
Group Decision Making via Probabilistic Belief Merging

Nico Potyka
University of Osnabrück

Germany

Erman Acar
University of Mannheim

Germany

Matthias Thimm
University of Koblenz

Germany

Heiner Stuckenschmidt
University of Mannheim

Germany

Abstract
We propose a probabilistic-logical framework for
group decision-making. Its main characteristic is
that we derive group preferences from agents’ be-
liefs and utilities rather than from their individual
preferences as done in social choice approaches.
This can be more appropriate when the individual
preferences hide too much of the individuals’ opin-
ions that determined their preferences. We intro-
duce three preference relations and investigate the
relationships between the group preferences and in-
dividual and subgroup preferences.

1 Introduction
Decision theory explains how to rationally choose between
different alternatives by means of their expected utilities
[Fishburn, 1969; French, 1986]. In group decision-making,
we face the problem that different individuals have differ-
ent opinions about the probability and the utility of alterna-
tives [Keeney and Raiffa, 1976; Gilboa et al., 2004; Cham-
bers and Hayashi, 2006; Nehring, 2007; Gajdos et al., 2008;
Crès et al., 2011]. There are different ways to address
this problem. Some approaches focus on the dynamic as-
pects of the group decision making process like commu-
nication between agents [Wooldridge and Jennings, 1999;
Panzarasa et al., 2002]. A rather static approach is to take
the individual preferences for granted and to apply voting
rules to the individuals’ preferences to make a group decision
[Shoham and Leyton-Brown, 2008; Brandt et al., 2012].

Our approach falls into the static category, but instead of
aggregating the individuals’ preferences, we will aggregate
their beliefs that constituted these preferences. To this end,
we will consider knowledge bases for individuals that con-
tain their personal beliefs about alternatives and criteria that
they consider important for their decision. We will represent
the agents’ beliefs by probabilistic conditionals that express
subjective beliefs [Lukasiewicz, 1999; Kern-Isberner, 2001].
In general, there will be conflicts between these beliefs that
we resolve by means of generalized probabilistic entailment
[Potyka and Thimm, 2015] as will be explained later. In this
way, we obtain an interval of expected utilities with respect
to the group beliefs. From this interval, we will derive three
group preference relations: a pessimistic one, an optimistic

one, and a cautious one. We assume that all agents’ beliefs
are available and leave strategic issues like how to manipulate
the outcome by proclaiming false beliefs for future work.

We will start by explaining the probabilistic-logical frame-
work [Lukasiewicz, 1999] and generalized probabilistic en-
tailment [Potyka and Thimm, 2015] (Section 2). Subse-
quently, we introduce our decision-theoretic framework, our
belief aggregation functions and preference relations (Sec-
tion 3). We will then investigate how our aggregated group
preferences relate to preferences of individuals and subgroups
and how the parameters of generalized probabilistic entail-
ment can be used to control the influence of large interest
groups (Section 4). All proofs have been moved to an online
appendix1 to meet space restrictions.

2 Basics
We consider a relational probabilistic logic L built up over a
finite signature Σ = (Const,Pred), where Const is a finite set
of constants and Pred is a finite set of predicate symbols. A
term over L is a variable or a constant. Formulas are built up
over the terms and predicate symbols in the usual way. A for-
mula is called ground iff it does not contain variables. A pos-
sible world over L is a truth assignment to the ground atoms
in L, similar to Herbrand interpretations. We denote the set
of all possible worlds by Ω. Satisfaction of a ground formula
φ by a possible world ω is defined in the usual propositional
way and is denoted by ω |= φ, see, e. g., [Lukasiewicz, 1999]
for more details. We will define the semantics of non-ground
formulas later by considering their ground instances.

A probabilistic conditional over L is an expression of the
form (φ | ψ)[l, u], where φ, ψ ∈ L and l, u ∈ [0, 1], l < u.
Intuitively, (φ | ψ)[l, u] expresses that the conditional proba-
bility of φ given that ψ holds is between l and u. If ψ ≡ >
we simply write (φ)[l, u] instead of (φ | ψ)[l, u]. Seman-
tics are given to probabilistic conditionals by means of prob-
ability distributions over possible worlds. For a probability
distribution P : Ω → [0, 1] and a ground formula φ, we let
P (φ) =

