models for De
scription Logic knowledge bases and nonmonotonic logigymms. We propose a
variant of r-hybrid knowledge bases, callgehybrid knowledge basewhich do not
require standard names or a safeness restriction on ruleshdiv several computa-
tional properties by a reduction to guarded open answersegtgmming [13].

Open answer set programming (OASP) [14, 13] combines the fmg@gramming
and first-order logic paradigms. From the logic programnpagadigm it inherits a
rule-based presentation and a nonmonotonic semantics éyaé negation as failure.

* The first four authors were partially supported by the Euamp€ommission under projects
Knowledge Web (IST-2004-507482) and DIP (FP6-507483) andhle FIT-IT under the
projectRW? (FIT-IT 809250). The last author was supported by the Flarfisnd for Sci-
entific Research (FWO-Vlaanderen).



In contrast with usual logic programming semantics, seg, #he answer set semantics
[8], OASP allows for domains consisting of other objectsittiteose present in the logic
program at hand. Such open domains are inspired by first-togie based languages
such as Description Logics (DLs) [2] and make OASP a viabtelickate for conceptual
reasoning. Due to its rule-based presentation and its stfjwacnonmonotonic reason-
ing and open domains, OASP can be used to reason with botbhaskxd and conceptual
knowledge on the Semantic Web, as illustrated in [14].

The main challenge for OASP is to control undecidabilityatisfiability checking,

a challenge it shares with DL-based languages. In [13], @ldble class of programs is
identified, so-calleduarded programdor which decidability of satisfiability checking
is obtained by a translation to guarded fixed point logic [10][12], we show the
expressiveness of such guarded programs by simulating a ibLmwary roles and
nominals. In particular, we extend the LR [4] with bothconcept nominaléo} and
role nominals{(o1,...,0,)}, resulting NDLRO. The DL DLRO with the number
restrictions left out yieId@ﬁRO*{S} and we show in [13] a reduction of satisfiability
of concept expressions W.IRLRO (=) knowledge bases to guarded programs.

G-hybrid knowledge bases consist of Description Logic kieolge base and a
guarded program. Th®L+log knowledge bases from [24] ameakly safei.e., the
interaction between the program and the DL knowledge babmiied by imposing
that head variables should appear in atoms that cannot beddhsgi.e., concepts or
roles in the knowledge base). However, in g-hybrid knowéekdgses such a restriction
does not hold; variables should appear iguard of the rule but this guard can be a
DL atom as well. We show decidability of g-hybrid knowledgesbs forDLRO~{=}
DL knowledge bases by a reduction to guarded programs ogslyedl as provide a 2-
EXPTIME complexity characterization of such g-hybrid knowledgsds=D RO~ 1=}
includes a large fragment 8HOZN, the Description Logic underlying OWL DL
[15]. Compared wittSHOZN , DLRO =} does not include transitive roles and num-
ber restrictions, but does includeary roles and complex role expressions.

The remainder of the paper starts with an introduction tmapeswer set program-
ming and Description Logics in Subsections 2.1 and 2.2.i@e& defines g-hybrid
knowledge bases, translates them to guarded programs waenar O~} DL is
considered, and provides a complexity characterizatiors&tisfiability checking of
these particular g-hybrid knowledge bases. In Section 4diseuss the relation of g-
hybrid knowledge bases witRL+log and point to other related work. We conclude
and give directions for further research in Section 5.

2 Preliminary Definitions: Open Answer Set Programming and
Description Logics

In this section, we introduce Open Answer Set Programminglaa Description Logic
DLRO{S)

2.1 Decidable Open Answer Set Programming

We introduce the open answer set semantics from [13], mddifien [12] such that it
does not take on a unique name assumption for constants ayld€fonstantsvari-



ables terms andatomsare defined as usual. Weral is an atomp(t) or anaf-atom
not p(t).2 Thepositive partof a set of literalsvis o™ = {p(t) | p(t) € a} and theneg-
ative partof aisa™ = {p(t) | not p(t) € a}. We assume the existence of binary pred-
icates= and##, wheret = s is considered as an atom ahet s asnot t = s. E.g., for
a={X#Y,Y =Z},wehavex™ = {Y = Z} anda™ = {X = Y}. Aregularatom
is an atom that is not an equality atom. For a4etf atoms;not A = {notl |l € A}.

