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Abstract. Creating mappings between ontologies is a common way of approach-
ing the semantic heterogeneity problem on the Semantic Web. To fit into the land-
scape of semantic web languages, a suitable, logic-based representation formal-
ism for mappings is needed. We argue that such a formalism has to be able to
deal with uncertainty and inconsistencies in automatically created mappings. We
analyze the requirements for such a formalism, and we propose a novel approach
to probabilistic description logic programs as such a formalism, which tightly
combines disjunctive logic programs under the answer set semantics with both
description logics and Bayesian probabilities. We define the language, and we
show that it can be used to resolve inconsistencies and merge mappings from
different matchers based on the level of confidence assigned to different rules.
Furthermore, we explore the computational aspects of consistency checking and
query processing in tightly integrated probabilistic description logic programs.
We show that these problems are decidable and computable, respectively, and
that they can be reduced to consistency checking and cautious/brave reasoning,
respectively, in tightly integrated disjunctive description logic programs. We also
analyze the complexity of consistency checking and query processing in the new
probabilistic description logic programs in special cases. In particular, we present
a special case of these problems with polynomial data complexity.

1 Introduction

The problem of aligning heterogeneous ontologies via semantic mappings has been
identified as one of the major challenges of semantic web technologies. In order to ad-
dress this problem, a number of languages for representing semantic relations between
elements in different ontologies as a basis for reasoning and query answering across
multiple ontologies have been proposed [27]. In the presence of real world ontologies,
it is unrealistic to assume that mappings between ontologies are created manually by do-
main experts, since existing ontologies, e.g., in the area of medicine contain thousands
of concepts and hundreds of relations. Recently, a number of heuristic methods for



matching elements from different ontologies have been proposed that support the cre-
ation of mappings between different languages by suggesting candidate mappings (e.g.,
[10]). These methods rely on linguistic and structural criteria. Evaluation studies have
shown that existing methods often trade off precision and recall. The resulting mapping
either contains a fair amount of errors or only covers a small part of the ontologies
involved [9,11]. To leverage the weaknesses of the individual methods, it is common
practice to combine the results of a number of matching components or even the results
of different matching systems to achieve a better coverage of the problem [10].

This means that automatically created mappings often contain uncertain hypotheses
and errors that need to be dealt with, briefly summarized as follows:

– mapping hypotheses are often oversimplifying, since most matchers only support
very simple semantic relations (mostly equivalence between individual elements);

– there may be conflicts between different hypotheses for semantic relations from
different matching components and often even from the same matcher;

– semantic relations are only given with a degree of confidence in their correctness.

If we want to use the resulting mappings, we have to find a way to deal with these
uncertainties and errors in a suitable way. We argue that the most suitable way of dealing
with uncertainties in mappings is to provide means to explicitly represent uncertainties
in the target language that encodes the mappings. In this paper, we address the problem
of designing a mapping representation language that is capable of representing the kinds
of uncertainty mentioned above. We propose an approach to such a language, which is
based on an integration of ontologies and rules under probabilistic uncertainty.

There is a large body of work on integrating ontologies and rules, which is a promis-
ing way of representing mappings between ontologies. One type of integration is to
build rules on top of ontologies, that is, rule-based systems that use vocabulary from
ontology knowledge bases. Another form of integration is to build ontologies on top of
rules, where ontological definitions are supplemented by rules or imported from rules.
Both types of integration have been realized in recent hybrid integrations of rules and
ontologies, called description logic programs (or dl-programs), which have the form
KB =(L,P ), where L is a description logic knowledge base, and P is a finite set of
rules involving either queries to L in a loose integration [6,7] or concepts and roles from
L as unary resp. binary predicates in a tight integration [18] (see especially [7,24,18]
for detailed overviews on the different types of description logic programs).

Other works explore formalisms for uncertainty reasoning in the Semantic Web (an
important recent forum for approaches to uncertainty in the Semantic Web is the annual
Workshop on Uncertainty Reasoning for the Semantic Web (URSW); there also exists
a W3C Incubator Group on Uncertainty Reasoning for the World Wide Web). There
are especially probabilistic extensions of description logics [15,19], web ontology lan-
guages [2,3], and description logic programs [20] (to encode ambiguous information,
such as “John is a student with probability 0.7 and a teacher with probability 0.3”,
which is very different from vague/fuzzy information, such as “John is tall with degree
of truth 0.7”). In particular, [20] extends the loosely integrated description logic pro-
grams of [6,7] by probabilistic uncertainty as in Poole’s independent choice logic (ICL)
[26]. The ICL is a powerful representation and reasoning formalism for single- and



also multi-agent systems, which combines logic and probability, and which can repre-
sent a number of important uncertainty formalisms, in particular, influence diagrams,
Bayesian networks, Markov decision processes, and normal form games. It also allows
for natural notions of causes and explanations as in Pearl’s structural causal models [13].

In this paper, we propose tightly integrated probabilistic description logic programs
under the answer set semantics as a language for representing and reasoning with un-
certain and possibly inconsistent mappings. The approach is a tight integration of dis-
junctive logic programs under the answer set semantics, the expressive description log-
ics SHIF(D) and SHOIN (D) (which stand behind the standard web ontology lan-
guages OWL Lite and OWL DL [16], respectively), and Bayesian probabilities. More
concretely, the tight integration between ontology and rule languages of [18] is com-
bined with probabilistic uncertainty as in the ICL [26]. The resulting language has the
following useful features, which will be explained in more detail later:

– The semantics of the language is based on the tight integration between ontology
and rule languages of [18], which assumes no structural separation between the vo-
cabularies of the description logic and the logic program components. This enables
us to have description logic concepts and roles in both rule bodies and rule heads.
This is necessary if we want to use rules to combine ontologies.

– The rule language is quite expressive. In particular, we can have disjunctions in rule
heads and nonmonotonic negations in rule bodies. This gives a rich basis for refi-
ning and rewriting automatically created mappings for resolving inconsistencies.

– The integration with probability theory provides us with a sound formal framework
for representing and reasoning with confidence values. In particular, we can inter-
pret the confidence values as error probabilities and use standard techniques for
combining them. We can also resolve inconsistencies by using trust probabilities.

– Consistency checking and query processing in the new rule language are decidable
resp. computable, and they can be reduced to their classical counterparts in tightly
integrated disjunctive description logic programs. We also analyze the complexity
of consistency checking and query processing in special cases, which turn out to be
complete for the complexity classes NEXPNP and co-NEXPNP, respectively.

– There are tractable subsets of the language that are of practical relevance. In par-
ticular, we show later that in the case where ontologies are represented in DL-Lite,
reasoning in the language can be done in polynomial time in the data complexity.

