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Abstract. We introduce a framework based on Description Logics, which
can be used to encode and solve decision problems in terms of combining
inference services in DL and utility theory to represent preferences of
the agent. The novelty of the approach is that we consider ABoxes as
alternatives and weighted concept and role assertions as preferences in
terms of possible outcomes. We discuss a relevant use case to show the
benefits of the approach from the decision theory point of view.

1 Introduction

Preference representation is an ongoing research subject in artificial intelligence,
gaining more popularity every day. Since the first attention of multi-attribute
utility theory in [10, 6], numerous approaches have been done, including prob-
abilistic, possibilistic, fuzzy and graphical models [3, 19, 9, 8] amongst others.
One recent approach stepping forward over the last decade is logical languages
[2, 20, 4, 11, 21, 15, 16, 18, 17] to encode decision-theoretic problems

Description Logics (DL) is a family of logic languages which is mainly based
on decidable fragments of first order logic. It has been designed to be used as
a formalism in the field of knowledge representation, and it has become one of
the major approaches over the last decade. In the context of the Semantic Web,
it embodies a theoretical foundation for the OWL Web Ontology Language, a
standard defined by the World Wide Web Consortium.

In this paper we introduce a Description Logic framework, which can be used
to encode and solve decision problems in terms of combining inference services
in Description Logics and utility theory to represent preferences of the decision
maker. Within our approach we consider ABoxes as alternatives and weighted
concept and role assertions as preferences in terms of possible outcomes. We
discuss some relevant cases and restrictions about our framework.

The framework that we propose in this paper works with classical-DLs, and
it can be applied to decision making scenarios where uncertainty is not involved
e.g,. transportation model, or the theory of consumer choice [5]. It can be used,
for instance, as a core component of a web-based decision support system for
e-shopping. In general, it can be applied to every domain where background



knowledge which is relevant for our decisions, can be shared, matched and related
in terms of ontologies. Within a logic-based decision making framework it is
possible to evaluate an alternative, or choice in terms of its logical implications.
This is important in terms of providing the (logical) rationality of the agent. In
the case of DL, representing attributes or criteria in terms of concepts, one can
express also the dependency between attributes using the concept hierarchy. This
in principle, defines indirectly a multi-attribute utility function, using only the
relevant attributes. In general, using logical implication with weighted (logical)
formulae, allows one to (partially) define a multiattribute utility function [11, 21,
15, 16]. Such a function parametrized over some formulae, is (partially) additive
in terms of weights of the implied formulae. This feature provides convenience in
preference elicitation as well as computational complexity of the utility function.
We remark that the scope of this paper does not include elicitation of preferences,
and the complexity of the employed approach, which is a part of the future work
plan.

In our work, we have not specified any specific language of DL, since the core
idea is regardless of the chosen language. Therefore, we used the basic DL lan-
guage ALC to introduce our framework. However, for convenience, we have used
the DL language with concrete domains in the example section (Section 3.3),
since numerical domains are typically used in Decision Theory.

In the remainder of the paper, we first briefly present preliminaries in utility
theory and DL in Section 2. Then, we introduce our framework and discuss an
example (Section 3). In the example, an agent (car buyer) is giving a decision
between two alternatives (two cars), according to her criteria. In Section 4, we
discuss the related works. Finally, we conclude and give a brief outline for future
research in Section 5.

2 Preliminaries

In this section, first we will give a basic introduction to preferences and utility
theory. Then we briefly inform the reader about our notation for DL.

2.1 Preferences and Utility

In prescriptive decision theory [10] it is useful to suppose the existence of a
hypothetical preference order, a relation defined over choices of the agent.

Definition 1 (Preference). Let X = {x1, . . . , xn} be a set of choices, and a
rational preference is a complete and transitive binary relation � on X. Then,
for any xi, xj ∈ X where i, j ∈ {1 . . . n}, strict preference and indifference is
defined as follows:

– xi � xj iff xi � xj and xj 6� xi (Strict preference),

– xi ∼ xj iff xi � xj and xj � xi (Indifference).



