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Abstract

Modern industries are increasingly adapting to smart devices for aiding and improving their productivity and work flow. This
includes logistics in warehouses where validation of correct items per order can be enhanced with mobile devices. Since handling
incorrect orders is a big part of the costs of warehouse maintenance, reducing errors like missed or wrong items should be avoided.
Thus, early identification of picking procedures and items picked is beneficial for reducing these errors. By using data glasses and
a smartwatch we aim to reduce these errors while also enabling the picker to work hands-free. In this paper, we present an analysis
of feature sets for classification of grabbing actions in the order picking process. For this purpose, we created a dataset containing
inertial data and egocentric video from four participants performing picking tasks, modeled closely to a real-world warehouse
environment. We extract features from the time and frequency domain for inertial data and color and descriptor features from the
image data to learn grabbing actions. By using three different supervised learning approaches on inertial and video data, we are
able to recognize grabbing actions in a picking scenario. We show that the combination of both video and inertial sensors yields a
F-measure of 85.3% for recognizing grabbing actions.
c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
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1. Introduction

In the field of modern warehouses a lot of attention is put on improving the process of order picking regarding
accuracy and time to save on costs1,2,3. Order picking means the collection of items that make up an order for
customers. Errors in this process are expensive because of the big organizational overhead of fixing an incorrect
order. By using modern wearable technologies like data glasses and smartbands or -watches, the picker can be better
aided and supported, thus minimizing the errors. Employees would immediately know they make an incorrect pick
and could act accordingly early on. In addition, wearables could free up the workers hands and guide them to the
correct item. This is especially useful for training new employees who have yet to learn each single step in the picking
process. Solutions for improving the picking process can be grouped into two categories: 1.) The first category aims
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to equip the pickers with tools to speed up or even remove parts of their workload. This could be done by equipping
pickers with voice control systems4 or by giving the worker wearable devices that directly scan the item5. 2.) The
second category augments the warehouse to reduce picking time and improve accuracy. An example could be the
highlighting of shelves to be picked from while simultaneously showing the needed amount of the item6. Another
example is the usage of RGBD-cameras to recognize item picking from a shelf7.
Our work is within the first category, as it should be adaptable to different warehouses without a long installation
process. In this work, we explore the usage of wearable devices for aiding the picking process. These devices include
data glasses and a smartwatch that are worn by a picker. We focus on video and inertial data. In our case inertial data
includes acceleration, gyration, and magnetic field. By considering both modalities at the same time we can deal with
the shortcomings of each: video data may not capture the full motion of the arm while inertial data can be prone to
wrongly identify arm movement as grabbing. We also put emphasis on finding the correct start of the action. This
way we have the longest time to identify which item the picker is picking and can start the validation process early.
For this purpose, we pose two research questions:

RQ1: Can inertial and video data be used to classify grabbing actions? Can we find the exact start of an action?

RQ2: What subset of features are best suitable for that task?

To answer these questions, we create a dataset for the picking scenario. It includes multiple participants performing
different picking tasks in a simulated warehouse environment. We then analyze whether we can learn to distinguish
grabbing actions from non-grabbing actions within this dataset.
The paper is structured as follows: In Section 2, we describe existing work in the field of multi sensors and feature
selection in context of activity and action recognition. Afterwards, we describe our dataset in Section 3. Section 4
covers our methodology with a focus on the features we select for our experiments. These experiments are described
in Section 5. Finally we conclude the results in Section 6 and give an outline for our future work.

