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Abstract. Creating mappings between ontologies is a common way of approach-
ing the semantic heterogeneity problem on the Semantic Web. To fit into the land-
scape of semantic web languages, a suitable, logic-based representation formal-
ism for mappings is needed. We argue that such a formalism has to be able to deal
with uncertainty and inconsistencies in automatically created mappings. We ana-
lyze the requirements for such a mapping language and present a formalism that
combines tightly integrated description logic programs with independent choice
logic for representing probabilistic information. We define the language, show
that it can be used to resolve inconsistencies and merge mappings from different
matchers based on the level of confidence assigned to different rules. We also
analyze the computational aspects of consistency checking and query processing
in tightly integrated probabilistic description logic programs.

1 Introduction

The problem of aligning heterogeneous ontologies via semantic mappings has been
identified as one of the major challenges of semantic web technologies. In order to ad-
dress this problem, a number of languages for representing semantic relations between
elements in different ontologies as a basis for reasoning and query answering across
multiple ontologies have been proposed [21]. In the presence of real world ontologies,
it is unrealistic to assume that mappings between ontologies are created manually by
domain experts, since existing ontologies, e.g., in the area of medicine contain thou-
sands of concepts and hundreds of relations. Recently, a number of heuristic methods
for matching elements from different ontologies have been proposed that support the
creation of mappings between different languages by suggesting candidate mappings
(e.g., [7]). These methods rely on linguistic and structural criteria. Evaluation stud-
ies have shown that existing methods often trade off precision and recall. The resulting
mapping either contains a fair amount of errors or only covers a small part of the ontolo-
gies involved [6,8]. To leverage the weaknesses of the individual methods, it is common
practice to combine the results of a number of matching components or even the results
of different matching systems to achieve a better coverage of the problem [7].



This means that automatically created mappings often contain uncertain hypotheses
and errors that need to be dealt with, as briefly summarized as follows:

– mapping hypotheses are often oversimplifying, since most matchers only support
very simple semantic relations (mostly equivalence between individual elements);

– there may be conflicts between different hypotheses for semantic relations from
different matching components and often even from the same matcher;

– semantic relations are only given with a degree of confidence in their correctness.
If we want to use the resulting mapping, we have to find a way to deal with these

uncertainties and errors in a suitable way. We argue that the most suitable way of dealing
with uncertainties in mappings is to provide means to explicitly represent uncertainties
in the target language that encodes the mappings. In this paper, we address the problem
of designing a mapping representation language that is capable of representing the kinds
of uncertainty mentioned above. We propose an approach to such a language, which is
based on an integration of ontologies and rules under probabilistic uncertainty.

There is a large body of work on integrating ontologies and rules, which is a promis-
ing way of representing mappings between ontologies. One type of integration is to
build rules on top of ontologies, that is, rule-based systems that use vocabulary from
ontology knowledge bases. Another form of integration is to build ontologies on top of
rules, where ontological definitions are supplemented by rules or imported from rules.
Both types of integration have been realized in recent hybrid integrations of rules and
ontologies, called description logic programs (or dl-programs), which have the form
KB =(L,P ), where L is a description logic knowledge base, and P is a finite set of
rules involving either queries toL in a loose integration [5] or concepts and roles fromL
as unary resp. binary predicates in a tight integration [16] (see especially [5,18,16] for
detailed overviews on the different types of description logic programs).

Other works explore formalisms for uncertainty reasoning in the Semantic Web (an
important recent forum for approaches to uncertainty in the Semantic Web is the annual
Workshop on Uncertainty Reasoning for the Semantic Web (URSW); there also exists a
W3C Incubator Group on Uncertainty Reasoning for the World Wide Web). There are
especially probabilistic extensions of description logics [12], web ontology languages
[2,3], and description logic programs [15] (to encode ambiguous information, such as
“John is a student with the probability 0.7 and a teacher with the probability 0.3”, which
is very different from vague/fuzzy information, such as “John is tall with degree of truth
0.7”). In particular, [15] extends the loosely integrated description logic programs of [5]
by probabilistic uncertainty as in Poole’s independent choice logic (ICL) [20]. The ICL
is a powerful representation and reasoning formalism for single- and also multi-agent
systems, which combines logic and probability, and which can represent a number of
important uncertainty formalisms, in particular, influence diagrams, Bayesian networks,
Markov decision processes, normal form games, and Pearl’s causal models [10].