∑
ω|=φ P (ω). As in [Lukasiewicz, 1999], we say

that P satisfies the probabilistic conditional (φ | ψ)[l, u] iff

l · P (ψ) ≤ P (φ ∧ ψ) ≤ u · P (ψ). (1)
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This corresponds to demanding that the conditional probabil-
ity of φ given ψ is between l and u whenever P (ψ) > 0.
If P (ψ) = 0, P satisfies the conditional independently of l
and u. This behaviour is similar to the behaviour of implica-
tion in classical logic in that we can conclude arbitrary things
from a false assumption. The definition is used frequently in
probabilistic logics [Paris, 1994; Hansen and Jaumard, 2000;
Lukasiewicz, 1999] because it has some technical advantages
like guaranteeing that model sets are topologically closed. A
probabilistic knowledge baseK overL is a finite set of proba-
bilistic conditionals over L. A probability distribution P sat-
isfiesK (is a model ofK) iff P satisfies all conditionals inK.
We denote set of all models of K by Mod(K).

Note that (1) corresponds to two linear inequalities over
probability functions. With a slight abuse of notation, we will
identify probability distributions P with probability vectors
of size |Ω| (where the i-th component contains the probability
of the i-th world with respect to an arbitrary ordering). Then
linearity of (1) allows us to rewrite (1) compactly in the form
aP ≤ 0, where a is an |Ω|-dimensional row vector. If a
knowledge baseK induces k such row vectors a1, . . . , ak, we
let IK = {1, . . . , k} denote the corresponding set of indices.
Then

Mod(K) = {P | ∀i ∈ IK : ai P ≤ 0}.
The probabilistic entailment problem [Nilsson, 1986; Hansen
and Jaumard, 2000; Lukasiewicz, 1999] is defined as follows.
Given a query (φ | ψ) consisting of two formulas φ, ψ ∈ L,
compute tight upper and lower bounds on the probability of
φ given ψ among all probability distributions P that satisfy
K and P (ψ) > 0. Formally, the bounds are defined by the
optimization problems [Hansen and Jaumard, 2000]

min
P∈Mod(K)

/ max
P∈Mod(K)

P (φ ∧ ψ)

P (ψ)
(P (ψ) > 0). (2)

In case that P (ψ) = 0, we return the empty interval [1, 0].
However, probabilistic entailment yields no solution if K is
inconsistent, that is, if Mod(K) = ∅. In order to overcome
this problem, we can replace the distributions that satisfy K
with those that minimally violate K in the sense that they
minimize the error in the system of inequalities {ai P ≤
0 | i ∈ IK} [Potyka, 2014; De Bona and Finger, 2015;
Potyka and Thimm, 2015]. More generally, we can minimize
over the set of probability distributions that satisfy a distin-
guished system of inequalities called integrity constraints that
are denoted by IC. If IC is empty, we end up with the origi-
nal formulation.

We will use p-norms to measure the error in the system
of inequailities. For p ≥ 1, the p-norm ‖.‖p : Rn → R is
defined by ‖x‖p = p

√∑n
i=1 |xi|p. For the limit p → ∞, we

obtain the maximum norm ‖.‖∞ that is defined by ‖x‖∞ =
max{|xi| | 1 ≤ i ≤ n}. Let f+ : R → R≥0 be defined by
f(x) = max{0, x}. The minimal violation value of K with
respect to ‖.‖p and IC is defined by the optimization problem

min
P∈Mod(IC)

‖ f+( v(P ) ) ‖p,

where v(P ) is the |IK|-dimensional violation vector whose
i-th component contains the value of ai P and f+( v(P ) )

means component-wise application of f+ to the vector v(P ).
Note that the minimal violation value is 0 if and only ai P ≤
0 for all i ∈ IK, i. e., iff K ∪ IC is consistent. The optimal
solutions of this problem are called the generalized models of
K, denoted by GMod‖.‖IC (K) [Potyka and Thimm, 2014]. See
[Potyka, 2014; Potyka and Thimm, 2015] for some intuitive
explanations on the influence of the choice of p.

To improve readability, we may omit the subscript IC
and the superscript ‖.‖ when they are clear from the con-
text. We can use the generalized models to generalize prob-
abilistic entailment in a straightforward way by replacing
the models with the generalized models in (2), see [Potyka
and Thimm, 2014] for a detailed discussion. This problem
is called the generalized entailment problem and can gener-
ally be solved by convex optimization techniques [Potyka and
Thimm, 2015].

3 Decision-Theoretic Framework
Given a probabilistic relational language L as introduced in
the previous section, we consider a group decision-making
problem over a set of agents N = {1, . . . , n}. A deci-
sion base consists of the public and individual beliefs of our
agents, a set of alternatives from which the group can choose,
a set of criteria on which the decision depends, and a utility
function.