2. Related Work

Modern warehouses often rely on RFID or QR codes to validate orders1. While these approaches are very precise, the
validation happens at a late stage. By using wearables we aim to register the picking action earlier. This way the picker
may know the location of the correct item early on which can be especially useful when training new employees. In
this paper, we deal with action recognition on multi sensor data and the influence of different feature set on recognizing
the action. We consider an action as an atomic subpart of an activity like a single step in a walking activity. On one
hand, we look at work in the field of sensor fusion as we work with inertial and video data simultaneously. On
the other hand, we look at related work in the field of activity recognition with a focus on feature selection as it is
related to our approach of action recognition. Indeed, Kwapisz et al.8 used acceleration data from a smartphone for
activity recognition. By extracting features from short time intervals they are able to predict movement activities
like walking, climbing stairs and jogging. Similarly, Preece et al.9 did a feature analysis on accelerometer data for
activity recognition. They consider sensors placed on different body parts to also recognize movement activities. A
strong focus is put on comparing wavelet features to time and frequency features. Recently, San-Segundo et al.10 used
accelerometer features from smartphones for human activity segmentation. Their feature groups can be grouped in
time based features and frequency based features to be classified with Hidden Markov Models. Neural networks for
human activity recognition have been researched by Ordóñez et al.11. With a deep neural network, they are able to get
high accuracy values on standard datasets. Indeed, they are able to show that by adding a new modality (e.g. adding
gyroscope data to accelerometer data) to a network, new features can be extracted without any need for preprocessing.
Many of the features considered in previous work are extracted from a long timespan. As we are considering actions
instead of activities which span a much shorter time it has still to be shown if the same methods can be applied.
Therefore, we evaluate the suitability of these and similar approaches for our grabbing scenario. Since deep learning
needs a lot of labeled data for proper learning, it is not applicable in our scenario.
Analyzing only inertial data for activity recognition covers half of our analysis. We also want to consider the video
sensor for our classification experiments. Combining different kind of sensors to create a multimodal dataset has been
the focus of various previous studies12,13,14. Indeed, Torre et al.12 published a dataset containing multiple recordings
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of participants cooking different recipes while recording inertial data and video data along with audio and motion
capturing. On top of this work, researchers applied multimodal activity recognition experiments. Spriggs et al.15

use both image and inertial features to recognize activities in the cooking domain (stirring, pouring etc.). By down
sampling the inertial data to fit the frame rate of the video they classified frames with aligned inertial data as single
entries. Therefore, this approach cannot make use of inertial features that are extracted from a window of inertial
data. Recently, Song et al.14 published an egocentric multimodal dataset recorded with data glasses which contains
egocentric video and inertial sensor data. In their work, they also presented an approach for recognizing life-logging
activities. By utilizing Fisher Kernels they combine video and sensor features and reach high accuracy values. In the
context of our action recognition this approach may not suffice as it does not capture arm movement outside of the
camera’s frame.

3. Dataset

In this paper, we create a dataset by simulating order picking in a warehouse setting. In our previous work16, we
analyzed the impact of inertial data from a wrist worn sensor on action detection. As this dataset puts less focus on the
egocentric video we create a new dataset that improves on that aspect. Observing a real-world picking process, lets
us derive the following actions a picking process consists of, where we focus on the actions ”navigation” and ”item
picking” and do not consider the preparational work, e.g., positioning of order boxes: Looking at the shelf number,
then walking up to the shelf, finding the correct box, picking an item from the box, looking at the item to simulate
scanning it, and finally dropping it off at the start. In a real world setting these actions may vary slightly, depending
what type of picking technology is used. We record picking actions from four (three male and one female) participants
each performing 20 picking actions in two different settings. The following four cases are performed and recorded:

Picking, with the arm activity fully in focus: In this scenario, the participants are focusing their view on the shelf
while grabbing from a set of boxes. Half of the orders are from a shelf with boxes, the other half from an open
shelf.

Picking, without arm activity in frame: Here the participants are asked to specifically not focus on the shelf and
instead look at something else. Participants look at the smartphone they are provided to emulate reading from
an order list. Such scenarios are also likely to occur in a real warehouse environment as experienced pickers
often only glimpse at the shelf when working.

No activity, with the participants looking at the shelf and boxes: Participants are asked to walk to the shelf with
the intent of picking an item but without actually performing the grabbing action. We add this scenario to
include negative examples in our experiments.

No activity, with the participants looking at the shelf and moving their arm: This scenario serves a similar pur-
pose as the previous one. But it adds arm movement (in the form of tacking out the smartphone from the pocket)
as an additional action.