It is important to point out that the probabilistic description logic programs here
are very different from the ones in [20] (and their recent tractable variant in [21]).
First, they are based on the tight integration between the ontology component L and
the rule component P of [18], while the ones in [20,21] realize the loose query-based
integration between the ontology component L and the rule component P of [6]. This
implies in particular that the vocabularies of L and P here may have common elements
(see also Example 4.1), while the vocabularies of L and P in [20,21] are necessarily
disjoint. Furthermore, the probabilistic description logic programs here behave seman-
tically very differently from the ones in [20,21] (see Example 4.2). As a consequence,
the probabilistic description logic programs here are especially useful for sophisticated
probabilistic reasoning tasks involving ontologies (including representing and reason-
ing with ontology mappings under probabilistic uncertainty and inconsistency), while



the ones in [20,21] can especially be used as query interfaces to web databases (includ-
ing RDF theories). Second, differently from the programs here, the ones in [20,21] do
not allow for disjunctions in rule heads. Third, differently from here, the works [20,21]
do not explore the use of probabilistic description logic programs for representing and
reasoning with ontology mappings under probabilistic uncertainty and inconsistency.

The rest of this paper is structured as follows. In Section 2, we analyze the require-
ments of an ontology mapping language. Section 3 briefly reviews description logics as
a basis for representing ontologies to be connected by mappings. In Sections 4 and 5,
we describe tightly integrated description logic programs as a basis for representing
mappings between ontologies as logical rules and explain how the rule language sup-
ports the refinement and repair of oversimplifying or inconsistent mappings. Sections 6
and 7 present a probabilistic extension thereof and show that it can be used to represent
and combine confidence values of different matchers in terms of error probabilities,
and to resolve inconsistencies by using trust probabilities. Sections 8 and 9 address the
computational aspects of reasoning in the novel language. In particular, Section 9 iden-
tifies a tractable subset of the language. Section 10 concludes with a summary and an
outlook. Note that the proofs for the results of this paper are given in Appendix A.

2 Representation Requirements

The problem of ontology matching can be defined as follows [10]. Ontologies are the-
ories encoded in a certain language L. In this work, we assume that ontologies are
encoded in OWL DL or OWL Lite. For each ontology O in language L, we denote
by Q(O) the matchable elements of the ontology O. Given two ontologies O and O′,
the task of matching is now to determine correspondences between the matchable ele-
ments in the two ontologies. Correspondences are 5-tuples (id, e, e′, r, n) such that

– id is a unique identifier for referring to the correspondence;
– e ∈ Q(O) and e′ ∈ Q(O′) are matchable elements from the two ontologies;
– r ∈ R is a semantic relation (in this work, we consider the case where the semantic

relation can be interpreted as an implication);
– n is a degree of confidence in the correctness of the correspondence.

In this paper, we develop a formal language for representing and combining corre-
spondences that are produced by different matching components or systems. From the
above general description of automatically generated correspondences between ontolo-
gies, we can derive a number of requirements for such a formal language for represent-
ing the results of multiple matchers as well as the contained uncertainties:

– Tight integration of mapping and ontology language: The semantics of the lan-
guage used to represent the correspondences between different ontologies has to
be tightly integrated with the semantics of the used ontology language (in this case
OWL). This is important if we want to use the correspondences to reason across dif-
ferent ontologies in a semantically coherent way. In particular, this means that the
interpretation of the mapped elements depends on the definitions in the ontologies.



– Support for mappings refinement: The language should be expressive enough to
allow the user to refine oversimplifying correspondences suggested by the matching
system. This is important to be able to provide a precise account of the true semantic
relation between elements in the mapped ontologies. In particular, this requires
the ability to describe correspondences that include several elements from the two
ontologies.

– Support for repairing inconsistencies: Inconsistent mappings are a major problem
for the combined use of ontologies because they can cause inconsistencies in the
mapped ontologies. These inconsistencies can make logical reasoning impossible,
since everything can be derived from an inconsistent ontology. The mapping lan-
guage should be able to represent and reason about inconsistent mappings in an
approximate fashion.

– Representation and combination of confidence: The confidence values provided by
matching systems is an important indicator for the uncertainty that has to be taken
into account. The mapping representation language should be able to use these
confidence values when reasoning with mappings. In particular, it should be able to
represent the confidence in a mapping rule and to combine confidence values on a
sound formal basis.

– Decidability and efficiency of instance reasoning: An important use of ontology
mappings is the exchange of data across different ontologies. In particular, we nor-
mally want to be able to ask queries using the vocabulary of one ontology and
receive answers that do not only consist of instances of this ontology but also of
ontologies connected through ontology mappings. To support this, query answering
in the combined formalism consisting of ontology language and mapping language
has to be decidable and there should be efficient algorithms for answering queries
at least for relevant cases.

Throughout the paper, we use real data form the Ontology Alignment Evaluation
Initiative1 to illustrate the different aspects of mapping representation. In particular,
we use examples from the benchmark and the conference data set. The benchmark
dataset consists of five OWL ontologies (tests 101 and 301 to 304) describing scien-
tific publications and related information. The conference dataset consists of about 10
OWL ontologies describing concepts related to conference organization and manage-
ment. In both cases, we give examples of mappings that have been created by the par-
ticipants of the 2006 evaluation campaign. In particular, we use mappings created by
state-of-the-art ontology matching systems like falcon, hmatch, and coma++.

3 Description Logics

In this section, we recall the description logics SHIF(D) and SHOIN (D), which
stand behind the web ontology languages OWL Lite and OWL DL [16], respectively.
Intuitively, description logics model a domain of interest in terms of concepts and roles,
which represent classes of individuals and binary relations between classes of individ-
uals, respectively. A description logic knowledge base encodes especially subset re-

1 http://oaei.ontologymatching.org/2006/



lationships between concepts, subset relationships between roles, the membership of
individuals to concepts, and the membership of pairs of individuals to roles.

Syntax. We first describe the syntax of SHOIN (D). We assume a set of elementary
datatypes and a set of data values. A datatype is either an elementary datatype or a set of
data values (datatype oneOf ). A datatype theory D=(∆D, ·D) consists of a datatype
domain ∆D and a mapping ·D that assigns to each elementary datatype a subset of ∆D

and to each data value an element of ∆D. The mapping ·D is extended to all datatypes
by {v1, . . .}D = {vD1 , . . .}. Let A, RA, RD, and I be pairwise disjoint (denumerable)
sets of atomic concepts, abstract roles, datatype roles, and individuals, respectively.
We denote by R−

A the set of inverses R− of all R∈RA.
A role is any element of RA ∪R−

A ∪RD. Concepts are inductively defined as fol-
lows. Every φ∈A is a concept, and if o1, . . . , on ∈ I, then {o1, . . . , on} is a concept
(oneOf). If φ, φ1, and φ2 are concepts and if R∈RA ∪R−

A, then also (φ1 u φ2),
(φ1 t φ2), and ¬φ are concepts (conjunction, disjunction, and negation, respectively),
as well as ∃R.φ, ∀R.φ, >nR, and 6nR (exists, value, atleast, and atmost restriction,
respectively) for an integer n> 0. If D is a datatype and U ∈RD, then ∃U.D, ∀U.D,
>nU , and 6nU are concepts (datatype exists, value, atleast, and atmost restriction,
respectively) for an integer n> 0. We write > and ⊥ to abbreviate the concepts φt¬φ
and φ u ¬φ, respectively, and we eliminate parentheses as usual.

