
uDecide: A Protégé Plugin
for Multiattribute Decision Making

Erman Acar, Manuel Fink, Christian Meilicke and Heiner Stuckenschmidt
Data & Web Science Group

University of Mannheim
D-68159, Mannheim, Germany

{erman,manuel,christian,heiner}@informatik.uni-mannheim.de

ABSTRACT
This paper introduces the Protégé plugin uDecide. With the
help of uDecide it is possible to solve multi-attribute decision
making problems encoded in a straight forward extension of
standard Description Logics. The formalism allows to spec-
ify background knowledge in terms of an ontology, while each
attribute is represented as a weighted class expression. On
top of such an approach one can compute the best choice
(or the best k-choices) taking background knowledge into
account in the appropriate way. We show how to implement
the approach on top of existing semantic web technologies
and demonstrate its benefits with the help of an interest-
ing use case that illustrates how to convert an existing web
resource into an expert system with the help of uDecide.

Categories and Subject Descriptors
[Artificial Intelligence]: Knowledge Representation and
Reasoning – Description Logics; [Information Systems
Application]: Decision Support Systems – Expert systems;
[Web data description languages]: Semantic web de-
scription languages – Web Ontology Language (OWL)

General Terms
Theory, Economics

Keywords
Description Logics, Utility Theory, Decision Making

1. INTRODUCTION
The study of preferences and decision support systems is

an ongoing research subject in artificial intelligence, gain-
ing more popularity every day. Since the first attention of
multi-attribute utility theory in [7], numerous approaches
have been proposed, including probabilistic, possibilistic,
fuzzy and graphical models [6] amongst others. One recent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org. K-CAP
2015, October 07 - 10, 2015, Palisades, NY, USA. Copyright is held by the
owner/author(s). Publication rights licensed to ACM. ACM 978-1-4503-
3849-3/15/10?$15.00 DOI: http://dx.doi.org/10.1145/2815833.2816957

approach stepping forward is the use of logical languages,
e.g., [4, 9] to encode decision-theoretic problems.

We follow this line of research and introduce a Protégé
plugin, uDecide, to encode decision making problems in the
semantic web language OWL. uDecide uses standard reason-
ing techniques to perform the non-standard reasoning task of
ranking choices with respect to a set of weighted attributes
specified by a user. In this regard, it can be thought of
as a decision support system. The plugin uses an ontology
as background knowledge. A subset of the individuals that
appear in this ontology can be defined as possible choices.
uDecide is based on a multi-attribute utility theoretic as-
sessment to yield the ranking of choices. Each attribute is
represented by a class description weighted by a utility value
which is asserted by the user. This yields a compact repre-
sentation for a user’s preference over attributes. Then, the
preference relation is lifted to the set of choices via the ag-
gregation of attributes that the choices satisfy due to their
class membership.

The theoretical underpinnings of uDecide are weighted
logics (e.g., see [5]). In particular, uDecide is based on a
weighted Description Logics (DL) framework [1], referred to
as DL decision bases, that does not require any specific DL
language. This provides flexibility in the sense that one can
use tractable fragments e.g., the DLLite family [3] or EL
[2] if scalability is important, or expressive fragments when
this is required by the domain that needs to be modelled.
Also, our approach supports data types which is a desired
property, since the use of numeric domains is common in
the literature of decision theory (see [8]). In this work, we
briefly present parts of the theoretical framework proposed
in [1], and introduce our Protégé plugin uDecide which is
based on this formalism.

uDecide can be understood as a generic out-of-the-box ex-
pert system that turns an ontology for a specific domain into
a powerful decision support system for the domain described
by that ontology. Such an expert system can be applied to
support decision making in various domains. Within this
paper we present a use case to illustrate how to use uDe-
cide to generate reading proposals. This use case will also
demonstrate that it is very easy to apply uDecide to any
kind of domain for which an ontological representation is
available as a knowledge base.

We introduce the theoretical foundations of our framework
in Section 2. In Section 3, we first give a general description
of our plugin. Then we present a use case which is based
on an excerpt from DBpedia 1 that deals with books and

1http://wiki.dbpedia.org/

authors. Finally, we conclude in Section 4.

2. THEORETICAL FOUNDATIONS
In this section, we introduce the theoretical underpinning

of our plugin, which is a framework on weighted description
logics. Our aim is to use an a priori preference relation
over attributes (ontological classes) to derive an a posteri-
ori preference relation over choices (ontological individuals).
We introduce a utility function U defined over the set of at-
tributes X , while we define a depending utility function u
over choices which can be derived from U .