Definition 1 (Decision Base). A decision base D over a set
of agents N = {1, . . . , n} is a tuple (K,A, C, U), where

• K = 〈K0,K1, . . . ,Kn〉 is called the knowledge base of
D. K0,K1, . . . ,Kn are probabilistic knowledge bases
over L such that K0 ∪Ki is consistent for all i ∈ N . K0

contains the public (explicit) beliefs and Ki contains the
individual (explicit) beliefs of agent i.

• A = {a1, . . . , ak} is a non-empty set of alternatives,
where each alternative ai ∈ Const is a constant.

• C = {C1, . . . , Cm} is a non-empty set of criteria, where
each criterion C ∈ L is a formula that contains exactly
one free variable.

• U : C → Rn≥0 is the utility function that maps each
criterion to a non-negative utility vector whose i-th value
represents the utility for agent i. For a criterion C ∈ C,
we denote agent i’s utility by ui(C), that is, U(C) =
(u1(C), · · · , un(C)).

We do not demand that agents’ utilities are normalized in
the sense that

∑m
i=1 uj(Ci) =

∑m
i=1 uk(Ci) for all agents

j, k ∈ N . However, there can be good reasons for making
this assumption and we can do so, of course, without loosing
any properties in the general analysis that will follow. The
reason for demanding that a criterion contains exactly one
variable is that criteria serve as templates for properties that
an alternative might have.

Example 1. Suppose there are two agentsN = {1, 2}, which
are about to choose a politician from a set of candidatesA =
{peter, nicole}. Our agents evaluate the candidates with re-
spect to the criteria C = {Honest(x), Intelligent(x)}. K0



contains (Prestigious(harvard))[1]. Agent 1 believes

(Honest(peter))[0.2], (Honest(nicole))[0.9],

(Studied(peter, harvard))[1],

(Intelligent(x) | Studied(x, y) ∧ Prestigious(y))[0.9].

Agent 2’s knowledge base contains

(Honest(peter))[0.9], (Honest(nicole))[0.6],

(LooksIntelligent(nicole))[1],

(Intelligent(x) | LooksIntelligent(x))[0.8].

Furthermore, u1(Intelligent) = 70, u2(Intelligent) =
80, u1(Honest) = 40, u2(Honest) = 95. Note that the
agents not only have different beliefs about the candidates,
but also about the causes of different criteria.

Given the beliefs and preferences of the agents, which al-
ternative should the group choose if all agents are treated
equally? Even though we demand that all individual beliefs
are consistent with the public beliefs, the union

⋃n
i=0Ki of

all knowledge bases can be inconsistent. However, in order
to achieve a group decision that is fair with respect to the
beliefs of all agents, we must take all knowledge bases into
account. We do this by applying generalized entailment.
Definition 2 (Individual Beliefs, Group Belief). Let D =
(〈K0,K1, . . . ,Kn〉,A, C, U) be a decision base. Let φ, ψ ∈
L be formulas. For i ∈ N , agent i’s individual belief in φ
given ψ is the interval Bi(φ | ψ) = [li, ri], where li and ri
denote the minimum and maximum of

min
P∈Mod(K0∪Ki)

/ max
P∈Mod(K0∪Ki)

P (φ ∧ ψ)

P (ψ)
(P (ψ) > 0).

Let ‖.‖ be a p-norm and letM =
⊔
i∈N Ki denote the mul-

tiset obtained from adding all agents’ individual beliefs. The
group belief in φ given ψ is the interval BG(φ | ψ) = [l, r],
where l and r denote the minimum and maximum of

min
P∈GMod‖.‖K0

(M)

/ max
P∈GMod‖.‖K0

(M)

P (φ ∧ ψ)

P (ψ)
(P (ψ) > 0).

Remark 1. 1. Note that the public beliefs K0 serve as in-
tegrity constraints for the group beliefs and are there-
fore guaranteed to be maintained [Potyka and Thimm,
2015]. The agents’ individual beliefs are treated equally
by adding all individual knowledge bases to a multiset.

2. We will often consider unconditional beliefs. Formally
this means that for ψ ≡ > we will again abbreviate
Bi(φ | ψ) by Bi(φ) and BG(φ | ψ) by BG(φ).