An axiom has one of the following forms: (1) φvψ (concept inclusion axiom),
where φ and ψ are concepts; (2) RvS (role inclusion axiom), where either R,S ∈
RA ∪R−

A or R,S ∈RD; (3) Trans(R) (transitivity axiom), where R∈RA; (4) φ(a)
(concept membership axiom), where φ is a concept and a∈I; (5)R(a, b) (resp., U(a, v))
(role membership axiom), where R∈RA (resp., U ∈RD) and a, b∈ I (resp., a∈ I and
v is a data value); and (6) a= b (resp., a 6= b) (equality (resp., inequality) axiom), where
a, b∈ I. A (description logic) knowledge base L is a finite set of axioms. For decid-
ability, number restrictions in L are restricted to simple abstract roles [17].

The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without the
oneOf constructor and with the atleast and atmost constructors limited to 0 and 1.

Example 3.1. A university database may use a knowledge base L to characterize stu-
dents and exams. For example, suppose that (1) every bachelor student is a student;
(2) every master student is a student; (3) every student is either a bachelor student or a
master student; (4) professors are not students; (5) only students give exams and only
exams are given; (6) mary is a student, john is a master student, java is an exam, and
john has given it. These relationships are expressed by the following axioms in L:

(1) bachelor student v student ; (2) master student v student ;
(3) student v bachelor student tmaster student ; (4) professor v ¬student ;
(5) > 1 given v student ; > 1 given−1 v exam;
(6) student(mary); master student(john); exam(java); given(john, java) .

Semantics. An interpretation I =(∆I , ·I) relative to a datatype theory D=(∆D, ·D)
consists of a nonempty (abstract) domain ∆I disjoint from ∆D, and a mapping ·I that
assigns to each atomic concept φ∈A a subset of ∆I , to each individual o∈ I an ele-
ment of ∆I , to each abstract role R∈RA a subset of ∆I ×∆I , and to each datatype



role U ∈RD a subset of ∆I ×∆D. We extend ·I to all concepts and roles, and we
define the satisfaction of an axiom F in an interpretation I =(∆I , ·I), denoted I |=F ,
as usual [16]. We say I satisfies the axiom F , or I is a model of F , iff I |=F . We
say I satisfies a knowledge base L, or I is a model of L, denoted I |=L, iff I |=F for
all F ∈L. We say L is satisfiable iff L has a model. An axiom F is a logical conse-
quence of L, denoted L |= F , iff every model of L satisfies F .

4 Tightly Integrated Disjunctive DL-Programs

In this section, we recall the tightly integrated approach to disjunctive description logic
programs (or simply disjunctive dl-programs) KB =(L,P ) under the answer set se-
mantics from [18], where KB consists of a description logic knowledge base L and a
disjunctive logic program P . Their semantics is defined in a modular way as in [6,7],
but it allows for a much tighter integration of L and P . Note that we do not assume
any structural separation between the vocabularies of L and P . The main idea behind
their semantics is to interpret P relative to Herbrand interpretations that are compati-
ble with L, while L is interpreted relative to general interpretations over a first-order
domain. Thus, we modularly combine the standard semantics of logic programs and
of description logics, which allows for building on the standard techniques and results
of both areas. As another advantage, the novel disjunctive dl-programs are decidable,
even when their components of logic programs and description logic knowledge bases
are both very expressive. We refer especially to [18] for further details on the novel
approach to disjunctive dl-programs and for a detailed comparison to related works.

Syntax. We assume a first-order vocabulary Φ with finite nonempty sets of constant
and predicate symbols, but no function symbols. We use Φc to denote the set of all
constant symbols in Φ. We also assume a set of data values V (relative to a datatype
theory D=(∆D, ·D)) and pairwise disjoint (denumerable) sets A, RA, RD, and I
of atomic concepts, abstract roles, datatype roles, and individuals, respectively, as in
Section 3. We assume that (i) Φc is a subset of I∪V, and that (ii) Φ and A (resp.,
RA ∪RD) may have unary (resp., binary) predicate symbols in common.

Let X be a set of variables. A term is either a variable from X or a constant symbol
from Φ. An atom is of the form p(t1, . . . , tn), where p is a predicate symbol of arity
n> 0 from Φ, and t1, . . . , tn are terms. A literal l is an atom p or a default-negated
atom not p. A disjunctive rule (or simply rule) r is an expression of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βn+m , (1)

where α1, . . . , αk, β1, . . . , βn+m are atoms and k,m, n> 0. We call α1 ∨ · · · ∨ αk

the head of r, while the conjunction β1, . . . , βn,not βn+1, . . . ,not βn+m is its body.
We defineH(r) = {α1, . . . , αk} andB(r) =B+(r)∪B−(r), whereB+(r) = {β1, . . . ,
βn} and B−(r) = {βn+1, . . . , βn+m}. A disjunctive program P is a finite set of dis-
junctive rules of the form (1). We say P is positive iff m=0 for all disjunctive rules (1)
in P . We say P is a normal program iff k6 1 for all disjunctive rules (1) in P .



A tightly integrated disjunctive description logic program (or simply disjunctive
dl-program) KB =(L,P ) consists of a description logic knowledge base L and a dis-
junctive program P . We say KB is positive iff P is positive. We say KB is a normal
dl-program iff P is a normal program.

Example 4.1. Consider the disjunctive dl-program KB =(L,P ), where L is the de-
scription logic knowledge base from Example 3.1, and P is the following set of rules,
which express that (1) bill is either a master student or a Ph.D. student (which is en-
coded by a rule that has the form of a disjunction of ground atoms), (2) the relation
of propaedeuticity enjoys the transitive property, (3) if a student has given an exam,
then he/she has given all exams that are propaedeutic to it, and (4) unix is propaedeutic
for java , and java is propaedeutic for programming languages:

(1) master student(bill) ∨ phd student(bill) ;
(2) propaedeutic(X,Z) ← propaedeutic(X,Y ), propaedeutic(Y, Z) ;
(3) given(X,Z) ← given(X,Y ), propaedeutic(Z, Y ) ;
(4) propaedeutic(unix , java); propaedeutic(java, programming languages) .

The above disjunctive dl-program also shows the advantages and flexibility of the tight
integration between rules and ontologies (compared to the loose integration in [6,7]):
Observe that the predicate symbol given in P is also a role in L, and it freely occurs
in both rule bodies and rule heads in P (which is both not possible in [6,7]). More-
over, we can easily use L to express additional constraints on the predicate symbols
in P . For example, we may use the two axioms > 1 propaedeutic v exam and > 1
propaedeutic−1 v exam in L to express that propaedeutic in P relates only exams.

Semantics. We now define the answer set semantics of disjunctive dl-programs as
a generalization of the answer set semantics of ordinary disjunctive logic programs.
In the sequel, let KB =(L,P ) be a disjunctive dl-program.

A ground instance of a rule r∈P is obtained from r by replacing every variable
that occurs in r by a constant symbol from Φc. We denote by ground(P ) the set of all
ground instances of rules in P . The Herbrand base relative to Φ, denoted HBΦ, is the
set of all ground atoms constructed with constant and predicate symbols from Φ. We
use DLΦ to denote the set of all ground atoms in HBΦ that are constructed from atomic
concepts in A, abstract roles in RA, and datatype roles in RD.

