
Proc. Int’l Conf. on Dublin Core and Metadata Applications 2009

A Unified Approach for Representing Metametadata

Kai Eckert
Mannheim University,

Germany
kai@informatik.uni-

mannheim.de

Magnus Pfeffer
Mannheim University

Library, Germany
pfeffer@bib.uni-

mannheim.de

Heiner Stuckenschmidt
Mannheim University,

Germany
heiner@informatik.uni-

mannheim.de

Abstract

Using metametadata like provenance on statement level has been proposed as a possible solution

to some—if not most—problems that occur in a metadata aggregation context. Examples for

these problems are the information loss that occurs during metadata format conversion or the

alignment of disparate metadata quality. Until now, no feasible way to store and manage

metametainformation has been proposed. In this paper, we suggest the use of RDF reification as

an elegant way to fill this gap that in addition adheres to all standards and recommendations.

We demonstrate this approach by the means of two scenarios: First, an enhancement for metadata

crosswalks that supports the maintenance of the converted metadata, and second the use of

metametadata for the efficient integration of subject annotations from different sources.

Keywords: rdf; reification; metametadata; crosswalk.

1. Introduction

Many libraries and institutions are creating or maintaining retrieval systems that draw metadata

from diverse sources. Patrons are expecting to be able to search through all resources, print or

online, in a unified system. Thus the augmentation of metadata from the online catalogue

containing mostly monographs and journal titles with metadata from journal subscriptions or

online repositories containing individual articles is becoming more commonplace.

To create a metadata pool that can be used for retrieval and presentation, the metadata needs to

be harmonized on two aspects: quality and format. Both aspects have their own inherent problems

that need to be dealt with. As we will see in the following sections, several approaches to solving

these issues make use of metametadata, i.e. information about the metadata like provenance. The

contribution of this paper is a unified way to represent and manage all kinds of metametadata

using RDF.

Metadata quality. Krause (2008) compares the various sources for metadata to layers that are

formed around the core content that is catalogued and indexed with high quality and also highly

relevant to the patrons of a given library. Additional content of various degrees of metadata

quality and relevance are grouped around this core content and supplement it. The author points

out that it is not economically feasible to raise the indexing depth and quality of the content of the

outer layers to the standards of the core content and instead argues that the semantic

heterogeneity of the different layers needs to be addressed by an adequate infrastructure.

Hillmann et al. (2004) considered the problem of metadata quality in the context of metadata

aggregation. While mainly focused on the practical problems of aggregation, the paper addresses

the aspect of subsequent augmentation with subject headings and changes the emphasis from the

record to the individual statement. Preserving provenance and means of creation on this level of

detail is considered necessary by the authors. They proposed an extension of OAI-PMH to

implement their solution. Hillmann (2008) further expands on quality issues and notes

inconsistent use of metadata fields and the lack of bibliographic control among the major

problems. Preserving provenance information at the repository, record or statement level is one of

the proposed methods to ensure consistent metadata quality.

21

2009 Proc. Int’l Conf. on Dublin Core and Metadata Applications

The specific need for improved metadata quality with regards to annotations has been pointed

out by Barton et al. (2003):

There will always be some aspects of the metadata that are inaccurate, inconsistent or out

of date, even in systems which have extensive quality assurance procedures in place and

have invested heavily in the creation of good quality metadata. For example, when a

published subject classification scheme is updated, new resources may be classified using

new subject terms but existing resources may not be reclassified, giving rise to

inconsistent subject-based searches. Furthermore, in established systems, there may be a

drift over time between policy and practice; a study into cataloging practices [...] found

the issue to be widespread.

Again, the proposed way to tackle the problem is to store metametainformation like version of

the scheme used, time of annotation, etc. with the subject headings.

Metadata formats. In order to harmonize disparate metadata formats, a common ground needs

to be established. The Dublin Core Metadata Set (DCMS) is well suited for the task at hand, as it

is a common denominator of most if not all metadata formats and is also considered sufficient for

indexing, retrieval and presentation using a search engine. To facilitate a conversion between

different formats, crosswalks describing a mapping of fields between two metadata formats are

used. Godby et al. (2008) have described ways to deal with the problem of managing and

maintaining such crosswalks. They describe a repository of crosswalks that stores the semantic

information needed for mapping fields in a way that is appropriate for editing by human metadata

experts.