We show the individual and group beliefs for Example 1
in Table 1. In the following, we will often be interested in
decision bases that are conflict-free in the following sense.
Definition 3 (Conflict-free Decision Base). A decision base
D = (〈K0, . . . ,Kn〉,A, C, U) is called conflict-free iff K0 ∪⋃
i∈N Ki is consistent.
We want to compute the expected utility of an alternative

with respect to the group beliefs. Since BG yields an interval,
we define the following operations on intervals:

c · [L,R] = [L,R] · c = [c · L, c ·R],

[L,R] + [L′, R′] = [L+ L′, R+R′].

Honest Intelligent
nicole peter nicole peter

B1 [0.9, 0.9] [0.2, 0.2] [0, 1] [0.9, 0.9]
B2 [0.6, 0.6] [0.9, 0.9] [0.8, 0.8] [0, 1]
BG [0.6, 0.9] [0.2, 0.9] [0.8, 0.8] [0.9, 0.9]

Table 1: Individual Beliefs B1, B2 and group belief BG for Exam-
ple 1 when using the 1-norm.

nicole peter
EU1 [36, 106] [71, 71]
EU2 [121, 121] [85.5, 165.5]
EUG [100.5, 120.75] [81, 128.25]

Table 2: Expected utilities of individuals and the group for Example
1 when using the 1-norm.

where c, L,R′, U,R′ ∈ R≥0. Note that we will never get
negative values in our computations because both probabili-
ties and our utilities are non-negative. We can now define our
expected utilities with respect to individuals and the group.

Definition 4 (Individual, Group Expected Utility Interval).
Consider a decision base D = (K,A, C, U). The individual
expected utility interval of agent i ∈ N of alternative a ∈ A
is

EUi(a) =
∑
C∈C
Bi(C(a)) · ui(C).

The group’s expected utility interval of an alternative a ∈ A
is

EUG(a) =
1

|N |
∑
i∈N

∑
C∈C
BG(C(a)) · ui(C).

For some expected utility interval EU , we will refer to the
lower and upper bound of the expected utilities as the pes-
simistic and optimistic expected utilities and denote it by EU
and EU , respectively.

Table 2 shows the expected utilities for Example 1. We can
derive different preference relations from the expected utility
intervals. We consider interval preference relations that are
defined by means of a point (expected) utility function EU
and a vagueness function σ.

Definition 5 (optimistic, pessimistic, cautious preference).
Let EU, σ be functions mapping A to the non-negative re-
als. The interval preference relation �⊆ A × A with re-
spect to EU and σ is defined by a1 � a2 iff EU(a1) ≥
EU(a2) + σ(a2). We say that a1 is preferred to a2 iff
a1 � a2; a1 is indifferent to a2 denoted by a1 ∼ a2 iff
a1 � a2 and a2 � a1; a1 is strictly preferred to a2 denoted
by a1 � a2, iff a1 � a2 but a2 6� a1. If a1, a2 are incompa-
rable w.r.t. �, we write a1||a2. We will consider the interval
preference relations shown in Table 3.

Optimistic (pessimistic) preference corresponds to com-
paring the upper (lower) bounds of the expected utility in-
tervals. a is cautiously preferred over b iff the even the lower
bound for a is above the upper bound for b. Note that a �cX b
implies both a �pX b and a �oX b.



�pX �oX �cX
EU EUX EUX EUX
σ 0 0 EUX − EUX

Table 3: (p)essimistic, (o)ptimistic and (c)autious preference
relations. X ∈ N ∪ {G} stands for the individual preference
of agent i ∈ N or the group preference, respectively, For
instance, a1 �cX a2 iff EUX(a1) ≥ EUX(a2) + EUX(a2)−
EUX(a2), i.e., iff EUX(a1) ≥ EUX(a2).

Example 2. From Table 2, we can see that peter �p1 nicole
and nicole �o1 peter. All alternatives are cautiously incom-
parable.

4 Analysis
The purpose of this section is to investigate some interesting
properties of our approach. In particular, we are interested
in the influence of the interactions between agents’ beliefs
on the expected utilities and the corresponding preference re-
lations. It is difficult to make an objective statement about
what we should expect in the presence of conflicts between
agents’ beliefs, but we can think of some intuitive properties
that should hold if there are no conflicts. Then we can attack
the question what happens if there are minor conflicts in the
decision base by continuity arguments. We will also address
the questions how independencies in the agents’ beliefs can
be exploited and how we can control the influence of large
interest groups on the group decisions. The intuitive notions
used in the following overview of our results will be made
precise in the rest of this section. In order to meet space re-
strictions, we moved the proofs to an online appendix2.

• Consensus: If the decision base is conflict-free, the ex-
pected utility of the group will be a refinement of the
individual expected utilities in the sense that it yields a
subinterval of the averaged individual belief intervals.