It is said that, a is weakly preferred1 (strictly preferred) to b whenever a � b
(a � b), a is indifferent to b whenever a ∼ b.

In order to represent the preference relation numerically, one introduces the
term utility, which is is a function that maps a choice from the choice set to a
positive real number reflecting the degree of usefulness. From now on, we will
consider only the case which X is finite.

Definition 2 (Utility Function). Given a finite choice set X = {x1, . . . , xn},
and preference � on X. Then u : X → R is a utility function if for any xi,
xj ∈ X with i, j ≤ n, the following holds:

xi � xj ⇐⇒ u(xi) > u(xj) ,
xi � xj ⇐⇒ u(xi) ≥ u(xj) ,
xi ∼ xj ⇐⇒ u(xi) = u(xj) .

For the proof of such a function exist, we refer the reader to the so-called
representation theorems in [7]. Occasionally, we will represent � in terms of the
(respective) utility function as a set (of pairs) U� = {〈x1, u(x1)〉, 〈x2, u(x2)〉,
. . . , 〈xn, u(xn)〉}, where x1, . . . , xn ∈ X (the choice set that � is defined) and
u(x1) . . . u(xn) ∈ R+ with u(xi) 6= u(xj) =⇒ xi 6= xj .

The basic principle in utility theory is that a rational agent should always try
to maximize its utility, or should take the choice with the highest utility. Note that
the decisions in real world are far more complex than requiring to consider just
a single criteria (e.g. unary utility functions). Multi-attribute utility functions
is an approach to deal with such decision problems.

Definition 3 (Multiattribute Utility Function). Let X = X1× . . .×Xn be
the set of multiple attributes over which the decision maker has preferences where
n ≥ 2 . Let � be the preference relation defined on X, then u is a multiattribute
utility function representing � if and only if ∀(x1, . . . , xn), (y1, . . . , yn) ∈ X,

(x1, . . . , xn) � (y1, . . . , yn) ⇐⇒ u(x1, . . . , xn) ≥ u(y1, . . . , yn) . (1)

2.2 Description Logics

It is assumed that the reader has some familiarity with DL. If that is not the
case, we refer the interested reader to [1]. The framework that we are presenting
is independent from the choice of a specific DL language. We will recall the
brief information of DL, to clarify the notation used and to cover the needed
knowledge for the framework and the example.

The signature of the DL language we use, is (NC , NR, NI), where NC is
the set of atomic concepts, NR is the set of role names, and NI is the set
of individuals. Along the text, we assume the unique name assumption, which
means that different individuals have different names. We denote concepts by

1 It is also called preference-indifference relation, since it is the union of strict prefer-
ence and indifference relation.



C and D, roles by R and S, and individuals as a and b. Concept descriptions
are defined inductively by NC , ¬C, C uD, and C tD if C and D are concept
descriptions, and ∃R.C and ∀R.C if R ∈ NR and C is a concept description. The
top concept > is abbreviation for C t ¬C and the bottom concept ⊥ is for ¬>.
An interpretation is a pair I = (∆I , ·I) where the domain ∆I is a non-empty
set and ·I is interpretation function that assigns to every concept name C a set
CI ⊆ ∆I and to every role name R a binary relation RI ⊆ ∆I × ∆I . It is
defined inductively for every concept description as follows; (¬C)I = ∆I \ CI ,
(C u D)I = CI ∩ DI , (C t D)I = CI ∪ DI , (∃R.C)I = {a ∈ ∆I | ∃b.(a, b) ∈
RI ∧ b ∈ CI}, and (∀R.C)I = {a ∈ ∆I | ∀b.(a, b) ∈ RI =⇒ b ∈ CI}. Any
other extension is defined accordingly, and will be clarified when it is necessary.