This information is then compiled into programs that deal with the conversion process at the

file level. As most bibliographic metadata formats used by libraries have a richer element set with

more rigid semantics, information is inevitably lost in the conversation process. The MARC to

DCMS crosswalk maintained by the Library of Congress
1 illustrates this nicely: For the dc:date

field, up to seven MARC fields contain information related to different dates and could be

considered, but there is no way to express the semantic distinction in the DCMS.

Application Profiles. One possible approach to mitigate the information loss incurred in

converting metadata is to create an application profile that captures the most essential metadata

fields and offers a way to express important semantic distinctions. This is usually done by adding

extensive qualifiers to the DCMS fields. Creating consensus on an application profile can be very

difficult even in a clearly defined context and a small group of participants. Examples for the

challenges during the creation of application profiles are described amongst others by Devey and

Cote (2006) and Friesen et al. (2002). Furthermore there are only very limited ways to create

machine-readable application profiles which hinders automatic checking of metadata for

compliance with a given application profile.

Overview. In this paper, we will describe an alternative approach to mitigate information loss

that is based on the idea of preserving provenance and other metametainformation at the

statement level. The approach utilizes inherent properties of the RDF standard and is compatible

with the DC recommendations. The paper is structured as follows: We will briefly introduce RDF

and RDF reification and will describe its use for encoding arbitrary metametainformation. Next,

we elaborate the use-cases for two distinct scenarios: aggregating metadata from multiple sources

using crosswalks and augmenting existing metadata with annotations from multiple sources.

2 RDF and RDF Reification

The setup described in this paper uses the RDF reification to store metametadata. Thus we are

restricted to RDF as target format. In this section, we give a brief introduction to RDF.

1 http://www.loc.gov/marc/marc2dc.html

22

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2009

2.1 RDF

The Resource Description Framework (RDF) is a set of standards of the World Wide Web

Consortium (W3C) to express descriptive statements about arbitrary resources. Such a statement

is represented as a triple consisting of subject (S), predicate (P) and object (O). Subject and

predicate are represented as a uniform resource locator (URI) so that these elements can be

identified unambiguously. The object can be either an URI or a literal. Typical RDF statements

are shown in Example 1.

There are several defined ways to express RDF statements, among which the XML

formulation (RDF/XML) is the most common one. The simpler and more human readable

Notation 3 (RDF/N3) is equally expressive. In this paper, we use a simplified triple notation

similar to N3, with namespace2 abbreviations to save space and improve readability.

A common visualization of RDF data is a directed graph consisting of nodes representing the

subjects and objects of the statements and the edges representing the predicates. Example 2 shows

a full example with our triple notation, RDF/XML and the visualization as a directed graph.

Example 2 complies with the final Dublin Core recommendation on the expression of Dublin

Core metadata elements with RDF (DC-RDF) which has been published by Nilsson et al. [2008].

In the example, an URI is used to unambiguously identify the subject heading which allows

further statements about it. Here this is used to assign the literal values in two languages and the

notation. Thus an object of one statement can become the subject of another statement and these

chained statements ultimately form the directed RDF data graph.

The various principles and practices of using Dublin Core in different application settings led

to the need for some clarification and proper definition, how Dublin Core metadata elements

should be assigned to documents. This is addressed by the DCMI Abstract Model (DCAM,

Powell et al. (2007)) which reached recommendation status in 2005. It provides the formal basis

for the instantiation of Dublin Core metadata elements and is fully compatible with the semantic

model of RDF.

2.2 Reification

RDF provides a means for the formulation of statements about statements, called reification.

The use of reification was mentioned explicitly in a former version of DC-RDF, but "is now

considered to fall outside the scope of the specification and is therefore no longer part of the

January 2008 Recommendation. As it does not interfere with the metadata itself, however,

reification can still be used in accordance with RDF specifications." (Nilsson and Baker [2008])

In our proposed approach, we can use reification to provide arbitrary additional information

about existing Dublin Core metadata elements. In the RDF model, this means that a complete

statement consisting of subject, predicate and object becomes the subject of a new statement that

adds the desired information
3.