In this paper, we propose a language for representing and reasoning with uncertain
and possibly inconsistent mappings, where the tight integration between ontology and
rule languages (namely, the tightly integrated disjunctive description logic programs
of [16]) is combined with probabilistic uncertainty (as in the ICL). The resulting lan-
guage has the following useful features, which will be explained in more detail later:

– The semantics is based on a tight integration of the rule and the ontology language.
This enables us to have description logic concepts and roles in both rule bodies and
rule heads. This is necessary if we want to use rules to combine ontologies.



– The rule language is quite expressive. In particular, we can have disjunctions in rule
heads and nonmonotonic negations in rule bodies. This gives a rich basis for refi-
ning and rewriting automatically created mappings for resolving inconsistencies.

– The integration with probability theory provides us with a sound formal framework
for representing and reasoning with confidence values. In particular, we can inter-
pret the confidence values as error probabilities and use standard techniques for
combining them. We can also resolve inconsistencies by using trust probabilities.

– In [1], we show that consistency checking and query processing in the new rule lan-
guage are decidable resp. computable, and can be reduced to their classical counter-
parts in tightly integrated disjunctive description logic programs. We also analyze
the complexity of consistency checking and query processing in special cases.

– In [1], we show that there are tractable subsets of the language that are of practical
relevance. In particular, we show that when ontologies are represented in DL-Lite,
reasoning in the language can be done in polynomial time in the data complexity.

2 Representation Requirements

The problem of ontology matching can be defined as follows [7]. Ontologies are the-
ories encoded in a certain language L. In this work, we assume that ontologies are
encoded in OWL DL or OWL Lite. For each ontology O in language L, we denote
by Q(O) the matchable elements of the ontology O. Given two ontologies O and O′,
the task of matching is now to determine correspondences between the matchable ele-
ments in the two ontologies. Correspondences are 5-tuples (id, e, e′, r, n) such that

– id is a unique identifier for referring to the correspondence;
– e ∈ Q(O) and e′ ∈ Q(O′) are matchable elements from the two ontologies;
– r ∈ R is a semantic relation (in this work, we consider the case where the semantic

relation can be interpreted as an implication);
– n is a degree of confidence in the correctness of the correspondence.

From this general description of automatically generated correspondences between
ontologies, we can derive a number of requirements for a formal language for repre-
senting the results of multiple matchers as well as the contained uncertainties:
– Tight integration of mapping and ontology language: The semantics of the language
used to represent the correspondences between elements in different ontologies has to
be tightly integrated with the semantics of the ontology language used (in this case
OWL). This is important if we want to use the correspondences to reason across differ-
ent ontologies in a semantically coherent way. In particular, this means that the inter-
pretation of the mapped elements depends on the definitions in the ontologies.
– Support for mappings refinement: The language should be expressive enough to allow
the user to refine oversimplifying correspondences suggested by the matching system.
This is important to be able to provide a precise account of the true semantic relation
between elements in the mapped ontologies. In particular, this requires the ability to
describe correspondences that include several elements from the two ontologies.
– Support for repairing inconsistencies: Inconsistent mappings are a major problem for
the combined use of ontologies because they can cause inconsistencies in the mapped
ontologies. These inconsistencies can make logical reasoning impossible, since every-
thing can be derived from an inconsistent ontology. The mapping language should be
able to represent and reason about inconsistent mappings in an approximate fashion.



– Representation and combination of confidence: The confidence values provided by
matching systems is an important indicator for the uncertainty that has to be taken into
account. The mapping representation language should be able to use these confidence
values when reasoning with mappings. In particular, it should be able to represent the
confidence in a mapping rule and to combine confidence values on a sound formal basis.
– Decidability and efficiency of instance reasoning: An important use of ontology map-
pings is the exchange of data across different ontologies. In particular, we normally
want to be able to ask queries using the vocabulary of one ontology and receive answers
that do not only consist of instances of this ontology but also of ontologies connected
through ontology mappings. To support this, query answering in the combined formal-
ism consisting of ontology language and mapping language has to be decidable and
there should be efficient algorithms for answering queries at least for relevant cases.