In Description Logics, there is a distinction between terminological knowledge
(TBox) and assertional knowledge (Abox). TBox is a set of concept inclusion
axioms: C v D where the interpretation is CI ⊆ DI . C ≡ D if C v D and C v
D. ABox is a set of concept assertions C(a) where a ∈ NI and C(a)I = aI ∈ CI ,
and role assertions R(a, b) where (a, b) ∈ NI ×NI and R(a, b)I = (aI , bI) ∈ RI .

A concept is satisfiable if there is an interpretation I such that CI 6= ∅. A
concept is satisfiable with respect to T if and only if there is a model I of T
such that CI 6= ∅. A concept inclusion C v D is said to be satisfiable if and
only if there is an I which respects CI ⊆ DI (i.e. I |= C v D). A concept C is
subsumed by a concept D with respect to T if CI ⊆ DI for every model of I
of T (i.e. C vT D or T |= C v D). If T is a set of axioms, then I is a model of
T if and only if I satisfies every element of T . Such a TBox is called coherent.
We say that an assertion α is entailed by ABox A (i.e. A |= α) if every model of
A also satisfies α. One basic reasoning service we will use is instance check ; to
check for a given ABox A and α, weather A |= α holds. An ABox A is consistent
w.r.t. a TBox T if there is a model of both T and A. We call the pair K = 〈T ,A〉
a knowledge base, and also say that K is satisfiable if A is consistent w.r.t. T .

A concrete domain D is a pair (∆D, pred(D)) where ∆D is the domain of D
and pred(D) is the set of predicate names of D. It is assumed that ∆I ∩∆D = ∅,
and each P ∈ pred(D) which is of arity n, is associated with PD ⊆ (∆D)n. We
will denote functional roles with lower case r. In DL with concrete domains, it
is assumed that NR is partitioned into a set of functional roles and the set of
ordinary roles. A role r is functional if for every (x, y) ∈ r and (w, z) ∈ r it
implies that x = w =⇒ y = z. Functional roles, in the extended language,
is interpreted as partial functions from ∆I to ∆I × ∆D. Functional roles and
ordinary roles are both allowed to be used with both the existential quantification
and the universal quantification. Concrete domain is required to be closed under
negation (denoted by P ), in order to be able to compute the negation normal
form of the concepts defined via extended constructs. For more information
about DL, we refer the interested reader to [1].



3 Approach

We consider a decision problem (in the terminology of decision theory) from the
agent perspective: in the light of background knowledge and preferences which
alternative should be chosen? We should note that, in this paper we do not con-
cern ourselves with problems regarding elicitation or uncertainty. In this regard,
we assume that agents preferences are elicited and there is no uncertainty. This
is usually the case for decision making in the domain of consumer choice theory,
([5]). Furthermore, we note that the formalism is created concerning further pos-
sible extensions to formalize sequential decisions, policies and game theoretical
concepts later.

3.1 Representing a Decision Problem and Utilities

We represent the background knowledge of the agent by the DL knowledge
base K, which includes the concept hierarchy T and known assertions about
individuals which are represented in A. The choice set C represents a priori
alternatives which utilities yet are unknown by the agent. U is the set of criteria
or outcomes where each element consists of an assertion ai and a value ui assigned
to this assertion with the condition that every ai has a unique ui. We will use
the terms criteria, attributes and outcomes interchangeably.

Definition 4 (Decision Base). A decision base, D = (K, C,U) is a triple with;

– K = (T ,A) is a description logic knowledge base (background knowledge) in
which T is an acyclic TBox and A is an ABox,

– C = {C1, . . . , Cn} is a choice box, a non-empty finite set of choices, each
being an ABox,

– U = {〈a1, u1〉, . . . , 〈am, um〉} is a utility box (UBox), a finite set of utility
assertions, in which ai being an assertion and ui ∈ R is the assigned basic
utility value for ai, with the restriction ai ≡T aj =⇒ ui = uj.

Note that U can be inconsistent in terms of arbitrary unions of ais with
regard to K. Another way to look at it, is to think of it as a (possibly incon-
sistent) union of ABoxes. One can think of a utility assertion as an outcome,
or an instantiation of an attribute, and the value ui is the corresponding basic
(uninferred) utility value for that outcome. This gives us the flexibility to model
a decision problem in various ways in terms of preferences.