An interpretation I is any subset of HBΦ. Informally, every such I represents the
Herbrand interpretation in which all a∈ I (resp., a∈HBΦ− I) are true (resp., false).
We say an interpretation I is a model of a description logic knowledge base L, de-
noted I |=L, iff L∪ I ∪ {¬a | a∈HBΦ− I} is satisfiable. We say I is a model of a
ground atom a∈HBΦ, or I satisfies a, denoted I |= a, iff a∈ I . We say I is a model
of a ground rule r, denoted I |= r, iff I |=α for some α∈H(r) whenever I |=B(r),
that is, I |=β for all β ∈B+(r) and I 6|=β for all β ∈B−(r). We say I is a model of a
set of rules P iff I |= r for every r∈ ground(P ). We say I is a model of a disjunctive
dl-program KB =(L,P ), denoted I |=KB , iff I is a model of both L and P .

We now define the answer set semantics of disjunctive dl-programs by generaliz-
ing the ordinary answer set semantics of disjunctive logic programs. We generalize the



definition via the FLP-reduct [12], which is equivalent to the standard definition via the
Gelfond-Lifschitz reduct [14]. Given a dl-program KB =(L,P ), the FLP-reduct of KB
relative to I ⊆HBΦ, denoted KBI , is the disjunctive dl-program (L,P I), where P I

is the set of all r∈ ground(P ) with I |=B(r). Note that the Gelfond-Lifschitz reduct
of KB relative to I ⊆HBΦ is the positive disjunctive dl-program (L, P̂ I), where P̂ I

is obtained from ground(P ) by (i) deleting every rule r such that I |=β for some
β ∈B−(r) and (ii) deleting the negative body from each remaining rule. An interpre-
tation I ⊆HBΦ is an answer set of KB iff I is a minimal model of KBI . A dl-pro-
gram KB is consistent (resp., inconsistent) iff it has an (resp., no) answer set.

We finally define the notion of cautious (resp., brave) reasoning from disjunctive
dl-programs under the answer set semantics as follows. A ground atom a∈HBΦ is a
cautious (resp., brave) consequence of a disjunctive dl-program KB under the answer
set semantics iff every (resp., some) answer set of KB satisfies a.

Semantic Properties. We now summarize some important semantic properties of dis-
junctive dl-programs under the above answer set semantics. In the ordinary case, every
answer set of a disjunctive program P is also a minimal model of P , and the converse
holds when P is positive. This result holds also for disjunctive dl-programs.

As another important semantic property, the answer set semantics of disjunctive dl-
programs faithfully extends its ordinary counterpart. That is, the answer set semantics
of a disjunctive dl-program with empty description logic knowledge base coincides with
the ordinary answer set semantics of its disjunctive program.

Furthermore, the answer set semantics of disjunctive dl-programs also faithfully
extends (from the perspective of answer set programming) the first-order semantics of
description logic knowledge bases. That is, a ground atom α∈HBΦ is true in all answer
sets of a positive disjunctive dl-program KB =(L,P ) iff α is true in all first-order
models of L∪ ground(P ). In particular, a ground atom α∈HBΦ is true in all answer
sets of KB =(L, ∅) iff α is true in all first-order models of L. Note that this result holds
also when α is a ground formula constructed from HBΦ using the operators ∧ and ∨.

The tight integration of ontologies and rules semantically behaves very differently
from the loose integration. This makes the former more (and the latter less) suitable for
representing ontology mappings. The following example illustrates this difference.

Example 4.2. The normal dl-program KB =(L,P ), where

L = {person(a), personvmale t female} and
P = {client(X)←male(X), client(X)← female(X)}

implies client(a), while the normal dl-program KB ′ = (L′, P ′) as in [6,7]

L′ = {person(a), personvmale t female} and
P ′ = {client(X)←DL[male](X), client(X)←DL[female](X)}

does not imply client(a), since the two queries are evaluated independently from each
other, and neither male(a) nor female(a) follows from L′. To obtain the conclusion
client(a) in [6,7], one has to directly use the rule client(X)←DL[male t female](X).



5 Representing Ontology Mappings

In this section, we show how tightly integrated disjunctive dl-programs KB =(L,P )
can be used for representing (possibly inconsistent) mappings (without confidence val-
ues) between two ontologies. Intuitively, L encodes the union of the two ontologies,
while P encodes the mappings between the ontologies, where disjunctions in rule heads
and nonmonotonic negations in rule bodies in P can be used to resolve inconsistencies.

Tightly integrated disjunctive dl-programs KB =(L,P ) naturally represent two
heterogeneous ontologiesO1 andO2, and mappings betweenO1 andO2 as follows. The
description logic knowledge base L is the union of two independent description logic
knowledge bases L1 and L2, which encode the ontologies O1 and O2, respectively.
Here, we assume that L1 and L2 have signatures A1, RA,1, RD,1, I1 and A2, RA,2,
RD,2, I2, respectively, such that A1 ∩A2 = ∅, RA,1∩RA,2 = ∅, RD,1∩RD,2 = ∅, and
I1 ∩ I2 = ∅. Note that this can easily be achieved for any pair of ontologies by a suit-
able renaming. A mapping between elements e1 and e2 from L1 and L2, respectively, is
then represented by a simple rule e2(x)← e1(x) in P , where e1 ∈A1 ∪RA,1 ∪RD,1,
e2 ∈A2 ∪RA,2 ∪RD,2, and x is a suitable variable vector. Informally, such a rule en-
codes that every instance of (the concept or role) e1 in O1 is also an instance of (the
concept or role) e2 in O2. Note that demanding the signatures of L1 and L2 to be dis-
joint guarantees that the rule base that represents mappings between different ontologies
is stratified as long as there are no cyclic mappings.

Example 5.1. Taking an example from the conference data set of the OAEI challenge
2006, we find e.g. the following mappings that have been created by the hmatch system
for mapping the CRS Ontology (O1) on the EKAW Ontology (O2):

EarlyRegisteredParticipant(X)← Participant(X) ;
LateRegisteredParticipant(X)← Participant(X) .

Informally, these two mapping relationships express that every instance of the concept
Participant of the ontology O1 is also an instance of the concepts EarlyRegistered -
Participant and LateRegisteredParticipant , respectively, of the ontology O2.

We now encode the two ontologies and the mappings by a tightly integrated disjunc-
tive dl-program KB =(L,P ), where L is the union of two description logic knowledge
bases L1 and L2 encoding the ontologies O1 resp. O2, and P encodes the mappings.
However, we cannot directly use the two mapping relationships as two rules in P , since
this would introduce an inconsistency in KB . More specifically, recall that a model
of KB has to satisfy both L and P . Here, the two mapping relationships interpreted
as rules in P would require that if there is a participant Alice (Participant(alice)) in
the ontology O1, an answer set of KB contains EarlyRegisteredParticipant(alice)
and LateRegisteredParticipant(alice) at the same time. Such an answer set, how-
ever, is invalidated by the ontology O2, which requires the concepts EarlyRegistered -
Participant and LateRegisteredParticipant to be disjoint. Therefore, these mappings
are useless, since they do not actively participate in the creation of any model of KB .