We record first person view and inertial data with data glasses and inertial data from a smartphone and a smartwatch.
Additionally all scenarios are filmed from a third person perspective for improved labeling and easier validation of the
actions. Figure 1 shows one participant with the devices and their on-body position. The tablet is used to record depth
data which will be used in future work. All inertial data is recorded using a mobile application from previous work17.
Each inertial sensor is recorded at a sampling rate of 50Hz. First person video is collected at a resolution of 1920x1080
pixel with 24 frames per second. The smartwatch is worn on the right wrist, while the connected smartphone is kept
in the pocket of the participants. Our test environment consists of one shelf with multiple compartments. Each box
or, in the case of open shelf picking, compartment has an unique QR code identifying the items.
For our experiments, we use a subset of the recorded data. Namely, we pick the acceleration data from the smartwatch
and the egocentric video of the data glasses. This gives us better insights about the impact of each sensor towards
the results. As the data is recorded with two devices we first have to synchronize it. For this purpose, we introduce
an alignment motion at the beginning of each recording. This motion produces a distinctive curve in the plot of the
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Fig. 1. Participant wearing all devices for data gathering.

Fig. 2. Plot of the alignment motion of the smartwatch
with an overlay of the adjusted timestamp of the egocentric
video.

Table 1. Features extracted from different modalities. Inertial features are calculated on windows, image features on a per frame basis.
Inertial Features Image Features

Time Frequency Color Texture

Mean, Variance, Correlation coefficient (Pearson), Energy (Fourier, Parseval), HSV-Histogram, Mean of Histogram of oriented
Gravity (pitch, roll), Standard Deviation, Entropy (Fourier), each channel, Standard Deviation Gradients
Median, Mean absolute deviation, DC Mean of each channel
Entropy (Shannon), Kurtosis, Interquartile Range (type R-5)

gyroscope data which we then use to calculate the time difference for each recording. We validate the difference by
plotting inertial data of the watch and checking if the video timestamp is overlapping correctly (cf. Figure 2).
After recording, the data is annotated two-folds: the first person video and the third person video are both labeled with
the BORIS software18. First person video annotation includes the exact end of the alignment action, the time span
in which the hand is in frame while grabbing, and the timespan while an item is scanned. In the third person video
we also label the end of the alignment action and the whole grabbing process if present in the scenario. We plan to
publish the data∗.

4. Methodology

Our essential idea for learning grabbing actions is to leverage the combination of extracted features from inertial and
video data. We consider features in the frequency and the time domain for inertial data and color and image descriptor
features for the video data. Figure 3 shows the process of feature extraction and merging. For the frames we extract
histograms of the HSV color channels and histograms of oriented gradients (HoG19) (cf. Figure 3, Step 1.1, 1.2, and
1.3). The histograms of the HSV channel are extracted without binning, enabling us to bin the data later. We also add
the mean and standard deviation of each channel. The HoG feature is extracted with 25 patches per frame as a trade
of between amount of detail captured and feature size. All image features are extracted on a scaled down version of
the original frame. In total this results in (256 + 2) · 3 + 25 · 9 = 999 features per frame.
Inertial features are extracted using a sliding window approach. This means, we consider a fixed timespan and calcu-
late features on acceleration data within that span. Afterwards, the window is moved to the next point in time, in the
end resulting in a set of windows (cf. Figure 3, Step 2.1, 2.2, and 2.3). Our features are calculated for a window size
of 1000 milliseconds. This is a trade-off between too coarse window sizes for actions and windows without enough

∗ http://sensor.informatik.uni-mannheim.de
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Fig. 3. Process of feature extraction and combination.