2 Throughout this document, we use the following namespaces:

 xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

 xmlns:ex=“http://example.org/”

 xmlns:dc=“http://purl.org/dc/elements/1.1/”

 xmlns:dcam=“http://purl.org/dc/dcam/”
3 As a statement cannot be identified uniquely in RDF beside the notion of S, P and O,

 Subject Predicate Object

1 ex:p123 rdf:type ex:person

2 ex:p123 ex:hasName “Kai Eckert”

3 ex:p123 ex:worksFor ex:unima

Example 1: A simple RDF example

23

2009 Proc. Int’l Conf. on Dublin Core and Metadata Applications

Example 3 introduces our notation of statements about statements in this paper. We use the

line number of our examples as an unique identifier for each statement and reference it as a

subject via the # character.

2.3 Querying RDF data

There are many software tools that work on RDF data. For the examples in this paper, we used

Sesame4, an open source framework for storage, inferring and querying of RDF data.

We demonstrate by means of queries formulated in the Sesame RDF Query Language5 that all

of our use-cases can be implemented in this standard environment. The syntax is close to SQL

and thus the examples can be understood without deeper knowledge of the query language.

a reification statement refers to all triples with the given S, P and O. In the Dublin Core

context this ambiguity has no practical effects, as identical triples are semantically equivalent

to duplicated metadata fields that can be safely discarded as redundant information.
4 http://www.openrdf.org/
5 http://www.openrdf.org/doc/sesame/users/ch06.html

 Subject Predicate Object

1 ex:123 dc:subject ex:subject32

2 ex:subject32 dcam:memberOf ex:taxonomy/ExampleSubjects

3 ex:subject32 rdf:value “Biology”@en

4 ex:subject32 rdf:value “Biologi”@sv

5 ex:subject32 rdf:value “EA32”ˆˆ ex:taxonomy/SubjectEncoding

<rdf:RDF>

 <rdf:Description rdf:about="http://example.org/123">

 <dc:subject>

 <rdf:Description rdf:about="http://example.org/subject32">

 <dcam:memberOf

 rdf:resource="http://example.org/taxonomy/ExampleSubjects"/>

 <rdf:value xml:lang="en">Biology</rdf:value>

 <rdf:value xml:lang="sv">Biologi</rdf:value>

 <rdf:value

 rdf:datatype="http://example.org/taxonomy/SubjectEncoding">

 EA32</rdf:value>

 </rdf:Description>

 </dc:subject>

 </rdf:Description>

Example 2: Subject Heading with full Description

 Subject Predicate Object

1 ex:123 dc:subject ex:subject32

2 ex:subject32 dcam:memberOf ex:taxonomy/ExampleSubjects

3 #1 ex:source ex:p123

Example 3: Simple notation for RDF reification

24

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2009

3 Crosswalks

In this section, we will explicate the use of metametadata in a metadata aggregation context:

University libraries need to handle metadata from diverse sources that is usually encoded in

incompatible metadata formats and of disparate quality. A typical setup might contain data from

the local catalogue, which is encoded in MARC and adheres to high quality standards, while

additional metadata from online journal providers is encoded in proprietary XML formats and

contains only a minimal set of fields. Additional data from the local document repository server

uses the unqualified DCMS as the metadata encoding format, but the fields are used

inconsistently, as the authors of the documents are also responsible for providing the metadata.

To facilitate a unified search interface on this heterogeneous metadata accumulation, the

metadata formats need to be aligned. Typically, a format that forms a common denominator of all

formats involved is chosen and the metadata is converted into this target format using crosswalks.

These crosswalks had usually been hand-crafted by metadata experts and then transferred into

program logic or transformation stylesheets. Recently there have been efforts to establish a

standard way to represent, manage and maintain crosswalks from one metadata format into

another. In Godby et al. (2008) the authors describe an infrastructure that supports cooperative

creating of crosswalks by providing a framework for reusable, descriptive mappings that get

transferred into program logic by an automated process. The mappings have to be created by

human metadata experts first and the results are consolidated into a spreadsheet of translation

rules. Each line of the spreadsheet describes the rules for a single mapping of a pair of metadata

elements; and it is important to note that these individual mappings are independent from each

other. The automated script generation creates executables that will read metadata in the source

format and writes metadata in the output format.