Throughout the paper, we use real data form the Ontology Alignment Evaluation
Initiative1 to illustrate the different aspects of mapping representation. In particular,
we use examples from the benchmark and the conference data set. The benchmark
dataset consists of five OWL ontologies (tests 101 and 301 to 304) describing scien-
tific publications and related information. The conference dataset consists of about 10
OWL ontologies describing concepts related to conference organization and manage-
ment. In both cases, we give examples of mappings that have been created by the par-
ticipants of the 2006 evaluation campaign. In particular, we use mappings created by
state-of-the-art ontology matching systems like falcon, hmatch, and coma++.

3 Description Logics

In this section, we recall the expressive description logics SHIF(D) and SHOIN (D),
which stand behind the web ontology languages OWL Lite and OWL DL [13], respec-
tively. Intuitively, description logics model a domain of interest in terms of concepts and
roles, which represent classes of individuals and binary relations between classes of in-
dividuals, respectively. A description logic knowledge base encodes especially subset
relationships between concepts, subset relationships between roles, the membership of
individuals to concepts, and the membership of pairs of individuals to roles.

3.1 Syntax. We first describe the syntax of SHOIN (D). We assume a set of ele-
mentary datatypes and a set of data values. A datatype is either an elementary datatype
or a set of data values (datatype oneOf ). A datatype theory D=(∆D, ·D) consists of
a datatype domain ∆D and a mapping ·D that assigns to each elementary datatype a
subset of ∆D and to each data value an element of ∆D. The mapping ·D is extended
to all datatypes by {v1, . . .}D = {vD1 , . . .}. Let A, RA, RD, and I be pairwise disjoint
(denumerable) sets of atomic concepts, abstract roles, datatype roles, and individuals,
respectively. We denote by R−

A the set of inverses R− of all R∈RA.
A role is any element of RA ∪R−

A ∪RD. Concepts are inductively defined as fol-
lows. Every φ∈A is a concept, and if o1, . . . , on ∈ I, then {o1, . . . , on} is a concept
(oneOf). If φ, φ1, and φ2 are concepts and if R∈RA ∪R−

A, then also (φ1 u φ2),
(φ1 t φ2), and ¬φ are concepts (conjunction, disjunction, and negation, respectively),
as well as ∃R.φ, ∀R.φ, >nR, and 6nR (exists, value, atleast, and atmost restriction,

1 http://oaei.ontologymatching.org/2006/



respectively) for an integer n> 0. If D is a datatype and U ∈RD, then ∃U.D, ∀U.D,
>nU , and 6nU are concepts (datatype exists, value, atleast, and atmost restriction,
respectively) for an integer n> 0. We write > and ⊥ to abbreviate the concepts φt¬φ
and φ u ¬φ, respectively, and we eliminate parentheses as usual.

An axiom has one of the following forms: (1) φvψ (concept inclusion axiom),
where φ andψ are concepts; (2)RvS (role inclusion axiom), where eitherR,S ∈RA∪
R−

A or R,S ∈RD; (3) Trans(R) (transitivity axiom), where R∈RA; (4) φ(a) (con-
cept membership axiom), where φ is a concept and a∈ I; (5) R(a, b) (resp., U(a, v))
(role membership axiom), where R∈RA (resp., U ∈RD) and a, b∈ I (resp., a∈ I and
v is a data value); and (6) a= b (resp., a 6= b) (equality (resp., inequality) axiom), where
a, b∈ I. A (description logic) knowledge base L is a finite set of axioms. For decid-
ability, number restrictions in L are restricted to simple abstract roles [14].

The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without the
oneOf constructor and with the atleast and atmost constructors limited to 0 and 1.

3.2 Semantics. An interpretation I =(∆I , ·I) relative to a datatype theory D=(∆D,
·D) consists of a nonempty (abstract) domain ∆I disjoint from ∆D, and a mapping ·I
that assigns to each atomic concept φ∈A a subset of ∆I , to each individual o∈ I an
element of∆I , to each abstract roleR∈RA a subset of∆I ×∆I , and to each datatype
role U ∈RD a subset of ∆I ×∆D. We extend ·I to all concepts and roles, and we de-
fine the satisfaction of an axiom F in an interpretation I =(∆I , ·I), denoted I |=F ,
as usual [13]. We say I satisfies the axiom F , or I is a model of F , iff I |=F . We
say I satisfies a knowledge base L, or I is a model of L, denoted I |=L, iff I |=F for
all F ∈L. We say L is satisfiable iff L has a model. An axiom F is a logical conse-
quence of L, denoted L |= F , iff every model of L satisfies F .