We represent each attribute in the original decision mak-
ing problem as a class. This can be a named class or a com-
plex class description defined with the vocabulary of the on-
toloy. We assume that a total and transitive preference rela-
tion (i.e., �X) over X is given as well as a function U : X →
R that represents � (i.e., U(X1) ≥ U(X2) iff X1 �X X2 for
X1, X2 ∈ X). The function U is a weight function, which
assigns a weight to each class X ∈ X . We denote the utility
of a class X ∈ X by U(X). U reflects an agent’s prefer-
ence relation over the set of attributes X . The greater the
utility of an attribute the more preferable the attribute is.
Furthermore, we partition the attribute set X into two sub-
sets; desirable that is the set of attributes with non-negative
weights, denoted X+, and undesirable X−, that is the set of
attributes with negative weights.

We call NI as the set of named individuals. Let now
C ⊆ NI denote the finite set of choices. In order to derive
a preference relation (a posteriori) over C (i.e., �C) which
respects �X , we will introduce a utility function u(c), which
measures the utility of a choice c relative to the attribute set
X and the utility function U over attributes as an aggrega-
tor. For simplicity, we will abuse the notation and use the
symbol � for both choices and sets of attributes whenever
it is obvious from the context. In the following, we define a
particular u, which we call σ-utility.

Definition 2.1 (σ-utility of a choice). Given a con-
sistent knowledge base K, and a set of choices C, the utility
of a choice c ∈ C is uσ(c) =

∑
X∈X∧K|=X(c) U(X).

It is easy to see that uσ induces a preference relation over
C i.e., uσ(c1) ≥ uσ(c2) iff c1 � c2. Also, notice that each
choice corresponds to a set of attributes whose membership
is logically entailed i.e., K |= X(c). We can now introduce
the notion of a generic UBox, denoted U , as follows.

Definition 2.2 (UBox). A UBox is a pair U = (u, U),
where U is a utility function defined over X and u is a utility
function defined over C.

Informally, a UBox U encodes user preferences U and
defines their aggregation via u which defines the utility of
choices. Next, putting things together we introduce the no-
tion of a decision base, which can be interpreted as a model
for an artificial agent in a decision situation. A decision
base is a triple which consists of a DL knowledge base K, a
finite set of available choices C, and encoded user preferences
along with the utility function of choices, UBox U .

Definition 2.3 (Decision Base). A decision base is
a quadruple D = (K, C,U) where K = (T,A) is a consistent
knowledge base (T is an acyclic TBox and A is an ABox),
C ⊆ NI is the set of choices, U = (u, U) is a UBox.

Informally, the role of K is to provide assertional infor-
mation about the choices at hand, along with the general
terminological knowledge information that the agent may
require to reason further over choices. In this work, we will
assume the commonly used rationality criterion that is the
rational agent will always pick up the choice(s) with the
maximum utility [7, 8].

3. SYSTEM DESCRIPTION
We implemented our approach as Protégé plugin available

at https://code.google.com/p/udecide/. We first briefly
describe the functionality and architecture of our plugin in
Section 3.1. Then we present a use case that shows how a
user interacts with the plugin in Section 3.2. This use case
also illustrates how the plugin can be used as an out-of-the-
box expert system for any knowledge domain available as
ontology.

3.1 Implementation
Our Protégé plugin is compatible with both Protégé Desk-

top version 4.3 and 5.0. As reasoning component we used the
Konclude reasoner [10] which turned out to be the best OWL
reasoner for our purpose with regards to performance issues.
Our choice was motivated by the evaluation results reported
at http://dl.kr.org/ore2014/results.html.2 uDecide re-
quires Konclude to be running in the background to connect
to it via OWLlink.

Our implementation is straight forward. First, an ontol-
ogy needs to be loaded via the standard Protégé file menu.
This ontology acts as a knowledge base K. After switching
to the uDecide tab, the user can specify the set of possible
choices by specifying a class C defined in K. All instances
of C are treated as choices, which corresponds to the set of
choices C in the theoretical framework. The attributes and
their utility can then be specified on top of vocabulary de-
fined in K. Once the type of choices and the attributes with
their corresponding utility have been specified, a connec-
tion to Konclude is established via HTTP. We will illustrate
these steps in the subsequent section in more details. For
each attribute, we request from the reasoner all named in-
dividuals satisfying the intersection of the attribute’s class
expression and the class that defines the type of choices.
The result shown consists of a ranked list of all individuals
returned by at least one query and their utility which is de-
rived from the satisfied attributes. Since Konclude does not
support instance satisfaction queries for anonymous class ex-
pressions, we create a temporary ontology that is transferred
to Konclude on calculation time and merged with the knowl-
edge base ontology. We add to this ontology an equivalent
classes axiom between each utility assertion’s class expres-
sion and a named dummy class. We then separately query
the individuals for each named dummy class.