A programis a countable set of rules «— 3, wherea and g are finite sets of
literals, |a™| < 1 (buta™ may be of arbitrary size) , and, s -t = s € o™, i.e.,a
contains at most one positive atom and this atom cannot bguadity atom?* The set
« is theheadof the rule and represents a disjunction of literals, whils called the
bodyand represents a conjunction of literalsalt= (, the rule is called @onstraint
Free rulesare rules of the formg(t) Vv not ¢(t) < for a tuplet of terms; they enable
a choice for the inclusion of atoms. We call a predicatieee if there is a free rule
p(t) V not p(t) . Atoms, literals, rules, and programs that do not contaimtes
areground

For aliteral, rule, or program, let cts(o) be the constants iny vars(o) its variables,
and preds(o) its predicates. Apre-interpretationU for a programP is a pair(D, o)
where D is a non-emptydomainando : cts(P) — D is a function that maps all
constants to elements frofM.> We call P, the ground program obtained frof by
substituting every variable iR by every possible element from and every constarat
byo(c). E.g., foraruler: p(X) — f(X,¢) andU = ({z,y}, o) whereo(c) = z, we
have that the grounding w.rii/. is

p(z) «— f(z,2)
p(y) « f(y, )

Let Bp be the set of regular atoms that can be defined using the lgagiighe ground
programpP.

An interpretation/ of a groundP is any subset oBp. For a ground regular atom
p(t), we write I = p(t) if p(t) € I, for an equality atonp(t) = t = s, we have
I E p(t) if s andt are equal terms. We have= not p(t) if I |~ p(t). For a set of
ground literalsA, I = Aif T =1 for everyl € A. A ground ruler : o <+ (3 is satisfied
w.r.t. I, denotedl = r, if I =1 for somel € a wheneverd = (. A ground constraint

— pis satisfied w.r.tl if I |~ (.

For a ground progran® without not, an interpretatiod of P is amodelof P if
satisfies every rule i®; it is ananswer sebf P if it is a subset minimal model aP.
For ground program#® containingnot, the GL-reduct[8, 20] w.r.t. I is defined asP’,
whereP! containsxt « 3+ fora « Bin P, I |= not 3~ andl |= o~ I is ananswer
setof a groundP if I is an answer set d?’. Note that allowing for negation in the head
of rules leads to the loss of tlamti-chain propertywhich says that no answer set can

% We do not allow “classical” negation, however, programs with can be reduced to programs
without it, see e.g. [21].

* The condition|a™| < 1 makes the GL-reduct non-disjunctive, ensuring thatitheediate
consequence operatds well-defined, see [13].

% In [13], we only use the domaif» which is there a non-empty superset of the constant2.in
This corresponds to a pre-interpretatidn, o) whereo is the identity function orD.



be a strict subset of another answer set. In the presenceafioe in the head answer
sets can be subsets of other answer sets. E.g, amleot a < has the answer sets
() and{a} . However, we need negation in the head to be able to simulitst-®rder
behavior for certain predicates, e.g., when simulatingcblpon Logic reasoning.

In the following, a program is assumed to be a finite set ofs;uiefinite pro-
grams only appear as byproducts of grounding a finite progwéman infinite pre-
interpretation. Aropen interpretatiorof a programp is a pair(U, M) whereU is a
pre-interpretation fo® and M is an interpretation of;. An open answer saif P is
an open interpretatiofU/, M) of P with M an answer set aP;;. An n-ary predicate
p in P is satisfiableif there is an open answer s@tD, o), M) of P and ax € D"
such thap(x) € M. A programP is satisfiable iff it has an open answer set. Note that
satisfiability checking of programs can be easily reducesiatisfiability checking of
predicates? is satisfiable iffp is satisfiable w.r.tP U {p(X) V not p(X) < }, where
p is a new predicate not i and X is a tuple of variables. In the following, when we
speak of satisfiability checking we are referring to satisfity checking of predicates,
unless specified otherwise.

Satisfiability checking w.r.t. the open answer set semarigiaindecidable in gen-
eral. In [13], we identify a syntactically restricted fragnt of programs, so-called
guarded programsfor which satisfiability checking is decidable and obtalig a re-
duction to guarded fixed point logic [10]. The decidabilifyguarded programs relies
on the presence of an atom in each rule that contains allbles@f the rule, thguard
of the rule. Formally, a rule : o «— @ is guardedif there is an atomy, € 3 such
thatvars(r) C vars(vy); we cally, aguardof r. A programP is aguarded program
(GP) if every non-free rule inP is guarded. E.g., a rule(X,Y) «— not f(X,Y) is
not guarded, but(X,Y) «— ¢(X,Y),not f(X,Y) is guarded with guarg(X,Y).
Satisfiability checking of predicates w.r.t. guarded peamgs under the open answer set
semantics is ZxPTIME-complete [13] — a result that stems from the corresponding
complexity in guarded fixed point logic.