4 Description Logic Programs

In this section, we recall the novel approach to description logic programs (or dl-pro-
grams) KB =(L,P ) from [16], where KB consists of a description logic knowledge
base L and a disjunctive logic program P . Their semantics is defined in a modular
way as in [5], but it allows for a much tighter integration of L and P . Note that we do
not assume any structural separation between the vocabularies of L and P . The main
idea behind their semantics is to interpret P relative to Herbrand interpretations that are
compatible with L, while L is interpreted relative to general interpretations over a first-
order domain. Thus, we modularly combine the standard semantics of logic programs
and of description logics, which allows for building on the standard techniques and
results of both areas. As another advantage, the novel dl-programs are decidable, even
when their components of logic programs and description logic knowledge bases are
both very expressive. See especially [16] for further details on the new approach to
dl-programs and for a detailed comparison to related works.

4.1 Syntax. We assume a first-order vocabulary Φwith finite nonempty sets of constant
and predicate symbols, but no function symbols. We use Φc to denote the set of all
constant symbols in Φ. We also assume a set of data values V (relative to a datatype
theory D=(∆D, ·D)) and pairwise disjoint (denumerable) sets A, RA, RD, and I
of atomic concepts, abstract roles, datatype roles, and individuals, respectively, as in



Section 3. We assume that (i) Φc is a subset of I∪V, and that (ii) Φ and A (resp.,
RA ∪RD) may have unary (resp., binary) predicate symbols in common.

Let X be a set of variables. A term is either a variable from X or a constant symbol
from Φ. An atom is of the form p(t1, . . . , tn), where p is a predicate symbol of arity
n> 0 from Φ, and t1, . . . , tn are terms. A literal l is an atom p or a default-negated
atom not p. A disjunctive rule (or simply rule) r is an expression of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βn+m , (1)

where α1, . . . , αk, β1, . . . , βn+m are atoms and k,m, n> 0. We call α1 ∨ · · · ∨ αk the
head of r, while the conjunction β1, . . . , βn,not βn+1, . . . ,not βn+m is its body. We
defineH(r) = {α1, . . . , αk} andB(r) =B+(r)∪B−(r), whereB+(r) = {β1, . . . , βn}
and B−(r) = {βn+1, . . . , βn+m}. A disjunctive program P is a finite set of disjunctive
rules of the form (1). We say P is positive iff m=0 for all disjunctive rules (1) in P .
We say P is a normal program iff k6 1 for all disjunctive rules (1) in P .

A disjunctive description logic program (or disjunctive dl-program) KB =(L,P )
consists of a description logic knowledge base L and a disjunctive program P . We say
KB is positive iff P is positive. It is a normal dl-program iff P is a normal program.

4.2 Semantics. We now define the answer set semantics of disjunctive dl-programs
as a generalization of the answer set semantics of ordinary disjunctive logic programs.
In the sequel, let KB =(L,P ) be a disjunctive dl-program.

A ground instance of a rule r∈P is obtained from r by replacing every variable
that occurs in r by a constant symbol from Φc. We denote by ground(P ) the set of all
ground instances of rules in P . The Herbrand base relative to Φ, denoted HBΦ, is the
set of all ground atoms constructed with constant and predicate symbols from Φ. We
use DLΦ to denote the set of all ground atoms in HBΦ that are constructed from atomic
concepts in A, abstract roles in RA, and datatype roles in RD.

An interpretation I is any subset of HBΦ. Informally, every such I represents the
Herbrand interpretation in which all a∈ I (resp., a∈HBΦ− I) are true (resp., false).
We say an interpretation I is a model of a description logic knowledge base L, de-
noted I |=L, iff L∪ I ∪ {¬a | a∈HBΦ− I} is satisfiable. We say I is a model of a
ground atom a∈HBΦ, or I satisfies a, denoted I |= a, iff a∈ I . We say I is a model
of a ground rule r, denoted I |= r, iff I |=α for some α∈H(r) whenever I |=B(r),
that is, I |=β for all β ∈B+(r) and I 6|=β for all β ∈B−(r). We say I is a model of a
set of rules P iff I |= r for every r∈ ground(P ). We say I is a model of a disjunctive
dl-program KB =(L,P ), denoted I |=KB , iff I is a model of both L and P .