As the DCMS is the largest common denominator of the metadata present in our scenario, it is

the obvious target format. This necessitates crosswalks from MARC to DCMS and from the

proprietary formats to DCMS, which can be developed using the infrastructure described above.

As our approach only works with RDF output, the DC-RDF format described above is used. We

now propose to extend the program logic that is derived from the mappings to not only write the

resulting metadata elements, but additionally for every element the following information:

• the version of the crosswalk used

• the number of the mapping rule used

• the source fields used

The additional information is written as extra RDF triples that describe a single metadata

element. Example 4 shows a characteristic metadata record that has been extended in the

proposed manner. For the following examples, we assume that all converted metadata records and

the reification statements are stored in a single RDF file. We will show how the metametadata

stored in this file can be used to mitigate typical problems that might arise in our scenario.

3.1 Use-case 1: Crosswalk updates

Consider the MARC to DCMS crosswalk used in the scenario. A likely source would be the

crosswalk released by the Library of Congress
6 which has last been updated in 2008 and reflects

MARC fields as they were at that time. There is a high likelihood that future changes and

extensions to the MARC standard will cause changes to the rules in the crosswalk. In our scenario,

this would imply a full re-conversion and re-indexing of all metadata that was originally in the

MARC format. With the RDF file, it is possible to compose a simple query that retrieves the

resource ids of the documents that have been converted using either a specific rule or a specific

version of a crosswalk. See Example 5 for a sample query. The granularity of the query can be

6 http://www.loc.gov/marc/marc2dc.html

25

2009 Proc. Int’l Conf. on Dublin Core and Metadata Applications

chosen depending on the changes in the crosswalk. Thus the computing overhead and downtime

for the re-conversion and re-indexing can be kept to a minimum.

3.2 Use-case 2: Fixing mapping errors

In the ongoing operation of the retrieval system, patrons or staff will notice erroneous records.

Typical examples are seemingly incomplete or corrupted records or result sets containing

unexplainable search results that are caused by either quality issues in the source data or errors or

insufficient or wrong rules in the crosswalk. In our scenario, an error report containing affected

record ids would imply retrieval of the converted records in question, retrieval of the original

records, retrieval of the crosswalk mappings and a manual search for the problematic mapping

rule. With the RDF file, one can directly query for the crosswalk, its version and mapping rule

that are responsible for the creation of the flawed metadata element. Even the fields from the

source data can be retrieved. See Example 6 for a sample query. The result contains everything

the crosswalk engineer might possibly need to analyze the cause of the error and create a fixed

 Subject Predicate Object

1 ex:docbase/doc1 dc:title “Example title”

2 #1 ex:rule 16

3 #1 ex:crosswalk 3

4 #1 ex:origin MARC:245

5 ex:docbase/doc2 dc:title “About finding a title”

6 #5 ex:rule 16

7 #5 ex:crosswalk 3

8 #5 ex:origin MARC:245

9 ex:docbase/doc3 dc:title “Lorem ipsum dolor”

10 #9 ex:rule 18

11 #9 ex:crosswalk 3

12 #9 ex:origin MARC:245

13 #9 ex:origin MARC:246

14 ex:docbase/doc4 dc:title “Consetetur Sadipscing”

15 #14 ex:rule 19

16 #14 ex:crosswalk 6

17 #14 ex:origin xml:/record/description

Example 4: Resulting RDF statements with additional Metametadata

select crosswalk, rule, origin from {document} {field} {value},

 {{document} {field} {value}} ex:rule {rule},

 {{document} {field} {value}} ex:crosswalk {crosswalk},

 {{document} {field} {value}} ex:origin {origin}

 where document = ex:docbase/doc1

 and field = dc:title and value = ‘‘Example Title’’

crosswalk rule origin

3 16 MARC:245

Example 6: Querying crosswalk, rule and original field for a given metadata element

select document, field, value from {document} {field} {value},

 {{document} {field} {value}} ex:rule {rule},

 {{document} {field} {value}} ex:crosswalk {crosswalk}

 where rule = 16 and crosswalk = 3

document field value

ex:docbase/doc1 dc:title “Exmple title”

ex:docbase/doc2 dc:title “About finding a title”

Example 5: Querying all affected records for a given crosswalk and rule

26

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2009

version in a most efficient manner. Once a new version of the crosswalk has been submitted to

the repository, queries analog to the ones presented in use-case 1 can be used to determine all

affected records that need to be re-indexed.