We do not have a unique name assumption, i.e., it might beake that for two
distinctc; andcs, o(c1) = o(cq) for a pre-interpretatiofD, o).

2.2 The Description LogicDLRO~{s}

The DLDLR [4,2] is a DL that supports-ary roles, instead of the usual binary ones.
We introduce the extension BfCR with nominals, called LR O, as in [12]. The basic
building blocks inDLR areconcept named andrelation name® whereP denotes
arbitraryn-ary relations for2 < n < n,,4, andn,,,., is a given finite non-negative
integer. Role expressiod® and concept expressiofiscan be formed according to the
following syntax rules:

R—>T,|P|@i/n:C)|-R|R1MNR2|{(01,..-,0n)}
C—T1|A|-C|CiNCy | IS8R | <k[$i|R | {0}
where we assumeis betweenl andn in ($i/n : C), and similarly in3[$/]R and

<E[${]R if R is ann-ary relation. Moreover, we assume that the above constaret
well-typed, e.g.R1 MR is defined only for relations of the same arity. The semantics



of DLRO is given by interpretationg = (A%, -Z) where A” is a non-empty set, the
domain and-Z is an interpretation function such that C AZ, R* C (A%)" for an
n-ary relationR, and the following conditions are satisfieR,(R, R, andR; have
arity n):
T C(ah)"
P CTL
(-R)" = TH\R?
(R1 MRy = RINRE
($i/n:C)F ={(dy,...,dy) € T | d; € C*}
T = AT
AT c AT
(-C)F = AT\CT
(c,ney) =ctnct
(3$iR) = {d € AT | 3(dy,...,d,) e RT -d; = d}
(<k[$iIR)T = {d e AT | |{(dy,...,dn) €RT | d; =d}| <k}
{0} = {0} C AT
{(o1,--,00)} = {(0f,-..,00)}
Note that inDLRO the negation of role expressions is defined w¥{. instead of
(AT)™. A DLRO knowledge base consists of terminological axioms and ndlenas
defining subset relations between concept expressiononexpressions (of the same
arity) respectively. A terminological axiodi; C C, is satisfiedby 7 iff CT C CZ. A
role axiomR; C R is satisfiedby Z iff R{ - R%. An interpretation is anodelof a
knowledge base if all axioms are satisfied by the interpgetain which case we call
the knowledge bassatisfiable A concept expressiofi is satisfiable w.r.t. a knowledge

baseY if there is a modef of X such thatC'” + ).
Note that for every interpretatidf, one has

({(o1,...,00)NF = (($1/n:{o1}) ... ($n/n: {o.}))*,

such that we will restrict ourselves in the remainder of thpgy to nominals of the form
{o} only.

We denote the fragment @LRO without the number restrictiort k[$:|R as
DLROS),

3 G-hybrid Knowledge Bases

G-hybrid knowledge bases are a variant of r-hybrid knowdetgses [23], based on
guarded programs, without the standard names assumptidren @ particular De-
scription LogicDL, we defineg-hybrid knowledge basess pairs consisting of on the
one hand &L knowledge base and on the other hand a guarded program (GP).



Definition 1. Given Description Logi® L, ag-hybrid knowledge bage a pair (X, P)
whereX' is aDL knowledge base anB is a guarded program.

Note that in the above definition there are no conditions enaibcurrence of predi-

cates, however, by definition, we call the atoms and lita@ralB that have underlying

predicates that correspond to concept names or role nanties DL knowledge base,
DL atomsandDL literals respectively. Variables in rules are not required to appear
positive non-DL atoms as is the case in, e.g., &+ log knowledge bases in [24], the
r-hybrid knowledge bases in [23], or the DL-safe rules in][Z3_-atoms can appear in
the head of rules, thus allowing for a bi-directional flow fidrmation between the DL

knowledge base and the program.

Example 1.Consider theDLRO~{=} knowledge base> where socialDrinker is a
concept,drinks is a ternary role such that, intuitivelyy:, y, 2) is in the interpretation
of drinks if a personz drinks with persory somez:

socialDrinker T 3[$1](drinks 1 ($3/3 : {wine})) .

The knowledge base indicates that social drinkers drinlewiith someone. Consider
a GPP that indicates that someone has an increased risk of aisahdlthe person
is a social drinker and knows someone from the associatidtioatholics Anonymous
(AA). Furthermore, we state thathnis a social drinker and knowsichaelfrom AA.

problematic(X ) «— socialDrinker(X), knowsFromAA(X,Y)
knowsFromAA(john, michael) «—
socialDrinker(john) «—

TogetherX’ and P form a g-hybrid knowledge base. The literats:ialDrinker(X)

and socialDrinker(john) are DL atoms where the latter appears in the head of a rule
in P. The literalknowsFromAA(X,Yappears only in the program (and is thus not a

DL atom).