In [23], we present a method for detecting such inconsistent mappings. There are
different approaches for resolving this inconsistency. The most straightforward one is
to drop mappings until no inconsistency is present any more. Peng and Xu [25] have



proposed a more suitable method for dealing with inconsistencies in terms of a relax-
ation of the mappings. In particular, they propose to replace a number of conflicting
mappings by a single mapping that includes a disjunction of the conflicting concepts.
In the example above, we would replace the two mapping rules by the following one:

EarlyRegisteredParticipant(X) ∨ LateRegisteredParticipant(X)← Participant(X) .

This new mapping rule can be represented in our framework and resolves the inconsis-
tency. More specifically, for a particular participant Alice (Participant(alice)) in the
ontology O1, it imposes the existence of two answer sets

{EarlyRegisteredParticipant(alice),Participant(alice)} ;
{LateRegisteredParticipant(alice),Participant(alice)} .

None of these answer sets is invalidated by the disjointness constraints imposed by the
ontology O2. However, we can deduce only Participant(alice) cautiously, the other
atoms can be deduced bravely. More generally, with such rules, instances that are only
available in the ontology O1 cannot be classified with certainty.

We can solve this issue by refining the rules again and making use of nonmono-
tonic negation. In particular, we can extend the body of the original mappings with the
following additional requirement:

EarlyRegisteredParticipant(X)← Participant(X) ∧ RegisterdbeforeDeadline(X) ;
LateRegisteredParticipant(X)← Participant(X) ∧ not RegisteredbeforeDeadline(X) .

This refinement of the mapping rules resolves the inconsistency and also provides a
more correct mapping because background information has been added. A drawback of
this approach is the fact that it requires manual post-processing of mappings because
the additional background information is not obvious. In the next section, we present
a probabilistic extension of tightly integrated disjunctive dl-programs that allows us to
directly use confidence estimations of matching engines to resolve inconsistencies and
to combine the results of different matchers.

6 Tightly Integrated Probabilistic DL-Programs

In this section, we present a tightly integrated approach to probabilistic disjunctive de-
scription logic programs (or simply probabilistic dl-programs) under the answer set
semantics. Differently from [20] (in addition to being a tightly integrated approach),
the probabilistic dl-programs here also allow for disjunctions in rule heads. Similarly to
the probabilistic dl-programs in [20], they are defined as a combination of dl-programs
with Poole’s ICL [26], but using the tightly integrated disjunctive dl-programs of [18]
(see Section 4), rather than the loosely integrated dl-programs of [6,7]. Poole’s ICL
is based on ordinary acyclic logic programs P under different “choices”, where every
choice along with P produces a first-order model, and one then obtains a probability
distribution over the set of all first-order models by placing a probability distribution
over the different choices. We use the tightly integrated disjunctive dl-programs un-
der the answer set semantics of [18], instead of ordinary acyclic logic programs under
their canonical semantics (which coincides with their answer set semantics). We first
introduce the syntax of probabilistic dl-programs and then their answer set semantics.



Syntax. We now define the syntax of probabilistic dl-programs and probabilistic queries
to them. We first introduce choice spaces and probabilities on choice spaces.

A choice space C is a set of pairwise disjoint and nonempty sets A⊆HBΦ−DLΦ.
Any A∈C is an alternative of C and any element a∈A an atomic choice of C. Intu-
itively, every alternative A∈C represents a random variable and every atomic choice
a∈A one of its possible values. A total choice of C is a set B⊆HBΦ such that
|B ∩ A|=1 for all A∈C (and thus |B|= |C|). Intuitively, every total choice B of C
represents an assignment of values to all the random variables. A probability µ on
a choice space C is a probability function on the set of all total choices of C. Intu-
itively, every probability µ is a probability distribution over the set of all variable as-
signments. Since C and all its alternatives are finite, µ can be defined by (i) a mapping
µ :

⋃
C→ [0, 1] such that

∑
a∈A µ(a) = 1 for all A∈C, and (ii) µ(B) = Πb∈Bµ(b)

for all total choices B of C. Intuitively, (i) defines a probability over the values of each
random variable of C, and (ii) assumes independence between the random variables.

A tightly integrated probabilistic disjunctive description logic program (or sim-
ply probabilistic dl-program) KB =(L,P,C, µ) consists of a disjunctive dl-program
(L,P ), a choice space C such that no atomic choice in C coincides with the head of
any rule in ground(P ), and a probability µ on C. Intuitively, since the total choices
of C select subsets of P , and µ is a probability distribution on the total choices of C,
every probabilistic dl-program is the compact representation of a probability distribu-
tion on a finite set of disjunctive dl-programs. Observe here that P is fully general and
not necessarily stratified or acyclic. We say KB is normal iff P is normal. A proba-
bilistic query to KB has the form ∃(c1(x) ∨ · · · ∨ cn(x))[r, s], where x, r, s is a tuple
of variables, n> 1, and each ci(x) is a conjunction of atoms constructed from pred-
icate and constant symbols in Φ and variables in x. Note that the above probabilistic
queries can also be easily extended to conditional expressions as in [20].

Example 6.1. Consider KB =(L,P,C, µ), where L and P are as in Examples 3.1 and
4.1, respectively, except that the following two (probabilistic) rules are added to P :

given(X, operating systems) ← master student(X), given(X, unix ), choicem ;
given(X, operating systems) ← bachelor student(X), given(X, unix ), choiceb .

Let C = {{choicem,not choicem}, {choiceb,not choiceb}}, and let the probability
µ onC be given by µ : choicem, not choicem, choiceb, not choiceb 7→ 0.9, 0.1, 0.7,
0.3. Here, the new (probabilistic) rules express that if a master (resp., bachelor) student
has given the exam unix , then there is a probability of 0.9 (resp., 0.7) that he/she has
also given operating systems . Note that probabilistic facts can be encoded by rules
with only atomic choices in their body. Our wondering about the entailed tight interval
for the probability that john has given an exam on java can be expressed by the proba-
bilistic query ∃(given(john, java))[R,S]. Our wondering about which exams john has
given with which tight probability interval can be encoded by ∃(given(john, E))[R,S].

Semantics. We now define an answer set semantics of probabilistic dl-programs, and
we introduce the notions of consistency, consequence, tight consequence, and correct
and tight answers for probabilistic queries to probabilistic dl-programs. Note that the
semantics is based on subjective probabilities defined on a set of possible worlds.



Given a probabilistic dl-program KB =(L,P,C, µ), a probabilistic interpretation
Pr is a probability function on the set of all I ⊆HBΦ. We say Pr is an answer set of KB
iff (i) every interpretation I ⊆HBΦ with Pr(I)> 0 is an answer set of (L,P ∪ {p← |
p∈B}) for some total choice B of C, and (ii) Pr(

∧
p∈B p) =

∑
I⊆HBΦ, B⊆I Pr(I) =

µ(B) for every total choice B of C. Informally, Pr is an answer set of KB =(L,P,C,
µ) iff (i) every interpretation I ⊆HBΦ of positive probability under Pr is an answer set
of the dl-program (L,P ) under some total choice B of C, and (ii) Pr coincides with µ
on the total choices B of C. We say KB is consistent iff it has an answer set Pr .