The first way is, if one interprets a concept name in UBox, as a single at-
tribute then the preference is defined just as they were defined in parallel to
the standard multi attribute utility theory [10]. For instance, if Colour is an at-
tribute, the instantiation of its value red corresponds to an outcome Colour(red)
with its basic utility ui, which is expressed in the form of 〈Colour(red), ui〉. In
some cases, this might seem contrary to the usual way of expressing ontologies
in DL. However, by this example we emphasize the enough expressivity of DL.
Furthermore, it allows us to define utility values for complex outcomes explicitly;
〈Colour(red) u Size(small), uj〉, having the colour red and the size is small.



Another obvious way to model preferences in a decision problem is to regard
a concept name in UBox as a criteria or property (possibly defined or interre-
lated to other concepts via background knowledge K), e.g. GourmetTrip(trip1),
EconomicTrip(trip2). The utility of a choice is defined straightforward.

Definition 5 (Utility). The utility U of a choice C w.r.t D = (K, C,U) is,

U(C) = Σ{〈a,u〉∈U|K∪C|=a}u

where C ∈ C and K ∪ C is consistent.

From the definition above, it follows that the utility of an inconsistent alternative
(with respect to the knowledge base) is undefined. Thus we restrict ourselves to
assess only the consistent decisions. This naturally provides a service to elimi-
nate alternatives which can cause inconsistencies. Note that one could also define
utilities for inconsistent decisions simply by extending the definition, e.g., assign-
ing zero, however, this causes an inconsistent decision and a possible zero-utility
choice to be regarded indifferently in terms of utility score, if no restriction on
U is applied, e.g., ui ≥ 1. As the consistency of a decision with respect to back-
ground knowledge or a previously taken decision is critical to a decision maker,
so it is for a decision support system. In case of logical languages, hence of DL-
based ontologies, consistency checking is a standard reasoning service. A decision
support system based on this framework, whose choices are given, could easily
help the decision maker in cases it is hard to see the logical implications and
possible inconsistencies.

Notice that calculating the utility of a choice, can be thought of as an-
swering a series of instance checking inferences i.e. K ∪ Ci |=? a1,K ∪ Ci |=?

a2, . . . ,K ∪ Ci |=? a|U| and collecting positive answers. Now, given the deci-
sion base and the utility of a choice Ci, one can define a decision problem. A
typical form of the decision problem would be finding the best decision expressed
as choosing the choice with the maximum utility:

Cmax = arg max
C
{U(C) | C ∈ C} (2)

This can be generalized in terms of picking up the best n-choices together.

Cnmax = arg max
(C1,...,Cn)

{U(

n⋃
i=1

Ci) | C1, . . . , Cn ∈ C and n ≤ |C|} (3)

Or it can be logically restricted to a level that the decision maker can pick up
at most one choice (mutually exclusive), with the following definition.

Definition 6 (Mutual Exclusion). A decision base D = (K, C,U) is mutually
exclusive if for every Ci, Cj ∈ C with i 6= j, Ci ∪ Cj ∪ K is inconsistent.



In general, in order to model the concerned type of a decision problem, one can
bring some restrictions on C and U .

Proposition 1. The utility function U induces a rational preference relation.

Proof. Since the codomain of U is R+, ≥ is a complete quasiorder (complete
and transitive). For any two consistent (w.r.t K) choices C1 and C2, set C1 � C2

if U(C1) ≥ U(C2), and set C1 ∼ C2 if C1 ≥ C2 and C2 ≥ C1.
ut

3.2 About the Expressivity of D

Since utility functions represent preferences, it is well-known that certain classes
of utility functions correspond to certain type of preferences. In this section, we
will discuss some of the expressivity of D (defined in Definition 5) in terms of the
utility functions. Following [4], let us give some definitions of well-known utility
classes first.