We define the semantics of g-hybrid knowledge bg$esP) using interpretations
(U,Z, M). Given a DL interpretatiofiD, Z) and a ground programf, definell(P,T)
as theprojectionof P with respect td obtained as follows: for every rulein P,

— if there exists a DL literal in the head of the form
o A(t)witht € AZ, or
e not A(t) with t ¢ AZ,
then delete,
— if there exists a DL literal in the body of the form
o A(t)witht ¢ AT, or
e not A(t)witht ¢ AZ, or
then delete,
— otherwise, delete all DL literals from

Intuitively, the projection of a ground program transforthis grounded program by
removing rules and DL literals consistently with conceptually this is similar to the
GL-reduct which removes the rules and negative literalsistently with an interpre-
tation.



Definition 2. Let(X, P) be a g-hybrid knowledge base. ThénZ, M) is an interpre-
tation of (X, P) iff

— U = (D, o) is a pre-interpretation fotP,

— (D,I)is an interpretation ofZ,

— M is an interpretation of I (P, Z), and

— bl = o(b) for every constant symbblappearing both in and in P,

For (U = (D,0),Z, M) to be a model of a g-hybrid knowledge base, we require
that (D, Z) should be a model of the Description Logic knowledge basethat\/
should be an answer set of the projection of the groundineoptogram with/.

Definition 3. An interpretation(U,Z, M) with U = (D, o) is then amodelof (X, P)
iff

1. (D,Z)is amodel ofZ, and

2. M is ananswer set ol (Py,T).

For p a concept expression frotd or a predicate fromP, we have thap is satisfiable
w.r.t (X, P) if there is a mode(U, Z, M) such that? # ) or p(x) € M for somez
from D, respectively.

Example 2.Consider the g-hybrid knowledge base in Example 1. Téke- (D, o)
with D = {john, michael, wine, z} ando the identity function on the constant sym-
bols in(X, P). Furthermore, definé as follows:

— socialDrinker” = {john},
— drinks® = {(john, z, wine)},
— wine” = wine.

andM = {knowsfromAA(john, michael), problematic(john)}. Then(U,Z, M) is a
model of this g-hybrid knowledge base. Note that the prajeatf the program will no
longer contain the ruleocialDrinker(john) «— .

We can translate the g-hybrid knowledge base from Exampteal@P such that the
knowledge base is satisfiable iff the logic program is satidéi. The axiom

socialDrinker T 3[$1](drinks N ($3/3 : {wine})) .
is translated to a constraint:
— socialDrinker(X), not (3[$1](drinks M ($3/3 : {wine})))(X)

Thus, the concept expressions on either side ofilsymbol in an axiom are associ-
ated with a new unary predicate name. For convenience, wateléme predicates like
the corresponding concept expressions. The constraintiaies the behavior of the
DLRO~{=} axiom. If the left-hand side of the axiom holds and the rigand side
does not hold, we have a contradiction.

It remains to define those newly introduced predicates aatgto the DL seman-
tics. First, all the concept and role names occurring in tkiera above need to be



defined as free predicates, in order to simulate the firstragemantics of concept and
role names in DLs. Intuitively, in DLs a tuple is in the extemsof a concept or role or
not; this behavior can be captured exactly by free predicate

socialDrinker(X) V not socialDrinker(X) «—
drinks(X,Y,Z)V not drinks(X,Y,Z) —

Note that concept names are translated to unary free ptediadilen-ary role names
are translated ta-ary free predicates.

The definition of the truth symbol$; and T3 that are implicitly present in our
DLRO™ =} axiom (since the axiom contains a concept name and a teral)yare
defined as free predicates as well. Note that we do not neeztlicpte forT 5 since the
axiom does not contain binary predicates.

T(X)VnotTs(X)
Ts(X,Y,Z)Vnot T5(X,Y,Z) —

We ensure that for the terna®LRO ™=} role drinks, drinks® C T% holds by
adding the constraint:

— drinks(X,Y,Z),not Tg(X,Y,Z)
To ensure that 7 = AZ, we add the constraint:
— not T4(X)

For rules containing only one variable, we can always asstnaeX = X is in
the body and acts as the guard of the rule such that the latetis a guarded rule
when regarded as the equivalent rule not T,(X), X = X. Note that we can allow
for such an equality guard without affecting decidabilisy decidability for guarded
programs was shown in [13] by a translation to guarded fixédtgogic where one
allows for guardsY = X as well [9].