We now define the answer set semantics of disjunctive dl-programs by generalizing
the ordinary answer set semantics of disjunctive logic programs. We generalize the def-
inition via the FLP-reduct [9] (which coincides with the answer set semantics defined
via the Gelfond-Lifschitz reduct [11]). Given a dl-program KB =(L,P ), the FLP-
reduct of KB relative to an interpretation I ⊆HBΦ, denoted KBI , is the dl-program
(L,P I), where P I is the set of all r∈ ground(P ) such that I |=B(r). An interpre-
tation I ⊆HBΦ is an answer set of KB iff I is a minimal model of KBI . A dl-pro-
gram KB is consistent (resp., inconsistent) iff it has an (resp., no) answer set.

We finally define the notions of cautious (resp., brave) reasoning from disjunctive
dl-programs under the answer set semantics as follows. A ground atom a∈HBΦ is a
cautious (resp., brave) consequence of a disjunctive dl-program KB under the answer
set semantics iff every (resp., some) answer set of KB satisfies a.



4.3 Semantic Properties. We now summarize some important semantic properties of
disjunctive dl-programs under the above answer set semantics. In the ordinary case, ev-
ery answer set of a disjunctive program P is also a minimal model of P , and the con-
verse holds when P is positive. This result holds also for disjunctive dl-programs.

The following theorem shows that the answer set semantics of disjunctive dl-pro-
grams faithfully extends its ordinary counterpart. That is, the answer set semantics of
a disjunctive dl-program with empty description logic knowledge base coincides with
the ordinary answer set semantics of its disjunctive program.

Theorem 4.1 (see [16]). Let KB=(L,P ) be a disjunctive dl-program with L=∅. Then,
the set of all answer sets of KB coincides with the set of all ordinary answer sets of P .

The next theorem shows that the answer set semantics of disjunctive dl-programs
also faithfully extends (from the perspective of answer set programming) the first-order
semantics of description logic knowledge bases. That is, α∈HBΦ is true in all answer
sets of a positive disjunctive dl-program KB =(L,P ) iff α is true in all first-order mod-
els of L∪ ground(P ). In particular, α∈HBΦ is true in all answer sets of KB =(L, ∅)
iff α is true in all first-order models of L. Note that the theorem holds also when α is a
ground formula constructed from HBΦ using the operators ∧ and ∨.

Theorem 4.2 (see [16]). Let KB =(L,P ) be a positive disjunctive dl-program, and
let α be a ground atom from HBΦ. Then, α is true in all answer sets of KB iff α is true
in all first-order models of L∪ ground(P ).

4.4 Representing Mappings. Tightly integrated disjunctive dl-programs KB =(L,P )
provide a natural way for representing mappings between two heterogeneous ontologies
O1 and O2 as follows. The description logic knowledge base L is the union of two
independent description logic knowledge bases L1 and L2 (representing O1 resp. O2)
with signatures A1, RA,1, RD,1, I1 and A2, RA,2, RD,2, I2, respectively, such that
A1 ∩A2 = ∅, RA,1 ∩ RA,2 = ∅, RD,1 ∩ RD,2 = ∅, and I1 ∩ I2 = ∅. Note that this
can easily be achieved for any pair of ontologies by a suitable renaming. A mapping
between elements e and e′ from L1 and L2, respectively, is then represented by a simple
rule e′(−→x )← e(−→x ) in P , where e∈A1 ∪RA,1 ∪RD,1, e′ ∈A2 ∪RA,2 ∪RD,2, and
−→x is a suitable variable vector. Note that the fact that we demand that the signatures
ofL1 andL2 are disjoint guarantees that the rule base that represents mappings between
different ontologies is stratified as long as there are no cyclic mapping relations.

Taking some examples from the conference data set of the OAEI challenge 2006,
we find e.g. the following mappings that were created by automatic matching systems:2

NegativeReview(X)← Review(X) ;

NeutralReview(X)← Review(X) ;

PositiveReview(X)← Review(X) .

Another example of created mapping relations are the following:3

EarlyRegisteredParticipant(X)← participant(X) ;

LateRegisteredParticipant(X)← participant(X) .

2 Results of the hmatch system for mapping the SIGKDD on the EKAW Ontology.
3 Results of the hmatch system for mapping the CRS on the EKAW Ontology.