4 Annotation Provenance

In this section, we develop a second scenario where RDF reification can be used to prevent

information loss while merging annotations from different sources. We show that this is the key

to make transparent use of different annotation sources without compromises regarding the

quality of our metadata. In line with our argumentation in this paper and the prior examples, we

propose the storage of metametadata to mitigate any information loss and allow the usage of this

information to achieve a better retrieval experience for patrons. With various queries, we show

that we can access and use the additional information to regain a specific set of annotations that

fulfills our specific needs.

This scenario focuses on the merging of manually assigned subject headings with

automatically assigned ones. This corresponds to the integration of the outer layer in the Krause

model, were annotation quality needs to be balanced with costs.

Example 7 shows a DC metadata record with subject annotations from different sources and

additional information about the assignments via RDF reification. There is one document

(ex:docbase/doc1) with assigned subject headings from two different sources. For each subject

assignment, we see that a source is specified via an URI. Additionally, a rank for every

assignment is provided, as automatic indexers usually provide such a rank. For example, a

document retrieval system can make direct use of it for the ranking of retrieval results.

For manual assignments, where usual no rank is given, this could be used to distinguish

between high quality subject assignments from a library and, for example, assignments from a

user community via tagging. The statements #13 and #14 are used to further qualify the source,

more precisely, to indicate, if the assignments were performed manually (ex:types/manual) or

automatically (ex:types/auto).

4.1 Use-case 1: Merging annotation sets

Usually, the statements from Example 7 are available from different sources (as indicated).

The integration requires merging them into a single store. An interesting side-effect of the use of

RDF and reification is that the merged data is still accessible from every application that is able to

use RDF data, even if it is not possible to make reasonable use of our metametadata.

This is demonstrated by the first query in Example 8, which retrieves all subject headings that

are assigned to a document. As in RDF all statements are considered identical that have the same

 Subject Predicate Object

1 ex:docbase/doc1 dc:subject ex:thes/sub20

2 #1 ex:source ex:sources/autoindex1

3 #1 ex:rank 0.55

4 ex:docbase/doc1 dc:subject ex:thes/sub30

5 #4 ex:source ex:sources/autoindex1

6 #4 ex:rank 0.8

7 ex:docbase/doc1 dc:subject ex:thes/sub30

8 #7 ex:source ex:sources/pfeffer

9 #7 ex:rank 1.0

10 ex:docbase/doc1 dc:subject ex:thes/sub40

11 #10 ex:source ex:sources/pfeffer

12 #10 ex:rank 1.0

13 ex:sources/autoindex1 ex:type ex:types/auto

14 ex:sources/pfeffer ex:type ex:types/manual

Example 7: Subject assignments by different sources

27

2009 Proc. Int’l Conf. on Dublin Core and Metadata Applications

subject, predicate and object, every subject heading is returned that is assigned by at least one

source.

In most cases, these completely merged statements are not wanted. As promised, we show with

the second query in Example 8 that we are able to regain all annotations that were assigned by a

specific source (here ex:sources/pfeffer).

4.2 Use-case 2: Extended queries on the merged annotations

In the following we show two extended queries that make use of the metametadata provided in

our data store. Usually, one does not simply want to separate annotation sets that have been

merged, but instead wants to make further use of these merged annotations. For example, we can

provide data for different retrieval needs.

The first query in Example 9 restricts the subject headings to manually assigned ones, but they

still can originate from different sources. This would be useful if a high retrieval precision is

needed a decrease of the precision by the results of an automatic indexer is not acceptable.