information in them. Consecutive windows overlap, allowing us to determine the start of a grab more precisely. We
choose an overlap of 70% resulting in 300 milliseconds between windows. Table 1 shows the features, we calculate
from the acceleration data of the smartwatch. These can broadly be grouped into time based and frequency based
features. Additionally, features can be grouped according to their properties, e.g., distribution, shape, and average.
These feature groups are studied separately in our feature selection study of RQ2 (cf. Section 5). All inertial features
are calculated on each of the three-way axis of the acceleration data yielding 42 features(14 different features * 3 axes)
per window.
Since image features are calculated on a per frame basis and inertial features on windows, we have to combine them
(Figure 3, Step 3.2). First, we have to align both feature sets with the alignment information we determine beforehand
(Figure 3, Step 3.1). To merge the inertial and image features, we have to adapt the features extracted from the frames
to fit the windows we calculated before. After we determined which windows a frame belongs to, we calculate the
mean of each feature of all frames in every window, creating an average frame. As we store the labels of our dataset
with the frames, we have to add that information to the windows. A window is thus labeled with the grabbing class
if it contains at least one frame that also has this class. The combined windows are then stored per participant and
scenario to enable different scenario combinations in our experiments (Figure 3, Step 3.2 and 3.3). In the following,
we are going to use machine learning algorithms on the combined dataset.

5. Experiments

In the following, we present our experiments and their results in line with the research questions. First, we describe
our experimental setup and subsequently conduct our experiments grouped by the research question.

5.1. Experimental setup

All experiments we conduct, are tested with three classification algorithms: Support Vector Machine (SVM), Random
Forest (RF), and Artificial Neural Networks (ANN). These algorithms have shown to perform well in related problem
domains17,20,21. Precision, Recall and F1-Measure of the classifications are shown for each class separately with the
measures for classifying the grabbing action being the focus in this work. Our dataset has a total of 8585 windows for
non-grabbing actions and 1396 windows for grabbing actions. The classifiers use the following settings: A RF with a
maximum of 100 trees and a depth of 10, a SVM-C with a polynomial kernel function, and a Multi-layer Perceptron
with a maximal number of 500 iterations.
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Table 2. RQ1: All features were used with a 5-fold cross validation with 100 runs on all data.
SVM RF ANN

Class Precision Recall F1 ± SD Precision Recall F1 ± SD Precision Recall F1 ± SD

None 0.977 0.974 0.976 ± 0.003 0.956 0.995 0.975 ± 0.002 0.962 0.956 0.958 ± 0.015
Grabbing 0.845 0.862 0.853 ± 0.017 0.956 0.720 0.821 ± 0.019 0.775 0.761 0.751 ± 0.054

Average 0.959 0.958 0.959 ± 0.005 0.956 0.956 0.953 ± 0.005 0.936 0.929 0.929 ± 0.019

Table 3. RQ1: Accuracy of all grabbing actions per participant (P) in the first 100%, 75%, 50%, 25% and 12.5% percent of each set of grabbing
windows.

SVM RF ANN

P 100% 75% 50% 25% 12.5% 100% 75% 50% 25% 12.5% 100% 75% 50% 25% 12.5%

P1 0.851 0.883 0.845 0.744 0.574 0.640 0.643 0.589 0.473 0.314 0.681 0.706 0.662 0.564 0.405
P2 0.858 0.887 0.857 0.776 0.625 0.593 0.696 0.647 0.551 0.378 0.761 0.803 0.759 0.687 0.548
P3 0.875 0.900 0.869 0.792 0.607 0.797 0.880 0.892 0.793 0.586 0.803 0.839 0.798 0.658 0.450
P4 0.852 0.874 0.864 0.820 0.627 0.695 0.713 0.681 0.551 0.357 0.753 0.773 0.725 0.632 0.533