Both of these sets of correspondences are examples of mappings that introduce incon-
sistency in the target ontology. The reason is that the three concepts NegativeReview ,
NeutralReview , and PositiveReview , as well as the two concepts EarlyRegistered -
Participant and LateregisteredParticipant are defined to be disjoint in the corre-
sponding ontologies. Using the rules as shown above will make an instance of the
concept Review (resp., participant) a member of disjoint classes. In [17], we have
presented a method for detecting such inconsistent mappings. There are different ap-
proaches for resolving this inconsistency. The most straightforward one is to drop map-
pings until no inconsistency is present anymore. Peng and Xu [19] have proposed a
more suitable method for dealing with inconsistencies in terms of a relaxation of the
mappings. In particular, they propose to replace a number of conflicting mappings by
a single mapping that includes a disjunction of the conflicting concepts. In the first
example above, we would replace the three rules by the following one:

NegativeReview(X) ∨NeutralReview(X) ∨ PositiveReview(X)← Review(X) .

This new mapping rule can be represented in our framework and resolves the inconsis-
tency. In this particular case, it also correctly captures the meaning of the concepts.

In principle, the second example can be solved using the same approach. In this
case, however, the actual semantics of the concepts can be captured more accurately by
refining the rules and making use of the full expressiveness of the mapping language.
In particular, we can resolve the inconsistency by extending the body of the mapping
rules with additional requirements:

EarlyRegisteredParticipant(X)← participant(X) ∧ RegisterdbeforeDeadline(X) ;

LateRegisteredParticipant(X)← participant(X) ∧ not RegisteredbeforeDeadline(X) .

This refinement of the mapping rules resolves the inconsistency and also provides a
more correct mapping. A drawback of this approach is the fact that it requires manual
post-processing of mappings. In the next section, we present a probabilistic extension
of tightly integrated disjunctive dl-programs that allows us to directly use confidence
estimations of matching engines to resolve inconsistencies and to combine the results
of different matchers.

5 Probabilistic Description Logic Programs

In this section, we present a tightly integrated approach to probabilistic disjunctive de-
scription logic programs (or simply probabilistic dl-programs) under the answer set
semantics. Differently from [15] (in addition to being a tightly integrated approach),
the probabilistic dl-programs here also allow for disjunctions in rule heads. Similarly to
the probabilistic dl-programs in [15], they are defined as a combination of dl-programs
with Poole’s ICL [20], but using the tightly integrated disjunctive dl-programs of [16]
(see Section 4), rather than the loosely integrated dl-programs of [5]. Poole’s ICL is
based on ordinary acyclic logic programs P under different “choices”, where every
choice along with P produces a first-order model, and one then obtains a probability
distribution over the set of all first-order models by placing a probability distribution
over the different choices. We use the tightly integrated disjunctive dl-programs un-
der the answer set semantics of [16], instead of ordinary acyclic logic programs under



their canonical semantics (which coincides with their answer set semantics). We first
introduce the syntax of probabilistic dl-programs and then their answer set semantics.

5.1 Syntax. We now define the syntax of probabilistic dl-programs and probabilistic
queries to them. We first introduce choice spaces and probabilities on choice spaces.

A choice space C is a set of pairwise disjoint and nonempty sets A⊆HBΦ−DLΦ.
Any A∈C is an alternative of C and any element a∈A an atomic choice of C. Intu-
itively, every alternative A∈C represents a random variable and every atomic choice
a∈A one of its possible values. A total choice of C is a set B⊆HBΦ such that
|B ∩ A|=1 for all A∈C (and thus |B|= |C|). Intuitively, every total choice B of C
represents an assignment of values to all the random variables. A probability µ on
a choice space C is a probability function on the set of all total choices of C. Intu-
itively, every probability µ is a probability distribution over the set of all variable as-
signments. Since C and all its alternatives are finite, µ can be defined by (i) a mapping
µ :

⋃
C→ [0, 1] such that

∑
a∈A µ(a) = 1 for all A∈C, and (ii) µ(B) = Πb∈Bµ(b)

for all total choices B of C. Intuitively, (i) defines a probability over the values of each
random variable of C, and (ii) assumes independence between the random variables.