We define the notions of consequence and tight consequence as follows. Given a
probabilistic query ∃(q(x))[r, s], the probability of q(x) in a probabilistic interpretation
Pr under a variable assignment σ, denoted Prσ(q(x)) is defined as the sum of all
Pr(I) such that I ⊆HBΦ and I |=σ q(x). We say (q(x))[l, u] (where l, u∈ [0, 1]) is a
consequence of KB , denoted KB‖∼ (q(x))[l, u], iff Prσ(q(x))∈ [l, u] for every answer
set Pr of KB and every variable assignment σ. We say (q(x))[l, u] (where l, u∈ [0, 1])
is a tight consequence of KB , denoted KB ‖∼tight(q(x))[l, u], iff l (resp., u) is the
infimum (resp., supremum) of Prσ(q(x)) subject to all answer sets Pr of KB and all σ.
A correct (resp., tight) answer to a probabilistic query ∃(c1(x) ∨ · · · ∨ cn(x))[r, s] is a
ground substitution θ (for the variables x, r, s) such that (c1(x)∨ · · · ∨ cn(x))[r, s] θ is
a consequence (resp., tight consequence) of KB .

Example 6.2. Consider again KB =(L,P,C, µ) of Example 6.1. The tight answer for
∃(given(john, java))[R,S] to KB is given by θ= {R/1, S/1}, while some tight an-
swers for ∃(given(john, E))[R,S] to KB are given by θ= {E/java, R/1, S/1}, θ =
{E/unix , R/1, S/1} and θ= {E/operating systems, R/0.9, S/0.9}.

7 Representing Ontology Mappings with Confidence Values

We now show how tightly integrated probabilistic dl-programs KB =(L,P,C, µ) can
be used for representing (possibly inconsistent) mappings with confidence values be-
tween two ontologies. Intuitively, L encodes the union of the two ontologies, while P ,
C, and µ encode the mappings between the ontologies, where confidence values can
be encoded as error probabilities, and inconsistencies can also be resolved via trust
probabilities (in addition to using disjunctions and nonmonotonic negations in P ).

The probabilistic extension of tightly integrated disjunctive dl-programs KB =
(L,P ) to tightly integrated probabilistic dl-programs KB ′ =(L,P,C, µ) provides us
with a means to explicitly represent and use the confidence values provided by match-
ing systems. In particular, we can interpret the confidence value as an error probability
and state that the probability that a mapping introduces an error is 1 − n. Conversely,
the probability that a mapping correctly describes the semantic relation between ele-
ments of the different ontologies is 1 − (1 − n) = n. This means that we can use
the confidence value n as a probability for the correctness of a mapping. The indirect
formulation is chosen, because it allows us to combine the results of different match-
ers in a meaningful way. In particular, if we assume that the error probabilities of two
matchers are independent, we can calculate the joint error probability of two matchers
that have found the same mapping rule as (1− n1) · (1− n2). This means that we can



get a new probability for the correctness of the rule found by two matchers which is
1− (1−n1) · (1−n2). This way of calculating the joint probability meets the intuition
that a mapping is more likely to be correct if it has been discovered by more than one
matcher because 1− (1− n1) · (1− n2) > n1 and 1− (1− n1) · (1− n2) > n2.

In addition, when merging inconsistent results of different matching systems, we
weigh each matching system and its result with a (user-defined) trust probability, which
describes our confidence in its quality. All these trust probabilities sum up to 1. For
example, the trust probabilities of the matching systems m1, m2, and m3 may be 0.6,
0.3, and 0.1, respectively. That is, we trust most in m1, medium in m2, and less in m3.

Example 7.1. We illustrate this approach using an example from the benchmark data
set of the OAEI 2006 campaign. In particular, we consider the case where the publi-
cation ontology in test 101 (O1) is mapped on the ontology of test 302 (O2). Below
we show some mappings that have been detected by the matching system hmatch that
participated in the challenge. The mappings are described as rules in P , which contain
a conjunct indicating the matching system that has created it and a number for identify-
ing the mapping. These additional conjuncts are atomic choices of the choice space C
and link probabilities (which are specified in the probability µ on the choice space C)
to the rules (where the common concept Proceedings of both ontologies O1 and O2 is
renamed to the concepts Proceedings1 and Proceedings2, respectively):

Book(X)← Collection(X) ∧ hmatch1 ;
Proceedings2(X)← Proceedings1(X) ∧ hmatch2 .

We define the choice space according to the interpretation of confidence described
above. The resulting choice space is C = {{hmatchi,not hmatchi} | i ∈ {1, 2}}. It
comes along with the probability µ on C, which assigns the corresponding confidence
value n (from the matching system) to each atomic choice hmatchi and the complement
1 − n to the atomic choice not hmatchi. In our case, we have µ(hmatch1) = 0.62,
µ(not hmatch1) = 0.38, µ(hmatch2) = 0.73, and µ(not hmatch2) = 0.27.

The benefits of this explicit treatment of uncertainty becomes clear when we now
try to merge this mapping with the result of another matching system. Below are two
examples of rules that describe correspondences for the same ontologies that have been
found by the falcon system:

InCollection(X)← Collection(X) ∧ falcon1 ;
Proceedings2(X)← Proceedings1(X) ∧ falcon2 .

Here, the confidence encoding yields the choice space C ′ = {{falconi,not falconi} |
i∈{1, 2}} along with the probabilities µ′(falcon1) = 0.94, µ′(not falcon1) = 0.06,
µ′(falcon2) = 0.96, and µ′(not falcon2) = 0.04.

Note that directly merging these two mappings as they are would not be a good idea
for two reasons. The first one is that we might encounter an inconsistency problem like
shown in Section 5. For example, in this case, the ontologyO2 imposes that the concepts
InCollection and Book are to be disjoint. Thus, for each publication pub belonging to
the concept Collection in the ontology O1, the merged mappings infer Book(pub) and
InCollection(pub). Therefore, the first rule of each of the mappings cannot contribute



to a model of the knowledge base. The second reason is that a simple merge does not
account for the fact that the mapping between the Proceedings1 and Proceedings2 con-
cepts has been found by both matchers and should therefore be strengthened. Here, the
mapping rule has the same status as any other rule in the mapping and each instance of
Proceedings has two probabilities at the same time.

Suppose we associate with hmatch and falcon the trust probabilities 0.55 and 0.45,
respectively. Based on the interpretation of confidence values as error probabilities, and
on the use of trust probabilities when resolving inconsistencies between rules, we can
now define a merged mapping set that consists of the following rules:

Book(X)← Collection(X) ∧ hmatch1 ∧ sel hmatch1 ;
InCollection(X)← Collection(X) ∧ falcon1 ∧ sel falcon1 ;
Proceedings2(X)← Proceedings1(X) ∧ hmatch2 ;
Proceedings2(X)← Proceedings1(X) ∧ falcon2 .

The new choice space C ′′ and the new probability µ′′ on C ′′ are obtained from C ∪C ′
and µ · µ′ (which is the product of µ and µ′, that is, (µ · µ′)(B ∪B′) =µ(B) · µ′(B′)
for all total choices B of C and B′ of C ′), respectively, by adding the alternative {sel
hmatch1, sel falcon1} and the two probabilities µ′′(sel hmatch1) = 0.55 and µ′′(sel
falcon1) = 0.45 for resolving the inconsistency between the first two rules.