Definition 7 (Utility Function Classes). Let U be a utility function (as in
Definition 5), and C1, C2, C3 are pairwise consistent ABoxes. Then,

1. U is non-negative iff U(C) ≥ 0 for all C.
2. U is monotonic iff U(C1) ≤ U(C2) whenever C1 ⊆ C2.
3. U is subadditive iff U(C1 ∪ C2) ≤ U(C1) + U(C2) − U(C1 ∩ C2) for all C1

and C2.
4. U is superadditive iff U(C1 ∪C2) ≥ U(C1) +U(C2)−U(C1 ∩C2) for all C1

and C2.
5. U is concave iff U(C1 ∪ C2) − U(C2) ≤ U(C1 ∪ C3) − U(C3) for all C1

whenever C3 ⊆ C2.
6. U is convex iff U(C1∪C2)−U(C2) ≥ U(C1∪C3)−U(C3) for all C1 whenever

C3 ⊆ C2.
7. U is modular iff U(C1 ∪C2) = U(C1) + U(C2)− U(C1 ∩C2) for all C1 and

C2.

Monotonicity means, more of a good (or choice) is better. Concavity means
that if we move (from C3) to a better position (or the choice C2), the marginal
utility (of the choice C1) decreases. This describes the behaviour of risk-averse
agents. The opposite occurs when the function is convex; exposing a risk-seeking
behaviour. Modularity is the intersection of both classes. From the informal
argument in [4], we state the following proposition.

Proposition 2. Let U be a utility function, then: (1) if U is concave, then it is
subadditive, (2) if U is convex, then it is superadditive.

Proof. Set C3 as C1 ∩ C2.
ut



The following negative result will help us to discuss the expressive power of U
w.r.t. D.

Theorem 1. U is (1) not non-negative, (2) not monotonic, (3) not subadditive,
(4) not superadditive, (5) not concave, (6) not convex, (7) not modular w.r.t.
some D.

Proof. (1) follows from Definition 4 and Definition 5 by setting basic utilities
as negative reals. (2) follows from (1). To prove (3), set K = ∅, C1 = {D(a)},
C2 = {E(a)} and U = {〈D(a), 10〉, 〈E(a), 10〉 〈(DuE)(a), 100〉}. (4) follows from
setting K = ∅, C3 6= ∅, C3 ⊂ C2 ⊂ C1, and UBox U as the non-negative assertions
of C1. (5) follows from the contrapositive of Proposition 2- 1. (6) follows from
the contrapositive of Proposition 2-2. (7) follows from both (5) and also (6).

ut

Observe that Theorem 1 follows from the expressive power and therefore
the flexibility of U (w.r.t D). Therefore, with adequate restrictions on D (in
particular UBox U), one might change U into one of the aforementioned class
(in Definition 7). For instance defining basic utilities non-negative (ui ∈ R+)
would guarantee the non-negativity (trivially), and monotonicity (since |= is
also monotone). Observe that in U one can express complement attributes (as in
the proof of Theorem 1.3 that is, the utility of having both criteria is greater than
sum of each (e.g. Hotel reservation and Plane ticket of a holiday). Similarly one
can express substitute attributes e.g., assigning a negative value to having both
attribute. Not allowing complementary attributes and setting U non-negative
would guarantee modularity. Certainly, investigations over such restrictions and
their interrelations need a closer inspection, which we plan to do in future work.

3.3 Example: Car Buyer

Consider an agent who wants to buy a second hand sports car. After visiting
various car dealers, he finds two alternatives as fair deals; a sport Mazda (Mx-5
Miata Roadster, 2013 ) which fits his original purpose and a BMW (335i Sedan,
2008 ) which is also worth considering since it has a very strong engine (300
horsepower (hp)) and also comes with a sport kit. The car buyer’s decision base
(background knowledge (T , ∅), choices C, and criteria U) is as in Figure1.

As the use of numerical domains is common to classical Decision Theory, we
will use the language with concrete domains. If the reader is already familiar
with concrete domains, she can skip the technical definitions and move directly
to Figure 1.