We define the nomindlwine} by the rule

{wine}(wine) —

Intuitively, since this rule will be the only rule with the gulicate{ wine} in the head,
every open answer set of the translated program will onlytaiof{ wine}(z) with
o(wine) = z if and only if the corresponding interpretatiqavine}? = {z} for
. T

wine = I.

TheDLRO =) role expressiori$3/3 : {wine}) indicates the ternary tuples for
which the third argument belongs to the extensionudfe, which translates to the
following rule:

($3/3 : {wine})(X,Y,Z) — T3(X, Y, Z),{wine}(Z)

Note that the above rule is guarded by thgliteral.



Finally, the concept expressi@drinks M ($3/3 : {wine})) can be represented by
the following rule:

(drinks 11 ($3/3 : {wine}))(X,Y,Z) — drinks(X, Y, Z),
($3/3 : {wine})(X,Y, Z)

The translation thus translates the DL constructas conjunction in the body of a
rule.

TheDLRO =} role 3[$1](drinks M ($3/3 : {wine})) can be represented by the
following rule:

(3[$1](drinks 11 (83/3 : {wine})))(X) « (drinks 11 ($3/3 : {wine}))(X, Y, Z)

Indeed, the elements that belong to the extensiati&if| (drinks M ($3/3 : {wine}))
are exactly those that are connected with the (883 : {wine}) as specified in the
rule.

This concludes the translation of the DL knowledge baseqgdine g-hybrid knowl-
edge base in Example 1. The program part can be considersgdsitscie, by definition
of g-hybrid knowledge bases, this is already a GP.

We define the formal translation from g-hybrid satisfiapithecking to satisfiabil-
ity checking w.r.t. programs using the notionaldsure Define theclosureclos(X') of a
DLRO™IS! knowledge basé’ as the smallest set satisfying the following conditions:

— T1 € clos(X),

— foreachC C D an axiom inX (role or terminological){C, D} C clos(X),

— foreveryDin clos(X), clos(X') should contain every subformula that is a concept
expression or a role expression,

— if clos(X) containsn-ary relation names, it must contain,.

Formally, we definep(X) for a DLRO™ =} knowledge base to be the following
program:

— For each terminological axiof = D € X, add the constraint

— C(X),not D(X) 1)
— For each role axionR C S € X whereR andS aren-ary, add the constraint
—R(X1,...,Xn),not S(X1,...,Xy) 2)
— For eachT,, € clos(X), add the free rule
To(X1,.. ., Xp) Vot Tp(Xy, ..., X,) « 3)

Furthermore, for each-ary relation nam@ € clos(X'), we add the constraint
—P(Xy,..., Xp),not Tp(X1,..., Xy) (4)
Intuitively, the latter rule ensures thRf C TZ. We add a constraint
— not T1(X) (5)

which enforces that for every elementn the pre-interpretation( ; (x) is true in
the open answer set. The latter rule ensures Tat= D for the corresponding
interpretation. The rule is implicitly guarded withi = X.



— Next, we distinguish between the types of concept and rglesssions that appear
in clos(X). ForD € clos(X):
e if D is aconcept nominglo}, add

D(o) — (6)
This will ensure thafo} () holds in an open answer setiff= o(o) = o for
an interpretation of X, P).
e if D is aconcept name, add
D(X)Vnot D(X) «— @)
e if D is ann-ary relation name, add
D(Xy,...,X,) Vnot D(Xy,...,X,) « (8)
e if D = —FE for a concept expressiaf, add
D(X) < not E(X) 9)

Note that we can again assume that such a rule is guard&d-byX .
e if D = =R for ann-ary role expressioR,, add

D(Xy,...,X,) « Tp(X1,...,Xpn),not R(X1,..., X,) (20)

Note that if negation was defined w.r.t. i instead ofTZ, we would not be
able to write the above as a guarded rule.
e if D = E M F for concept expressions andF’, add

D(X) « E(X), F(X) (11)
e if D = EMF for n-ary role expressionE andF, add
D(X1,...,X,) — E(X1,...,X,),F(X1,...,X,) (12)
e if D= (%i/n:C), add
D(X1,..., X, .., Xp) = Tou(Xy, .., X5y, X0), O(XS) (13)
e if D =3[$i|R, add
D(X) —R(X1,..., Xi-1, X, Xiq1,..., X,) (14)
We now show that this translation preserves satisfiability.