5.2. Experiments

To answer RQ1, we first apply the algorithms on the whole dataset with all features kept in place. We use 5-fold cross
validation with stratified sampling for the evaluation. Each algorithm is run 100 times with different folds to check if
the results are stable. The results are shown in Table 2. It can be seen that the RF yields a high precision at the cost of
recall while the SVM balances these values out. The ANN yields slightly worse results than the other two algorithms
and could be improved by increasing the number of max iterations. This trend continues in subsequent experiments
throughout this work. It can be seen that the combination of both modalities is very promising for recognizing the
grabbing action.
Still, we need to analyze how the classifiers perform within the timespan of a picking action. Our goal is to recognize
a grabbing motion as early as possible, therefore we analyze how well the start of an action is recognized. For this
purpose, we look at the accuracy of the prediction in the first 100%, 75%, 50%, 25% and 12.5% of all the windows
of grabbing actions. Table 3 shows the result for our four participants. It can be seen that the results vary among the
classifiers and participants. This is due to the fact that all the participants were grabbing at different speeds and also
looked at the shelf at different angles. We can also see that the low Recall of the RF (c.f Table 2) is reflected in the
accuracy of the grabbing windows. Generally, we have the highest accuracy in the first 75% of the grabbing windows.
This can be attributed to the participants looking downwards at the end of a motion, not focusing on the shelf. Thus,
relevant objects that are involved in the grabbing motion are not captured by the current camera frame(s) which makes
it unfeasible to extract meaningful visual descriptors. Accuracy in the first 12.5% of the relevant windows drops to
the lowest value. Since grabbing motions start when the arm moves towards the shelf, and participants are likely
to not focus on the shelf yet, determining the correct start is hard. Therefore, we focus our next experiments on
sub-featuresets to explore their influence on classification results.

Table 4. RQ2: Inertial features of all participants were used with a 5-fold cross validation and 100 runs.
SVM RF ANN

Features Class Precision Recall F1 ± SD Precision Recall F1 ± SD Precision Recall F1 ± SD

In
er

tia
l None 0.902 0.983 0.941 ± 0.002 0.923 0.978 0.950 ± 0.003 0.913 0.935 0.923 ± 0.010

Grabbing 0.765 0.342 0.472 ± 0.023 0.785 0.501 0.611 ± 0.025 0.549 0.448 0.478 ± 0.055
Average 0.883 0.893 0.875 ± 0.005 0.904 0.911 0.902 ± 0.006 0.862 0.867 0.861 ± 0.009

Im
ag

e None 0.949 0.994 0.971 ± 0.002 0.943 0.992 0.967 ± 0.002 0.957 0.959 0.957 ± 0.016
Grabbing 0.947 0.673 0.787 ± 0.018 0.992 0.629 0.750 ± 0.019 0.779 0.732 0.737 ± 0.061
Average 0.949 0.949 0.945 ± 0.004 0.941 0.942 0.937 ± 0.004 0.932 0.927 0.926 ± 0.020

To answer RQ2, we analyze the influence of different features on the recognition rate. First, we split up the image
and inertial features and evaluate them separately (c.f. Table 4). For the inertial data it can be seen that among all
algorithms precision and recall are dropping significantly. Our experiments indicate that image features have compa-
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Table 5. RQ2: Different subsets analysis each with a 5-fold cross validation and 100 runs (only for the Grabbing class).
SVM RF ANN

Features Precision Recall F1 ± SD Precision Recall F1 ± SD Precision Recall F1 ± SD

Mean, SD, Var 0.697 0.099 0.173 ± 0.022 0.594 0.258 0.359 ± 0.022 0.640 0.222 0.328 ± 0.037
Gravity 0.625 0.264 0.369 ± 0.033 0.652 0.474 0.548 ± 0.021 0.639 0.344 0.445 ± 0.038
Time 0.739 0.302 0.429 ± 0.024 0.765 0.444 0.562 ± 0.022 0.701 0.530 0.599 ± 0.037
Frequency 0.647 0.077 0.134 ± 0.021 0.607 0.251 0.354 ± 0.025 0.476 0.291 0.338 ± 0.078
MAD, IQR, SD, Var 0.626 0.029 0.054 ± 0.014 0.506 0.134 0.211 ± 0.024 0.586 0.076 0.132 ± 0.041