Let us clarify concrete domains and predicates which are used in the example.
We take the concrete domain Car and ∆Car = ∆$ ∪∆sec ∪∆mpg ∪∆mph ∪∆hp

with ∆$∩∆sec∩∆mpg∩∆mph∩∆hp = ∅, and pred(Car) = pred($)∪pred(mpg)∪
pred(mph) ∪ pred(sec). We define the partition (of the domain ∆Car) ∆$ as a
denumerable set {i$} where i ∈ N, pred($) = {<$, >$,≥$,≤$,=$, 6=$}. (<$

)$(x, y) = {(x, y) ∈ ∆$ ×∆$ | i, j ∈ N with i$ = x and j$ = y such that i < j}.



T = {∃hasPrice. ≤30000 $≡ InexpensiveCar, Bmw uMazda v ⊥,

ExpensiveCar v HighClassCar, Bmw335i v Bmw,

HighClassCar v PrestigiousCar, ∃hasModelY ear. ≥2012≡ Y oungCar,

∃hasFuelConsumpt. ≥20mpg≡ EconomicCar, Bmw v PrestigiousCar,

Roadster v PrestigiousCar, SportsCar u Convertible ≡ Roadster,

MiddleClassCar uHighClassCar v ⊥, ClassicalKit v Kit,

SportsCar t ∃hasHP. ≥200hpv StrongCar, SportKit v Kit,

2Doors u 4Doors v ⊥, Car uKit v ⊥,

∃has0− 60mph. ≤7.0sec u ClassicalKit u SportKit v ⊥}
∃hasHP. ≥270hpv V eryStrongCar,

2Doors u ¬Convertible ≡ Coupé,

¬ Coupé u¬Convertible u ¬Hatchback v Sedan,

2Doors u ∃has0− 60mph. ≤7.0sec u
∀hasKit.SportKit v SportsCar,

C1 = { MazdaMx5Miata(car), C2 = { Bmw335i(car),

hasHP (car, 167hp), hasHP (car, 300hp),

hasFuelConsumption(car, 24mpg), hasFuelConsumption(car, 19mpg),

hasModelY ear(car, 2013), hasModelY ear(car, 2008),

has0− 60mph(car, 6.9sec), has0− 60mph(car, 4, 8sec),

hasPrice(car, 29960$), hasPrice(car, 42560$),

Convertible(car), Sedan(car),

2Doors(car), 4doors(car),

hasKit(car, kit)} SportKit(kit),

hasKit(car, kit)}

U = { 〈InexpensiveCar(car), 30〉,

〈PrestigiousCar(car), 55〉,

〈V eryStrongCar(car), 50〉,

〈StrongCar(car), 40〉,

〈EconomicCar(car), 30〉,

〈Y oungCar(car), 35〉,

〈Convertible(car), 10〉,

〈Sedan(car), 5〉,

〈SportKit(kit), 20〉,

〈ClassicalKit(kit), 10〉}

Fig. 1. The car buyer’s background knowledge K = (T , ∅), choices set CBox C =
{C1, C2}, and UBox U . We omit the trivial axioms with the super concept Car:
HighClassCar v Car, PrestigiousCar v Car . . . etc.



Other predicates are defined similarly in an obvious way parallel to usual binary
relations over N. For convenience, we extend pred($) with finitely many unary
predicates in the form of <x= {∀y ∈ ∆$ |<$ (x, y)} and also of >x, ≤x, ≥x, =x,
6=x which are similarly defined, enough to express the intended TBox. Note that
pred($) is closed under negation: <$(x, y) =≥$ (x, y), etc. For other partitions,
we take ∆sec = {i sec | i ∈ R+ − {0}}, ∆mpg = {i mpg | i ∈ N}, ∆mph =
{i mph | i ∈ N}, ∆hp = {i hp | i ∈ N−{0}}. The rest of the respective predicate
names and functional roles are defined in an obvious way (hasPriceI : ∆I×∆$,
hasKit : ∆I ×∆I , etc).