Theorem 1. Let (X, P) be a g-hybrid knowledge base whereis a DLRO (=}
knowledge base. Then, a predicate or concept expregsissatisfiable w.r.t(X, P)
iff p is satisfiable w.rtd(X) U P.



Proof. (=) Assumep is satisfiable w.r.t(X, P), i.e., there exists a modé&l,Z, M)
of (X, P) whereU is the pre-interpretatiofD, o) that givesp a non-empty extension.
Construct then the open interpretatidi V) of (X, P) such thatV = (D, ¢’) with
o’ : cts(P(X)UP) — D defined such that’'(x) = o(x) for a constant symbol
from P ando’(z) = 27 for a constant symbol fronX. Note thato’ is well-defined
since for constant symbolsthat are in both® and P, we have that-(z) = xZ. The
setN is defined as follows:

N=MU{C(z)|ze€C* C e cls(X)}
U{R(z1,...,2) | (1,...,2,) € RT, R € clos(X)}

with C' andR concept expressions and role expressions respectively.
It is easy to verify thafV, N) is an open answer set @{ ') U P that satisfies.
(<) Assume(V, N) is an open answer set @ X') U P with V' = (D, ¢’) such that
p is satisfied. Define a tuplg/, Z, N), with

— U = (D, o) whereo : cts(P) — D with o(z) = o’(x) (note that this is possible
sincects(P) C cts(®(X) U P)). U is then a pre-interpretation fdp.

— An interpretation functiorT defined such thati? = {x | A(x) € N} for concept
namesA, R = {(z1,...,7,) | R(z1,...,2,) € N} for n-ary role name®
ando? = ¢’(0), for o a constant symbol it (note that’ is indeed defined oo).
(D,Z) is then an interpretation of'.

— M = N\{p(x) | p € clos(X)}, such thatM is an interpretation ofl (Py,Z).

Moreover, for every constant symbblappearing both in and in P, b¥ = o(b),
making(U,Z, M) an interpretation of X, P).
It is easy to verify thafU, Z, M) is a model of( X, P) that satisfiep. O

Theorem 2. Let (X, P) be a g-hybrid knowledge base whefeis a DLRO (=}
knowledge base. The®(X) U P is a GP, with a size that is polynomial in the size
of (X, P).

Proof. Observing the rules that originate fral it is clear that they are guarded. Fur-
thermore, the prograrR itself is a GP such thak(X') U P is as well.

The size ofclos(X) is of the ordemlogn wheren is the size of¥. Indeed, in-
tuitively, given that the size of an expressiormmiswe have that the size of the set of
its subexpressions is at most the size of a tree with diegth where the size of the
subexpressions at a certain level of the tree is at mo¥he size of the G(Y) is
polynomial in the size otlos(X'). However, note that we assume here that the size of
X increases such that thein an addedq-ary role expression is polynomial in the size
of the maximal arity of role expressions M. If we were to add a relation nanie
with arity 2", wheren is the maximal arity of relation names (i and Y, the size of
XY would increase linearly, but the size®f>") U P would increase exponentially: one
needs to add, e.g., rules

TQ'IL(Xl, .. .,X2n) V nOt T2n(X1, .. .,in) —

which introduce an exponential number of arguments whiesibe of the rol®R does
not depend on its arity. a



Note that in g-hybrid knowledge bases, we consider the feg@LRO ™=} of
DLRO without the expressions k[$:]R. since such expressions cannot be simulated
with guarded programs. E.g., consider the concept exmessil[$1] R whereR is a
binary role. One can simulate tkeby negation as failure:

< 1[$1]R(X) « not ¢(X)
for some new; with ¢ defined such that there are at least 2 diffef@rguccessors:
q(X) < R(X, Y1), R(X,Y2),Y1 # Y2

However, the latter rule is not a guarded rule — there is nmalat containsy, Y7, and
Y>. So, in general, expressing number restrictions such &$:|R is out of reach for
GPs. From Theorems 1 and 2 follows:

Corollary 1. Satisfiability checking w.r.t. g-hybrid knowledge baseenetthe DL part
isaDLRO—{=} knowledge base can be polynomially reduced to satisfiglsttiecking
w.r.t. GPs.

Since satisfiability checking w.r.t. GPs isEXPTIME-complete [13], we have the
same 2EXPTIME characterization for g-hybrid knowledge bases. We firsteredplicit
a corollary of Theorem 1.

Corollary 2. LetP be a GP. Thery is satisfiable w.r.tP iff p is satisfiable w.r.t((), P).

Theorem 3. Satisfiability checking w.r.t. g-hybrid knowledge basegmtihe DL part
is aDLRO~{=} knowledge base is @xPTIME-complete.