A probabilistic dl-program KB =(L,P,C, µ) consists of a disjunctive dl-program
(L,P ), a choice space C such that no atomic choice in C coincides with the head of
any rule in ground(P ), and a probability µ on C. Intuitively, since the total choices
of C select subsets of P , and µ is a probability distribution on the total choices of C,
every probabilistic dl-program is the compact representation of a probability distribu-
tion on a finite set of disjunctive dl-programs. Observe here that P is fully general and
not necessarily stratified or acyclic. We say KB is normal iff P is normal. A proba-
bilistic query to KB has the form ∃(c1(x) ∨ · · · ∨ cn(x))[r, s], where x, r, s is a tuple
of variables, n> 1, and each ci(x) is a conjunction of atoms constructed from pred-
icate and constant symbols in Φ and variables in x. Note that the above probabilistic
queries can also be easily extended to conditional expressions as in [15].

5.2 Semantics. We now define an answer set semantics of probabilistic dl-programs,
and we introduce the notions of consistency, consequence, tight consequence, and cor-
rect and tight answers for probabilistic queries to probabilistic dl-programs.

Given a probabilistic dl-program KB =(L,P,C, µ), a probabilistic interpretation
Pr is a probability function on the set of all I ⊆HBΦ. We say Pr is an answer set of KB
iff (i) every interpretation I ⊆HBΦ with Pr(I)> 0 is an answer set of (L,P ∪ {p← |
p∈B}) for some total choice B of C, and (ii) Pr(

∧
p∈B p) =

∑
I⊆HBΦ, B⊆I Pr(I) =

µ(B) for every total choiceB ofC. Informally, Pr is an answer set of KB =(L,P,C, µ)
iff (i) every interpretation I ⊆HBΦ of positive probability under Pr is an answer set of
the dl-program (L,P ) under some total choice B of C, and (ii) Pr coincides with µ on
the total choices B of C. We say KB is consistent iff it has an answer set Pr .

We define the notions of consequence and tight consequence as follows. Given a
probabilistic query ∃(q(x))[r, s], the probability of q(x) in a probabilistic interpretation
Pr under a variable assignment σ, denoted Prσ(q(x)) is defined as the sum of all
Pr(I) such that I ⊆HBΦ and I |=σ q(x). We say (q(x))[l, u] (where l, u∈ [0, 1]) is a
consequence of KB , denoted KB‖∼ (q(x))[l, u], iff Prσ(q(x))∈ [l, u] for every answer
set Pr of KB and every variable assignment σ. We say (q(x))[l, u] (where l, u∈ [0, 1])
is a tight consequence of KB , denoted KB ‖∼tight(q(x))[l, u], iff l (resp., u) is the



infimum (resp., supremum) of Prσ(q(x)) subject to all answer sets Pr of KB and all σ.
A correct (resp., tight) answer to a probabilistic query ∃(c1(x) ∨ · · · ∨ cn(x))[r, s] is a
ground substitution θ (for the variables x, r, s) such that (c1(x)∨ · · · ∨ cn(x))[r, s] θ is
a consequence (resp., tight consequence) of KB .

5.3 Representing and Combining Confidence Values. The probabilistic extension of
disjunctive dl-programs KB =(L,P ) to probabilistic dl-programs KB ′ =(L,P,C, µ)
provides us with a means to explicitly represent and use the confidence values provided
by matching systems. In particular, we can interpret the confidence value as an error
probability and state that the probability that a mapping introduces an error is 1 − n.
Conversely, the probability that a mapping correctly describes the semantic relation
between elements of the different ontologies is 1 − (1 − n) = n. This means that we
can use the confidence value n as a probability for the correctness of a mapping. The
indirect formulation is chosen, because it allows us to combine the results of different
matchers in a meaningful way. In particular, if we assume that the error probabilities
of two matchers are independent, we can calculate the joint error probability of two
matchers that have found the same mapping rule as (1 − n1) · (1 − n2). This means
that we can get a new probability for the correctness of the rule found by two matchers
which is 1− (1−n1) · (1−n2). This way of calculating the joint probability meets the
intuition that a mapping is more likely to be correct if it has been discovered by more
than one matcher because 1−(1−n1) ·(1−n2) > n1 and 1−(1−n1) ·(1−n2) > n2.

In addition, when merging inconsistent results of different matching systems, we
weigh each matching system and its result with a (user-defined) trust probability, which
describes our confidence in its quality. All these trust probabilities sum up to 1. For
example, the trust probabilities of the matching systems m1, m2, and m3 may be 0.6,
0.3, and 0.1, respectively. That is, we trust most in m1, medium in m2, and less in m3.
Note that similarly one can associate trust probabilities with single mapping rules.