The second query takes automatic assignments into account, but makes use of the rank that is

provided with every subject heading.

select * from {document} dc:subject {subject}

document subject

ex:docbase/doc1 ex:thes/sub40

ex:docbase/doc1 ex:thes/sub30

ex:docbase/doc1 ex:thes/sub20

select * from {document} dc:subject {subject},

 {{document} dc:subject {subject}} ex:source {source}

 where source=<http://example.org/sources/pfeffer>

document subject source

ex:docbase/doc1 ex:thes/sub40 ex:sources/pfeffer

ex:docbase/doc1 ex:thes/sub30 ex:sources/pfeffer

Example 8: Querying the merged statements

select document, subject, type from {document} dc:subject {subject},

 {{document} dc:subject {subject}} ex:source {source},

 {source} ex:type {type}

 where type = <http://example.org/types/manual>

document subject type

ex:docbase/doc1 ex:thes/sub40 http://example.org/types/manual

ex:docbase/doc1 ex:thes/sub30 http://example.org/types/manual

select document, subject, rank from {document} dc:subject {subject},

 {{document} dc:subject {subject}} ex:rank {rank}

 where rank > 0.7

document subject rank

ex:docbase/doc1 ex:thes/sub40 1.0

ex:docbase/doc1 ex:thes/sub30 1.0

ex:docbase/doc1 ex:thes/sub30 0.8

Example 9: Ranked assignments and additional source information

28

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2009

5 Conclusion

We have seen that many problems arising when trying to merge document metadata from

different sources in a bibliographic context can be addressed by using so-called metametadata -

data about the metadata to be integrated. This observation was already made by others but the

literature criticized the lack of an adequate representation framework for representing

metametadata. In this paper, we argue that the W3C Standard RDF does not only provide a

suitable and convenient framework for representing the metadata itself, but also for metadata

about metadata using reification. This enables us to represent metametadata very fine grained on

statement level suitable for a variety of application scenarios. In our paper, we have discussed

two concrete applications frequently appearing in practice, namely the use of crosswalks to

convert metadata between different formats and the integration of different subject annotation

sets for a given metadata set.

Our results have implications not only on a theoretical level. The use of RDF as a common

language for representing metadata and metametadata at the same time has significant benefits for

their practical handling. Researchers from the area of web-based information systems have

developed a high number of scalable and robust tools for storing and querying RDF data. These

tools can be used to implement a framework for supporting metadata aggregation in practice. This

is especially attractive as more and more metadata is available in RDF format anyways. Examples

include the RDF representation of the Dublin Core Standard and the SKOS format for

representing vocabularies.

References

Barton J., Currier S. and Hey J. (2003) ‘Building Quality Assurance into Metadata Creation: An Analysis based on the

Learning Objects and E-Prints Communities of Practice’, in ‘Proceedings of the International Conference on Dublin

Core and Metadata Applications’.

Devey M. and Cote M.C. (2006) ‘The Development and Use of Metadata Application Profiles: The Government of

Canada Experience.’, Serials Librarian, 51(2), pp. p103–115, 13p.

Friesen N., Mason J. and Ward N. (2002) ‘Building Educational Metadata Application Profiles’, in ‘Proc. Int. Conf. on

Dublin Core and Metadata for e-Communities 2002’, pp. 63–69, Firenze University Press.

Godby C.J., Smith D. and Childress E. (2008) ‘Toward element-level interoperability in bibliographic metadata’,

code4lib (2).

Hillmann D.I. (2008) ‘Metadata Quality: From Evaluation to Augmentation’, Cataloging & Classification Quarterly,

46(1).

Hillmann D.I., Dushay N. and Phipps J. (2004) ‘Improving Metadata Quality: Augmentation and Recombination’, in

‘Proceedings of the International Conference on Dublin Core and Metadata Applications’, Dublin Core Metadata

Initiative.

Krause J. (2008) ‘Semantic heterogeneity: comparing new semantic web approaches with those of digital libraries’,

Library Review, 57(3), pp. 235–248.

Nilsson M. and Baker T. (2008) ‘Notes on DCMI specifications for Dublin Core metadata in RDF’,

http://dublincore.org/documents/2008/01/14/dcrdf-notes/.

Nilsson M., Powell A., Johnston P. and Naeve A. (2008) ‘Expressing Dublin Core metadata using the Resource

Description Framework (RDF)’, http://dublincore.org/documents/2008/01/14/dc-rdf/.

Powell A., Nilsson M., Naeve A., Johnston P. and Baker T. (2007) ‘DCMI Abstract Model’,

http://dublincore.org/documents/2007/06/04/abstractmodel/.

29