As described on our homepage, we recommend to config-
ure Konclude to load the knowledge base already on start-up
to speed up the calculation. Because of increasing compu-
tation time and memory limitations it is required to do this
when working with large knowledge bases. If the knowledge
base was already loaded into Konclude on start-up, only
the (very small) temporary ontology needs to be transferred
to Konclude. Otherwise, the union of both the temporary

2We would like to thank Andreas Steigmiller for his support
related to using Konclude.

ontology and the (potentially very big) knowledge base is
transferred.

3.2 Use Case
As an illustrating use case, we applied our approach to

the domain of books and authors. In particular, we used
our framework to support a user in finding interesting au-
thors by specifying her interests as attributes. Instead of
working with an artificial example, we used an existing sub-
set of DBpedia that deals with the chosen topic. The core
domain contains relevant information about books and their
authors. With respect to our use case, DBpedia suffers from
its restricted set of terminological axioms and its incomplete-
ness regarding the sparse usage of some properties. To over-
come these problems, we decided to extend the core domain
with information about cities. In particular, we added for
each city that was listed as birth or death place of an author
the country in which it is located. Furthermore, we added
some axioms specifying nationality classes e.g., Spanish is
defined as the class of those persons that were born in or
died in a city located in Spain or whose nationality is Spain.
Thus, by using the nationality classes, the nationality of
authors for whom no nationality object property assertion
exist, can still be inferred by their birth and death places.
Note that the nationality has been specified directly only
for 21.3% authors, while 46,9% have a ”derived nationality”
via our axiomatization. Obviously there exist some people
that were born in Spain whose nationality is not Spanish.
However, since the final choice is made by the user, the gain
incoverage might be more useful than the loss in precision.

This extension illustrates that, in the context of a rea-
soning based approach, it is possible to leverage background
knowledge that seemed not to be relevant at first sight. The
information that Barcelona is located in Spain and that some
author was born in Barcelona can thus affect the ranking of
choices if we specified that we prefer Spanish authors as an
attribute. It also shows that a reasoning based approach can
help to overcome some problems related to incomplete data
in the knowledge base. The dataset and some instructions on
how to use it can be found at https://code.google.com/p/
udecide/wiki/BookUseCaseExample.

Suppose that a user wants to find a new author who writes
books that are similar to the ones that she likes. First of
all, feasible choices have to be defined as the instances of
the class dbp:Author. Figure 1 depicts a screenshot of the
uDecide tab. The class to which the choices belong has been
specified in the respective text field in the upper right corner.
An arbitrary concept description can be specified as long as
it is in the signature of the previously loaded ontology.

Now suppose that our user likes the author Stephen King.
Thus, she likes to read authors that are influenced by Stephen
King which is expressed by the the positive weight attached
to the attribute ∃influencedBy.{Stephen King}. The at-
tributes specified by a user can be seen in the uDecide tab on
the left side of Figure 1. Note that the concept descriptions
are specified in the Manchester syntax3 supported by the
Protégé Editor. All attributes are specified within a dialog
box that uses the auto-complete functionality of Protégé as
well as its syntax checking capability. Only if a class expres-
sion is syntactically correct, a button will be enabled to add
it to the UBox.

3http://www.w3.org/TR/owl2-manchester-
syntax/#The_Grammar

Overall, nine attributes have been specified. The first
three attributes express that the user prefers authors that
are influenced by her favorite authors. By adding a nega-
tive value to the fourth attribute, the user ensures that the
three authors that she already knows will be ranked low in
the ranking of choices. The fifth attribute is added to in-
crease the utility of those authors that received some award
by 50. Moreover, the user specifies that she likes authors
writing books that belong to the genre of horror fiction or
science fiction. These attributes have a relatively low utility
value. Finally, it is specified that the user likes American
and British authors, slightly preferring British.

The results that are finally calculated will only include in-
dividuals that satisfy the choice class expression and at least
one of the attributes. This calculation is started by clicking
on the ”Calculate Utilities” button. The ranked choices are
presented on the right side of Figure 1 in descending order
based on their utility. The best choice is the author Wolf-
gang Hohlbein (240), followed by Joyce Carol Oates (230)
and many more lower ranked choices. Thus, the most rea-
sonable choice for the user is to look at the author Wolfgang
Hohlbein in more details, given that her attribute specifica-
tion and the underlying knowledge base are complete and
correct. However, it might often be the case that a user
wants to explore the results in more detail, for example to
get an explanation about their ranking position. This can
be done by clicking on one of the proposed choices. Figure 1
illustrates this for Joyce Carol Oates. The utility score of
230 is based on the fact that Joyce Carol Oates was influ-
enced by Edgar Allen Poe and by H.P. Lovecraft, that she
won at least one award and that she was born in New York,
therefore being classified as American. Each of the satisfied
attributes is highlighted in the left panel. Furthermore, all
assertions about the selected choice are shown in a panel
in the lower right corner. Again, we have used the Protégé
default of presenting this information. Vice versa, it is also
possible to select one (or multiple) of the attributes. This
results in those choices being highlighted that satisfy the
selected (all selected) attribute(s) (not shown in Figure 1).