According to the agent, taking T into account, a Bmw is a prestigious car.
Considering a 200 hp or above is enough to refer to a car as strong. An economic
car should go for more than 20 miles per gallon (mpg). A car is young if it was
manufactured in 2012 or later.

Considering U in Figure1, the agent (car buyer) is more interested in having
a prestigious car than having an inexpensive car. He prefers convertible to sedan.
However, these are not as important as a car to be an economic car, or a strong
car. Using the given decision base, we can calculate the utility of each choice
(U(C1) = 220, U(C2) = 170), which implies (by the assumption: the higher the
utility, the more desirable is the choice) that C1 � C2.

The example of the decision problem given above is (intrinsically) mutually
exclusive since it was obvious that we were deciding between two choices (buying
just one car). Therefore we used a unique individual car instead of car1, car2.
Mutual exclusion is implied (e.g., by Bmw uMazda v ⊥).

3.4 Some Useful Notions

Consider the case where there is an assertion in a particular choice or an ex-
pansion of it which is not implied by any utility assertion. For instance, assume
that in the car buyer example, C1 has hasColour(car, red). This might be quite
important for the decision maker. However, as this outcome is not included in
U , it will not be reflected in the evaluation of the utility for C1. In this case,
the utility function, which is implicitly defined for the choice C, does not really
capture the implications of C. That means preferences are not comprehensive
enough in terms of having all the necessary outcome information. This in turn
diminishes the quality of accuracy in evaluating the utility of a decision (perhaps
in trade-off regarding to ease the storage of preference and save of computational
resources). By a comprehensive preference with respect to a choice, we under-
stand a preference structure which captures (having a value assigned) all of its
logical implications.

Definition 8 (Comprehensiveness). Let U ′ be the entire set of outcomes
({ai}) in U , and clT (C) = {x | C ∪ T |= x} be the closure of a choice C
(w.r.t T ). Then U is called comprehensive w.r.t. C iff clT (C) ⊆ U ′.

Comprehensiveness is also an important property that should be taken into
account for a possible interest of automated generation of UBoxes.



Note that one can extend the present framework in terms of considering not
only the choices but also an extra available information prior to giving a decision.
This case is especially relevant when the agent is considered to have an incom-
plete background knowledge. The extra information can encoded in terms of an
axiom or assertion. This allows us to evaluate the value of information in terms
of its utility, with respect to a choice. Informally, the value of information w.r.t.
a choice C is the difference between the utility of C with the extra information
and without. We will consider the axiom case.

Definition 9 (Value of Information). Let D = ((T ,A), C,U) be a decision
base and D′ = ((T ∪Tα,A), C,U) be the decision base extended with the additional
information Tα. Then, the value of information with respect to a choice C and
decision base D is U(Tα) = UD′(C)−UD(C), whenever T ∪Tα ∪C is consistent.

For instance, assume that in car buyer example, our agent does not know
what a roadster car really is (which means we assume that the TBox in Figure1
does not include the axiom SportsCaruConvertible ≡ Roadster), even though
he knows that a roadster is prestigious. Without that information the Mazda
does not become a prestigious car in all models of T . That means the utility of
C1 can not get extra 55 utility score for being a PrestigiousCar. Thus the value
of the regarded information is 55 for C1 whereas it is 0 for C2.

4 Related Work

Preference representation using logical languages has become popular over the
last decade. Many of these approaches are based on propositional logic [2, 4, 11,
21]. DL languages are used for preference representation in [13, 15, 16, 18, 17].
In [13], Lukasiewiecz and Schellhase introduce a framework in DL to model
conditional preferences for matchmaking and ranking objects under conditional
preferences with an application to literature search. However utility functions is
not a part of their approach. In [18, 17], Ragone et al. use DL in order to work
on multi-issue bilateral negotiation via focusing on utilities. In [18], they explain
how to use DL to describe request and offers from buyers and sellers. Using
the non-standard reasoning service of concept contraction to handle conflicts in
goods and service descriptions, they present an alternating-offers protocol. In
their subsequent work [17], they focus on multi-issue bilateral negotiation with
incomplete information. There, for the first time, they introduce the utility of a
concept. The utility of a concept (proposal) is defined as the sum of the weights
of its superconcepts. In [15, 16], they mainly discuss how to compute utilities.
Although their work was mainly developed in the context of multiattribute ne-
gotiation, to our knowledge this is the most similar work to our approach.