It is not difficult to verify that, due to the independent combination of alternatives,
the last two rules encode that the rule Proceedings2(X)←Proceedings1(X) holds
with the probability 1− (1−µ′′(hmatch2)) · (1−µ′′(falcon2))= 0.9892, as desired.
Informally, any randomly chosen instance of Proceedings of the ontology O1 is also
an instance of Proceedings of the ontology O2 with the probability 0.9892. In contrast,
if the mapping rule would have been discovered only by falcon or hmatch, respec-
tively, such an instance of Proceedings of the ontology O1 would be an instance of
Proceedings of the ontology O2 with the probability 0.96 or 0.73, respectively.

A probabilistic query Q asking for the probability that a specific publication pub
in the ontology O1 is an instance of the concept Book of the ontology O2 is given
by Q=∃(Book(pub))[R,S]. The tight answer θ to Q is given by θ= {R/0, S/0}, if
pub is not an instance of the concept Collection in the ontology O1 (since there is no
mapping rule that maps another concept than Collection to the concept Book ). If pub is
an instance of the concept Collection , however, then the tight answer to Q is given by
θ= {R/0.341, S/0.341} (as µ′′(hmatch1) ·µ′′(sel hmatch1) = 0.62 · 0.55 = 0.341).
Informally, pub belongs to the concept Book with the probabilities 0 resp. 0.341. Note
that we may obtain real intervals when there are total choices with multiple answer sets.

8 Algorithms and Complexity

In this section, we characterize the consistency and the query processing problem in
probabilistic dl-programs in terms of the consistency and the cautious/brave reasoning
problem in disjunctive dl-programs (which are all decidable [18]). These characteri-
zations show that the consistency and the query processing problem in probabilistic
dl-programs are decidable resp. computable, and they directly reveal algorithms for
solving these problems. We also give a precise picture of the complexity of deciding
consistency and correct answers when the choice space C is bounded by a constant.



Algorithms. The following theorem shows that a probabilistic dl-program KB = (L,P,
C, µ) is consistent iff (L,P ∪ {p ←| p∈B}) is consistent, for every total choice B
of C with µ(B)> 0. This implies that deciding whether a probabilistic dl-program is
consistent can be reduced to deciding whether a disjunctive dl-program is consistent.

Theorem 8.1. A probabilistic dl-program KB =(L,P,C, µ) is consistent iff (L,P ∪
{p←| p∈B}) is consistent for every total choice B of C with µ(B)> 0.

The next theorem shows that computing tight answers for ∃(q)[r, s] to KB , where
q ∈HBΦ, can be reduced to brave and cautious reasoning from disjunctive dl-programs.
Informally, to obtain the tight lower (resp., upper) bound, we have to sum up all µ(B)
such that q is a cautious (resp., brave) consequence of (L,P ∪ {p ←| p∈B}). The
theorem holds also when q is a ground formula constructed from HBΦ. Note that this
result implies also that tight query processing in probabilistic dl-programs KB can be
done by an anytime algorithm (along the total choices of KB ).

Theorem 8.2. Let KB =(L,P,C, µ) be a consistent probabilistic dl-program, and
let q be a ground atom from HBΦ. Then, l (resp., u) such that KB‖∼tight (q)[l, u]
is the sum of all µ(B) such that (i)B is a total choice of C and (ii) q is true in all (resp.,
some) answer sets of (L,P ∪ {p← | p∈B}).

Complexity. The following theorem shows that deciding whether a probabilistic dl-
program is consistent is complete for NEXPNP (and so has the same complexity as
deciding consistency in ordinary disjunctive logic programs) when the size of its choice
space is bounded by a constant. Here, the lower bound follows from the NEXPNP-hard-
ness of deciding whether an ordinary disjunctive logic program has an answer set [5].

Theorem 8.3. Given Φ and a probabilistic dl-program KB =(L,P,C, µ), where L is
defined in SHIF(D) or SHOIN (D), and the size of C is bounded by a constant,
deciding whether KB is consistent is complete for NEXPNP.

The next theorem shows that deciding correct answers for probabilistic queries
∃(q)[r, s], where q ∈HBΦ, to a probabilistic dl-program is complete for co-NEXPNP

when the size of the choice space is bounded by a constant. The theorem holds also
when q is a ground formula constructed from HBΦ.

Theorem 8.4. Given Φ, a probabilistic dl-program KB =(L,P,C, µ), where L is de-
fined in SHIF(D) or SHOIN (D), and the size of C is bounded by a constant,
a ground atom q from HBΦ, and l, u∈ [0, 1], deciding whether (q)[l, u] is a conse-
quence of KB is complete for co-NEXPNP.

9 Tractability Results

In this section, we describe a special class of probabilistic dl-programs for which decid-
ing consistency and query processing can both be done in polynomial time in the data
complexity. These programs are normal, stratified, and defined relative to DL-Lite [4],
which allows for deciding knowledge base satisfiability in polynomial time.



We first recall DL-Lite. Let A, RA, and I be pairwise disjoint sets of atomic con-
cepts, abstract roles, and individuals, respectively. A basic concept in DL-Lite is either
an atomic concept from A or an exists restriction on roles ∃R.> (abbreviated as ∃R),
whereR∈RA ∪R−

A. A literal in DL-Lite is either a basic concept b or the negation of a
basic concept ¬b. Concepts in DL-Lite are defined by induction as follows. Every basic
concept in DL-Lite is a concept in DL-Lite. If b is a basic concept in DL-Lite, and φ1 and
φ2 are concepts in DL-Lite, then ¬b and φ1uφ2 are also concepts in DL-Lite. An axiom
in DL-Lite is either (1) a concept inclusion axiom bvφ, where b is a basic concept in
DL-Lite, and φ is a concept in DL-Lite, or (2) a functionality axiom (funct R), where
R∈RA ∪R−

A, or (3) a concept membership axiom b(a), where b is a basic concept in
DL-Lite and a∈ I, or (4) a role membership axiom R(a, c), where R∈RA and a, c∈ I.
A knowledge base in DL-Lite L is a finite set of axioms in DL-Lite.

Every knowledge base in DL-Lite L can be transformed into an equivalent one in
DL-Lite trans(L) in which every concept inclusion axiom is of form bv `, where b
(resp., `) is a basic concept (resp., literal) in DL-Lite [4]. We then define trans(P ) =P∪
{b′(X)← b(X) | bv b′ ∈ trans(L), b′ is a basic concept} ∪ {∃R(X)←R(X,Y ) |R ∈
RA ∩Φ} ∪ {∃R−(Y )←R(X,Y ) |R∈RA ∩Φ}. Intuitively, we make explicit all the
relationships between the predicates in P that are implicitly encoded in L.

We define stratified normal dl- and stratified normal probabilistic dl-programs as
follows. A normal dl-program KB =(L,P ) is stratified iff (i) L is defined in DL-Lite
and (ii) trans(P ) is locally stratified. A probabilistic dl-program KB =(L,P,C, µ) is
normal iff P is normal. A normal probabilistic dl-program KB =(L,P,C, µ) is strati-
fied iff every of KB ’s represented dl-programs is stratified.