rable results to experiments across all feature types. However, as recall drops in the experiments with SVM and RF, a
more detailed study about the significance of visual features is required. We further analyze feature subgroups from
the inertial data to find out if there are subsets of features that give us similar results to all inertial features. For this
purpose, we create five feature subsets which can be seen in Table 5. Groups are created based on their domain, what
they are representing, and on preliminary experiments. Table 5 shows the results of our feature subgroup analysis. We
see that gravity by itself yields very good results. This is due to the fact that gravity consists of pitch and roll thus it
contains the relative position of the smartwatch. With participants grabbing from the same shelves, the position of the
smartwatch can be used to register the arms movement towards shelf height. Since shelves in warehouses are rarely
located on different heights (to minimize unergonomic movement), gravity can be a good indicator for a grabbing
action. Drawbacks in this approach are varying heights of people, and arm movements that are similar to a grabbing
motion. While height variation can be compensated with a bigger dataset, similar arm movement has to be recognized
by other features. All the features calculated from the time domain are also performing well. As gravity is part of
the time domain features, the good performance may be attributed to it. Still, precision of all classification results im-
proves when the whole domain is considered. The rest of our features perform worse, especially regarding the recall.
It can therefore be seen that features from the time domain yield the best results for the task of grabbing recognition.
This is due to the fact that our window size is smaller than the usual window size used for activity recognition. Since
each participant performs the grabbing at different speeds and with different movements the acceleration data by itself
may not be sufficient for recognizing the action. Adding gyroscope and magnetic field information may improve the
results. With magnetic field data overfitting may be a problem as a classifier may learn a model based on the layout
of a specific warehouse.
In addition, we also analyze the image features (cf. Table 4). Image features yield results close to using the combina-
tion of all features. Therefore, we analyze how the classifiers behaved in non-grabbing scenarios. We evaluate how
often the algorithms classified non-grabbing windows as grabbing windows in the negative scenarios. We found out
that on average 2.1% of the windows in non-grabbing scenarios are labeled as grabbing actions.

Table 6. Accuracy of all grabbing actions per participant (P) in the first 100%, 75%, 50%, 25% and 12.5% percent of each set of grabbing windows
for inertial features.

SVM RF ANN

P 100% 75% 50% 25% 12.5% 100% 75% 50% 25% 12.5% 100% 75% 50% 25% 12.5%

P1 0.383 0.433 0.323 0.170 0.214 0.488 0.510 0.423 0.236 0.198 0.507 0.511 0.486 0.423 0.380
P2 0.281 0.335 0.380 0.323 0.290 0.378 0.434 0.463 0.452 0.437 0.433 0.479 0.487 0.529 0.516
P3 0.473 0.513 0.522 0.530 0.440 0.620 0.672 0.696 0.655 0.581 0.572 0.597 0.591 0.597 0.613
P4 0.237 0.246 0.174 0.087 0.088 0.280 0.247 0.149 0.094 0.070 0.334 0.307 0.264 0.211 0.255

After the feature subgroup analysis we further evaluate the performance of the classifiers for the start of the action. For
this purpose we again evaluate the accuracy of the algorithms for the first 100%, 75%, %25, and 12.5% of windows
of all grabbing windows. Table 6 shows the results of this experiment. While the overall performance is in line with
the feature experiments in Table 4, the performance for the different percentages differs greatly. It can bee seen that
the accuracy varies stronger for the different participants when compared to the results in Table 3. This fact can be
explained with arm movements having greater variation compared to the frames of the participants.
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6. Conclusion

For RQ1, we are able to show that by merging features from image and inertial data grabbing actions can be recognized
with an F-Measure of 85.3%. By combining the sensors, we are able to balance out the drawbacks of each. Image
features register a grabbing action too late while inertial features are not reliable enough to distinguish arm movements.
Finding the correct start of an action is still a task that needs further focus, as currently only 61% of the first 12.5% of
grabbing windows are recognized. Improvements could be done by weighting the start of an action greater than the
rest and therefore creating classifier focused on finding action starts. The feature analysis in RQ2 shows that image
features outperform inertial features. It also can be seen that for short actions inertial features from the time domain
work better than features from the frequency domain. Future work will focus on two main topics: First, we want to
explore the usage all the collected inertial data. Currently, only the inertial data from the smartwatch is analyzed in
our approach. As the smartphone, connected to the watch, as well as the data glasses were recording inertial data, we
could explore adding these to our current classification pipeline. Additionally, we could add gyroscope and magnetic
field data to our features. The second topic we want to explore is a better merging of inertial and video data. Instead
of calculating an average frame for each window we could find more elaborate methods to represent the image data
within a window.
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