We illustrate this approach using an example from the benchmark data set of the
OAEI 2006 campaign. In particular, we consider the case where the publication on-
tology in test 101 (O1) is mapped on the ontology of test 302 (O2). Below we show
some mappings that have been detected by the matching system hmatch that partic-
ipated in the challenge. The mappings are described as rules in P , which contain a
conjunct indicating the matching system that has created it and a number for identify-
ing the mapping. These additional conjuncts are atomic choices of the choice space C
and link probabilities (which are specified in the probability µ on the choice space C)
to the rules (where the common concept Proceedings of both ontologies O1 and O2 is
renamed to the concepts Proceedings1 and Proceedings2, respectively):

Book(X)← Collection(X) ∧ hmatch1 ;

Proceedings2(X)← Proceedings1(X) ∧ hmatch2 .

We define the choice space according to the interpretation of confidence described
above. The resulting choice space is C = {{hmatchi,not hmatchi} | i ∈ {1, 2}}. It
comes along with the probability µ on C, which assigns the corresponding confidence
value n to each atomic choice hmatchi and the complement 1−n to the atomic choice
not hmatchi. In our case, we have µ(hmatch1) = 0.62, µ(not hmatch1) = 0.38,
µ(hmatch2) = 0.73, and µ(not hmatch2) = 0.27.



The benefits of this explicit treatment of the uncertainty becomes clear when we
now try to merge this mapping with the result of another matching system. Below are
two examples of rules that describe correspondences for the same ontologies that have
been found by the falcon system:

InCollection(X)← Collection(X) ∧ falcon1 ;

Proceedings2(X)← Proceedings1(X) ∧ falcon2 .

Here, the confidence encoding yields the choice space C ′ = {{falconi,not falconi} |
i∈{1, 2}} along with the probabilities µ′(falcon1) = 0.94 and µ′(falcon2) = 0.96.

Note that just putting together the rules without considering the choice space would
lead to the same inconsistency problems shown in the last section, because the concepts
Book and InCollection are disjoint. Further, the fact that the mapping between the con-
cepts Proceeding1 and Proceeding2 has been found by both matchers is not considered
and this mapping rule would have the same status as any other rule in the mapping.

Suppose we associate with hmatch and falcon the trust probabilities 0.55 and 0.45,
respectively. Based on the interpretation of confidence values as error probabilities, and
on the use of trust probabilities when resolving inconsistencies between rules, we can
now define a merged mapping set that consists of the following rules:

Book(X)← Collection(X) ∧ hmatch1 ∧ sel hmatch1 ;

InCollection(X)← Collection(X) ∧ falcon1 ∧ sel falcon1 ;

Proceedings2(X)← Proceedings1(X) ∧ hmatch2 ;

Proceedings2(X)← Proceedings1(X) ∧ falcon2 .

The new choice space C ′′ and the new probability µ′′ on C ′′ are obtained from C ∪C ′

and µ · µ′ (which is the product of µ and µ′, that is, (µ · µ′)(B ∪B′) =µ(B) · µ′(B′)
for all total choices B of C and B′ of C ′), respectively, by adding the alternative
{sel hmatch1, sel falcon1} and the probabilities µ′′(sel hmatch1) = 0.55 and µ′′(sel
falcon1) = 0.45 for resolving the inconsistency between the first two rules.

It is not difficult to verify that, due to the independent combination of alternatives,
the last two rules encode that the rule Proceedings2(X)←Proceedings1(X) holds
with the probability 1− (1−µ′′(hmatch2)) · (1−µ′′(falcon2))= 0.9892, as desired.

6 Summary and Outlook
We have presented a rule-based framework for representing ontology mappings that
supports the resolution of inconsistencies on a symbolic and a numeric level. While
the use of disjunction and nonmonotonic negation allows the rewriting of inconsistent
rules, the probabilistic extension of the language allows us to explicitly represent nu-
meric confidence values as error probabilities, to resolve inconsistencies by using trust
probabilities, and to reason about these on a numeric level. While being expressive and
well-integrated with description logic ontologies, the language is still decidable and has
data-tractable subsets that make it particularly interesting for practical applications.

We leave for future work the implementation of the language and the performing of
experiments on the basis of large data sets, to further substantiate our claims that this
formal framework is suited for realistic applications of ontology mappings.
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