The following result shows that stratified normal probabilistic dl-programs allow
for consistency checking and query processing with a polynomial data complexity. It
follows from Theorems 8.1 and 8.2 and that consistency checking and reasoning in strat-
ified normal dl-programs can be done in polynomial time in the data complexity [18].

Theorem 9.1. Given Φ and a stratified normal probabilistic dl-program KB , (a) de-
ciding if KB has an answer set, and (b) computing l, u∈ [0, 1] for a given ground atom
q such that KB ‖∼tight(q)[l, u] can be done in polynomial time in the data complexity.

10 Conclusion

We have presented tightly integrated probabilistic (disjunctive) dl-programs as a rule-
based framework for representing ontology mappings that supports the resolution of
inconsistencies on a symbolic and a numeric level. While the use of disjunction and
nonmonotonic negation allows the rewriting of inconsistent rules, the probabilistic ex-
tension of the language allows us to explicitly represent numeric confidence values as
error probabilities, to resolve inconsistencies by using trust probabilities, and to reason
about these on a numeric level. While being expressive and well-integrated with de-
scription logic ontologies, the language is still decidable and has data-tractable subsets
that make it particularly interesting for practical applications.

Note that probabilistic queries in tightly integrated probabilistic dl-programs can
syntactically and semantically easily be generalized to contain conditionals of disjunc-
tions of conjunctions of atoms, rather than only disjunctions of conjunctions of atoms.



The characterization in Theorem 8.2 can be generalized to such probabilistic queries,
and the completeness for co-NEXPNP of Theorem 8.4 also carries over to them. Fur-
thermore, note that tightly integrated probabilistic dl-programs are also a natural ap-
proach to combining languages for reasoning about actions with both description logics
and Bayesian uncertainty (which is especially directed towards Web Services) [1].

We leave for future work the implementation of tightly integrated probabilistic dl-
programs. Another interesting topic for future work is to explore whether the tractabil-
ity results can be extended to an even larger class of tightly integrated probabilistic
dl-programs. One way to achieve this could be to approximate the answer set seman-
tics through the well-founded semantics (which may be defined similarly as in [21]).
Furthermore, it would be interesting to investigate whether one can develop an efficient
top-k query technique (as in [28,22]) for tightly integrated probabilistic dl-programs:
Rather than computing the tight probability interval for a given ground atom, such a
technique returns the k most probable ground instances of a given non-ground atom.
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Appendix A: Proofs

Proof of Theorem 8.1. Recall first that KB is consistent iff KB has an answer set Pr ,
which is a probabilistic interpretation Pr such that (i) every interpretation I ⊆HBΦ

with Pr(I)> 0 is an answer set of the disjunctive dl-program (L,P ∪ {p← | p∈B})
for some total choiceB ofC, and (ii) Pr(

∧
p∈B p) =µ(B) for each total choiceB ofC.

(⇒) Suppose that KB is consistent. We now show that the disjunctive dl-program
(L,P ∪ {p← | p∈B}) is consistent, for every total choice B of C with µ(B)> 0. To-
wards a contradiction, suppose the contrary. That is, (L,P ∪{p←| p∈B}) is not con-
sistent for some total choiceB ofC with µ(B)> 0. So, it follows that Pr(

∧
p∈B p) = 0.

But this contradicts Pr(
∧

p∈B p) =µ(B)> 0. This shows that (L,P ∪ {p←| p∈B})
is consistent, for every total choice B of C with µ(B)> 0.

(⇐) Suppose that the disjunctive dl-program (L,P ∪ {p← | p∈B}) is consistent,
for every total choice B of C with µ(B)> 0. That is, there exists some answer set IB
of (L,P ∪ {p← | p∈B}), for every total choice B of C with µ(B)> 0. Let the prob-
abilistic interpretation Pr be defined by Pr(IB) =µ(B) for every total choice B of C
with µ(B)> 0 and by Pr(I) = 0 for all other I ⊆HBΦ. Then, Pr is an interpretation
that satisfies (i) and (ii). That is, Pr is an answer set of KB . Thus, KB is consistent. 2

Proof of Theorem 8.2. The statement of the theorem follows from the observation
that the probability µ(B) of all total choices B of C such that q is true in all (resp.,
some) answer sets of (L,P ∪ {p←| p∈B}) contributes (resp., may contribute) to the
probability Pr(q), while the probability µ(B) of all total choices B of C such that q is
false in all answer sets of (L,P ∪ {p←| p∈B}) does not contribute to Pr(q). 2



Proof of Theorem 8.3. We first show membership in NEXPNP. By Theorem 8.1, we
check whether (L,P ∪ {p←| p∈B}) is consistent, for every total choice B of C with
µ(B)> 0. Since C is bounded by a constant, the number of all total choices B of C
with µ(B)> 0 is also bounded by a constant. As shown in [18], deciding whether a
disjunctive dl-program has an answer set is in NEXPNP. In summary, this shows that
deciding whether KB is consistent is in NEXPNP.

Hardness for NEXPNP follows from the NEXPNP-hardness of deciding whether a
disjunctive dl-program has an answer set [18], since by Theorem 8.1 a disjunctive dl-
program KB =(L,P ) has an answer set iff the probabilistic dl-program KB =(L,P,
C, µ) has answer set, for the choice spaceC = {{a}}, the probability function µ(a) = 1,
and any ground atom a∈HBΦ that does not occur in ground(P ). 2

Proof of Theorem 8.4. We first show membership in co-NEXPNP. We show that de-
ciding whether (q)[l, u] is not a consequence of KB is in NEXPNP. By Theorem 8.2,
(q)[l, u] is not a consequence of KB iff there exists a set B of total choices B of C
such that either (a.1) q is true in some answer set of (L,P ∪ {p ←| p∈B}), for ev-
ery B ∈B, and (a.2)

∑
B∈B µ(B)>u, or (b.1) q is false in some answer set of (L,P ∪

{p←| p∈B}), for everyB ∈B, and (a.2)
∑

B∈B µ(B)< l. As shown in [18], deciding
whether q is true in some answer set of a disjunctive dl-program is in NEXPNP. It thus
follows that deciding whether (q)[l, u] is not a consequence of KB is in NEXPNP, and
thus deciding whether (q)[l, u] is a consequence of KB is in co-NEXPNP

Hardness for co-NEXPNP follows from the co-NEXPNP-hardness of deciding
whether a ground atom q is true in all answer sets of a disjunctive dl-program [18],
since by Theorem 8.2 a ground atom q is true in all answer sets of a disjunctive dl-
program KB =(L,P ) iff (q)[1, 1] is a consequence of the probabilistic dl-program
KB =(L,P,C, µ) under the answer set semantics, for the choice space C = {{a}}, the
probability function µ(a) = 1, and any a∈HBΦ that does not occur in ground(P ). 2

Proof of Theorem 9.1. As shown in [18], deciding the existence of (and computing) the
answer set of a stratified normal dl-program has a polynomial data complexity. Observe
then that in the case of data complexity, the choice space C is fixed. By Theorems 8.1
and 8.2, it thus follows that the problems of (a) deciding whether KB has an answer set,
and (b) computing l, u∈ [0, 1] for a given ground atom q such that KB ‖∼ tight (q)[l, u],
respectively, can both be solved in polynomial time in the data complexity. 2
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