Proof. Membership in 2ExpTIME follows from Corollary 1. Hardness follows from 2-
EXPTIME-hardness of satisfiability checking w.r.t. GPs and the c&dn to satisfiability
checking in Corollary 2. ad

4 Relation with DL+1log and other Related Work

In [24], so-calledDL+Ilog knowledge bases combine a Description Logic knowledge
base with aveakly-safalisjunctive logic program. Formally, for a particular Depe

tion LogicDL, aDL+log knowledge basis a pair(X, P) whereX' is aDL knowledge
base consisting of @Box(a set of terminological axioms) and aBox(a set ofasser-
tional axiom$, and P contains rulesy < (3 such that for every rule: a — g € P:

—a” =0,

— [~ does not contain DL atoms (call tHH_-positiveness

— each variable im occurs in an atom fron3+ (Datalog safenegsand

— each head variable inoccurs in a non-DL atom fromi™ (weak safeneys

The semantics foP L+ log is the same as it is for g-hybrid knowledge b&sesth
some exceptions:

8 Strictly speaking, we did not define answer sets of disjurqtrograms, however, the defini-
tions of Subsection 2.1 can serve for disjunctive prograitisout modification. Also, we did
not consider ABoxes in our definition of DLs in Subsection. Hawever, the extension of the
semantics of DL knowledge bases with ABoxes is straightfody



— We do not have atandard name assumpti@uch as [24] has, which basically
assumes every interpretation is over the same infinitelytadale number of con-
stants. Neither do we have the impliadique name assumptipmaking the se-
mantics for g-hybrid knowledge bases more in line with corf@emantic Web
standards such as OWL [3] where neither the standard nareesipgon nor the
unique names assumption holds.

— Furthermore, we defined an interpretation as a tr{pleZ, M) instead of a pair
(U,Z") whereZ’ = 7 U M, this is, however, equivalent to [24].

We balance the key differences of the two approaches:

— In [24] the head of a rule is of the forpy (X1) V ...V p,(X ) with n possibly
0, i.e., the requirement ™| < 1 does not hold as it does for our programs. On the
other hand, this implies thad.—| = 0 in [24], while there is no such restriction in
our case.

— Instead of Datalog safeness we hguardedness.e., while with Datalog safeness
every variable in the rule should appear in some positivenaibthe body of the
rule, guardedness requires that there is a positive atoncdingains every variable
inthe rule. E.g.a(X) « b(X), ¢(Y) is Datalog safe sincX appearsih(X) and
Y appears ine(Y') but it is not guarded since there is no atom that contains both
X andY in its arguments. Note that we could easily extend the ambrtaken in
this paper tdoosely guarded programshich require that every two variables in
the rule should appear together in a positive atom, how#hisrwould still be less
expressive than Datalog safeness.

— We do not have the requirement for weak safeness, i.e., feréables do not need
to appear positively in a non-DL atom. The guardedness maydnaded by a DL
atom.

Example 3.Example 1 contains the rule
problematic(X) <« socialDrinker(X), knowsFromAA(X,Y)

This allows to deduce thaX’ might be a problem case evenXf knows some-
one from the AA but is not drinking with that person, indeesljlaustrated by the
example model in Example John is drinking wine with some anonymousand
knowsmichael from the AA. More correct would be the rule

problematic(X, Z) « drinks(X, Y, Z), knowsFromAA(X,Y)

where we explicitly say thak’ andY in the drink and knowsFromAA relation
should be the same and we extendghelematic predicate with the kind of drink
that X has a problem with. Then, the head variaBlés guarded by the DL atom
drinks and the rule is thus not weakly-safe but it is guarded notetbeThus,
the resulting knowledge base is noDa+log knowledge base but is a g-hybrid
knowledge base.

— We do not have the requirement for DL-positiveness, i.e.,dldms may appear
negated in the body of rules (and also in the heads of rulesj)eMer, one could



allow this in DL+log knowledge bases as well, singet A(X) in the body of
the rule has the same effect 46X ) in the head, where the latter is allowed in
[24]. Vice versa, we can also loosen our restriction on theugence of positive
atoms in the head (which allows at most one positive atomerhibad), to allow
for an arbitrary number of positive DL atoms in the head (tilltkeeep the number
of positive non-DL atoms limited to one). E.g., a r@leX) v A(X) «— 3, where
A(X) is a DL atom, is not a valid rule in the programs we considerdesthe
head contains more than one positive atom. However, we @aysalrewrite such
arule as the rule(X) < 8, not A(X), which contains at most one positive atom
in the head.