In [15], Ragone et al. show how to represent preferences using weighted DL-
formulas. Claiming that the definition of utility by subsumption yields unintu-
itive results, they base their modified definition of utility on semantic implica-
tion. This means that the utility of a concept C w.r.t. a TBox is defined as the
sum of the weights of the concepts that are logically implied by C. According to



terminology they used, our approach can be understood as an implication-based
approach. However, they define logical implication in terms of membership, i.e.,
m |= C iff m ∈ CI . The minimal model that they introduced in order to de-
fine the minimal utility value is more restrictive than ordinary models in DL.
They change this definition to ordinary models in their next paper [16], while
keeping the formal machinery the same (except the way they compute utilities).
We should note that their preference set, which is a set of weighted concepts, is
similar to our UBox. Hence, the main difference of our approach is the formal
extension to multiple alternatives and the use of ABoxes, which in turn provides
extra expressivity (i.e., one can induce a preference relation over the membership
of distinct individuals to the same class e.g., U = {〈C(a), 20〉, 〈C(b), 30〉}).

In [20], authors show how to encode fuzzy MCDM problems in the formal-
ism of fuzzy DL. They base their work on a standard MCDM feature, a decision
matrix wherein the performance score of each alternative over each criteria is ex-
plicitly stated. Criteria are expressed as fuzzy concepts. Among alternatives, the
optimal alternative (w.r.t the fuzzy knowledge base) is the one with the highest
maximum satisfiability degree. The authors do not explicitly make a distinction
between the knowledge base and the set of criteria. In general, the focus of the
work is to show the potential and flexibility of fuzzy DL in encompassing the
usual numerical methods used in MCDM, rather than leveraging a formal con-
cept hierarchy in MCDM for expressing relations and handling inconsistencies
between criteria, alternatives, and the knowledge base.

5 Future Work

We have introduced a framework based on knowledge representation formal-
ism DL, for it can be applied to solve decision problems, i.e., multi-attribute
discrete alternatives. Using our formalism, we have also defined formally some
concepts such as mutually exclusive choices, comprehensiveness ,value of infor-
mation which is promising for future directions. One aim is to make a closer
investigation on expressive power of D.

As the major part of the utility theory literature is concerned with uncer-
tainty, one major future research direction is to extend the framework with
probabilistic description logics, e.g., [12, 14]. This would allow us to access the
essential utility theory literature from the DL perspective, along with lots of new
application possibilities. In particular, the probabilistic extension would allow us
to compute the expected utility of choices (as lotteries) in terms of their logical
implications according to the type of the probability the framework is defined
(e.g. subjective, statistical).

A second major research direction is to extend the framework to sequential
decisions (e.g. Di → Di+1, sequence of decision bases). Once sequential decisions
are defined, one can represent policies, strategies and define a planner.

It can be extended to represent collaborative decision making scenarios as
well as game theoretical set-ups by considering more than one agent and speci-
fying restrictions between their choice sets and knowledge bases. As an example,



in an arbitrary set-up, rules of the game could be a subset of intersection of both
agent’s knowledge bases, then the knowledge bases would get extended accord-
ing to each players choices if each player can see what others choose. It can be
checked whether a game-theoretical condition is satisfied, in terms of ontologies.

Currently, we are working on the implementation of the basic framework as a
Protégé2 plug-in. Our plugin is planned to consist, first of all, of an editor for the
definition of UBoxes and choices, while the background knowledge is loaded via
the standard interfaces of Protégé. Our extension will then be able to compute
the utility of the given choices in order to display a ranking. The development of
our Protégé plugin is motivated by the idea to demonstrate the benefits of our
approach to a set of different application scenarios.
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