Our use case and the presented example illustrates both
the benefits as well as some drawbacks of our approach. First
of all, we could apply our Protégé plugin directly to the do-
main of books and authors without the need for any fur-
ther modifications or extensions. This resulted in an expert
system which makes proposals about interesting authors or
books. The only required ingredient was an ontology that
covers the domain in an appropriate way. We decided to
use DBpedia, which features a comprehensive ABox but
a flat and inexpressive TBox. Thus, the potential reason-
ing capabilities of our approach have only a limited impact
with respect to our use case. For the majority of attributes,
whether or not it holds, can be decided by a direct look-up.
We gave one example (nationality classes) to illustrate how
to overcome these limitations by adding additional axioms
and relevant data from other domains covered in DBpedia.

The chosen use case is an extreme case where we have a
very large ABox and a comprehensive set of choices that are
not all known in advance to the agent, while we have a rel-
atively inexpressive TBox. On the other hand, there might
be cases where we have only a limited number of choices
together with a rich logical axiomatization of relevant back-
ground knowledge. Our tool is designed to support both
cases as well as any kind of hybrid scenario.

Figure 1: Screenshot of uDecide showing a ranked list of authors according to the attribute specification.

4. CONCLUSION AND FURTHER WORK
In this paper, we presented the Protégé plugin uDecide.

uDecide computes the utility for a set of choices by aggre-
gating the utility value for each satisfied attribute. Since
each attribute corresponds to a class description, standard
reasoning techniques can be used to check whether an at-
tribute is satisfied. We used the Konclude [10] reasoning
system to conduct the required reasoning tasks. The results
of this computation are presented to the user as a ranked
list of choices. To our knowledge, we have introduced the
first system that allows to encode and solve multiattribute
decision problems in terms of weighted description logics.
Since we implemented our approach as a Protégé plugin,
our approach can easily be used by the DL community.

We have demonstrated within our use case how to use
uDecide as an expert system that recommends new authors
to a user. Moreover, we have also shown that our current
implementation, by using the reasoning system Konclude,
is capable to deal with large real-world datasets. We are
currently investigating datasets from the biomedical domain
and from the domain of life sciences. As a direction for
future research, we are aiming to extend our framework and
the plugin to deal with uncertainty (e.g., it is uncertain to
a particular degree that an author born in Barcelona is a
Spanish person), and lifting utilities of choices to expected
utilities.

5. REFERENCES
[1] E. Acar and C. Meilicke. Multi-attribute decision

making using weighted description logics. In
T. Lukasiewicz, R. Peñaloza, and A.-Y. Turhan,
editors, PRUV, volume 1205 of CEUR Workshop
Proceedings, pages 1–14. CEUR-WS.org, 2014.

[2] F. Baader, S. Brandt, and C. Lutz. Pushing the EL
envelope. In IJCAI, pages 364–369. Professional Book
Center, 2005.

[3] D. Calvanese, G. D. Giacomo, D. Lembo,
M. Lenzerini, and R. Rosati. Tractable reasoning and
efficient query answering in description logics: The
DL-lite family. J. Autom. Reasoning, 39(3):385–429,
2007.

[4] Y. Chevaleyre, U. Endriss, and J. Lang. Expressive
power of weighted propositional formulas for cardinal
preference modelling, Dec. 08 2006.

[5] S. Kaci. Working with Preferences: Less is More.
Springer Verlag, Berlin, 2011.

[6] C. Kahraman. Multi-Criteria Decision Making:
Theory and Applications with Recent Developments.
Springer, 2008.

[7] R. Keeney and H. Raiffa. Decisions with multiple
objectives: Preferences and value tradeoffs. J. Wiley,
New York, 1976.

[8] G. Parmigiani and L. Y. T. Inoue. Decision Theory
Principles and Approaches. John Wiley & Sons, Ltd,
2009.

[9] A. Ragone, T. D. Noia, F. M. Donini, E. D. Sciascio,
and M. P. Wellman. Weighted description logics
preference formulas for multiattribute negotiation. In
Proceedings of Scalable Uncertainty Management,
Third International Conference, SUM 2009.

[10] A. Steigmiller, T. Liebig, and B. Glimm. Konclude:
system description. Web Semantics: Science, Services
and Agents on the World Wide Web, 27:78–85, 2014.