Arguably, DL atoms should not be allowed to occur negativiedeause DL predi-
cates are interpreted classically and thus the negationim 6f the DL atom is not
nonmonotonic. However, Datalog predicates which depenBlopredicates are
also (partially) interpreted classically.

— We do not take into account ABoxes in the DL knowledge base [24] does.
However, the DL we consider includes nominals such that @mesimulate the
ABox using terminological axioms. Moreover, even if the Dbes not include
nominals the ABox can be written as ground facts in a progradhgaound facts
are always guarded.

— Decidability for satisfiability checkingof DL+log knowledge bases in [24] is
guaranteed if decidability of the conjunctive query comtaént problem is guaran-
teed for the DL at hand. However, we relied for showing degiiig on a trans-
lation of DLs to guarded programs, and, as explained in tbeipus section, e.g.,
DLs with number restrictions cannot be translated to them.

[18] and [25] simulate reasoning in DLs with a LP formalismusing an interme-
diate translation to first-order clauses. In [18}{Z Q knowledge bases are reduced to
first-order formulas, on which basic superposition calsuguthen applied.

[25] translatesALC QT concept expressions to first-order formulas, grounds them
with a finite number of constants, and transforms the res@tibgic program. One can
use a finite number of constants by the finite model proper&f O7; in the presence
of terminological axioms this is no longer possible since finite model property is
lost.

In [19], the DL ALCNR (R stands for role intersection) is extended with Horn
clauses)(Y) «— pi (X ;),...,pn(X,) where the variables i must appear ifX; U
...UXy,;p1,-..,p, are either concept names, role names, or ordinary predioate
appearing in the DL part, ands an ordinary predicate. There is no safeness in the sense
that every variable must appear in a non-DL atom (i.e., witloainary predicate), as
itisin, e.g., [22]. The semantics is as in [22]: extendedriptetations that satisfy both
the DL and clauses part (as FOL formulas). Query answeringdgcidable if recursive
Horn clauses are allowed, but decidability can be regaiyeestricting the DL part or
by enforcing that the clauses are role safe (each variatderale atomR(X,Y") for
a role R must appear in a non-DL atom). Note that the latter restricis less strict

" [24] considers satisfiability checking of knowledge basestdéad of predicate satisfiability
checking as we do, however, the former can easily be redacte tatter.



than the DL-safeness of [22], where also variables in conagpns A(X) need to
appear in non-DL atoms. On the other hand, [22] allows forntoee expressive DL
SHOIN (D), and the head predicates may be DL atoms as well. In relatitmour

work: we needed the guardedness and not just role safenesfl 8%

An AL-log [5] system consists of two subsystems:.46C knowledge base and
a set of Horn clauses of the above form, where variables irnéaal must appear in
the body, only concept names besides ordinary predicageslawed in the body (thus
no role names), and there is a safeness condition as in [2Rigsthat every variable
appears in a non-DL atom.

In [6, 7] Description Logic programare introduced; atoms in the program compo-
nent may bedl-atomssuch that one can query the knowledge in the DL part and each
query can also provide the DL with information that the rudetpleduced, yielding a
bi-directional flow of information.

Finally, SWRL [17] is aSemantic Web Rule Languaged extends the syntax and
semantics of OWL DL (i.e SHOZN (D)) with unary/binary Datalog RuleML [1], i.e.,
Horn-like rules. This extension is undecidable [16].

5 Conclusions and Directions for Further Research

We defined g-hybrid knowledge bases which combine Desoriptbgic (DL) knowl-
edge bases with guarded programs. In particular, we cordlikinewledge bases of the
DL PLRO =} which is close to OWL DL, with guarded programs and showed de
cidability of this framework by a reduction to guarded praxgis under the open answer
set semantics [13]. We discussed the relation ®itH-log knowledge bases: g-hybrid
knowledge bases overcome some of the limitation®df+log, such as the unique
name assumption, the requirement for DL-positivenessalDatsafeness, and weak
DL-safeness, but introduces the requirement of guarded@epresent, a significant
disadvantage of our approach is the lack of support for Dlth wumber restrictions
which is inherent to the use of guarded programs as our datitgavehicle. A solu-
tion for this would be to consider other types of programshsasconceptual logic
programg[11]. This would allow for the definition of an hybrid knowlgd bas€ X', P)
whereX' is aSHZ Q knowledge base an#l is a conceptual logic program sin&{Z Q
knowledge bases can be translated to conceptual logicgregr

At present, there is no implemented system for open answpragramming avail-
able; this is part of future research.
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