• Cautious Dominance: If the decision base is conflict-
free and alternative a is cautiously preferred over b by
all agents, then awill be cautiously preferred over bwith
respect to the group preferences.

• Cautious Condorcet-Consistency: If the decision base
is conflict-free and alternative a is cautiously preferred
over all b by all agents, then a will be cautiously pre-
ferred over all b with respect to the group preferences.

• Continuity of Expected Utilities: Minor changes in the
agents’ beliefs and utilities will not result in major
changes in the expected utilities. In particular, if there
are only minor conflicts in the knowledge base, Con-
sensus, Cautious Dominance and Cautious Condorcet-
Consistency will still hold.

• Decomposition of Utility: If the agents’ beliefs are in-
dependent of each other, the problem of computing ex-
pected utilities can be decomposed.
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• Modularity: If the agents’ beliefs and utilities are inde-
pendent of each other, then the expected utility of the
decision base will be a weighted sum over the expected
utilities of independent sub decision bases.
• Majority: The influence of large interest groups on the

aggregated group beliefs and preferences can be regu-
lated by the choice of the norm.

We will illustrate the cases in which these properties can fail
by means of examples.

Let us first investigate the connection between individual
expected utilities and the group’s expected utilities. Our first
proposition states that if there are no conflicts in the agent’s
beliefs, then the expected utility of the group will be a re-
finement of the averaged expected utilities of the agents. The
result is a consequence of the following two lemmas.
Lemma 1. Let [li, ri], [Li, Ri] be non-negative intervals for
i = 1, . . . , k such that [li, ri] ⊆ [Li, Ri]. Then for all ci ∈
R≥0, we have

∑k
i=1[li, ri] · ci ⊆

∑k
i=1[Li, Ri] · ci.

Lemma 2. If D is conflict-free, then BG(F ) ⊆ Bi(F ) for all
i ∈ N . In particular, BG(F ) ⊆

⋂
i∈N Bi(F )

Proposition 1 (Consensus). If D is conflict-free, then
EUG(a) ⊆ 1

|N |
∑
i∈N EUi(a) for all a ∈ A.

However, the following example shows that conflicts can
prohibit such a relationship in general.
Example 3. Consider two agents, one alternative a and one
criterionC. Let the public knowledge base be empty, let agent
1 believe (C(a))[0] and let agent 2 believe (C(a))[1]. Let
u1(C) = u2(C) = 1. If we employ the Manhattan norm,
we have that Bi(C(a)) = [i − 1, i − 1] for i ∈ N and that
BG(C(a)) = [0, 1]. Hence,

1

2

2∑
i=1

EUi(a) =
1

2
([0, 0] · 1 + [1, 1] · 1) = [

1

2
,

1

2
]

EUG(a) =
1

2
[0, 1] · (1 + 1) = [0, 1].

If there are no conflicts in the decision base and all agents’
cautious preferences agree for some alternatives, then this
preference will be maintained in the group preference.
Proposition 2 (Cautious Dominance, Condorcet-Consis-
tency). Suppose that D is conflict-free.

1. Cautious Dominance: If there are a, b ∈ A such that
a �ci b for all i ∈ N , then a �cG b.

2. Cautious Condorcet-Consistency: If there is an a ∈ A
such that a �ci b for all b ∈ A, i ∈ N , then a �cG b for
all b ∈ A.

We conjecture that Dominance and Condorcet-Consistency
also hold for optimistic and pessimistic preference, but did
not find a proof so far.

Again, conflicts in the knowledge base can prohibit Domi-
nance and Condorcet-Consistency. This can be seen from Ex-
ample 3 by adding an alternative b such that the agents have
the same beliefs and utilities for both a and b. Then a ∼c1 b,
a ∼c2 b and a||cGb. Hence, in particular, both a �c1 b and
a �c2 b hold, but a 6�cG b.



However, by using a continuity argument, we can show
that both properties remain true if the conflicts in the deci-
sion base are not too strong. Intuitively, this is the case if the
knowledge base is close to a conflict-free knowledge base. In
order to make this intuition more precise, we have to define
how to compare knowledge bases. This question is subtle,
but can be addressed appropriately by comparing knowledge
bases extensionally, that is, with respect to their model sets
[Paris, 1994]. The Blaschke distance ‖S1, S2‖B between two
convex sets of probability distributions S1, S2 is the smallest
real number d such that for each distribution in one of the
sets, there is a probability distribution in the other that has
total variation distance at most d to the former. Formally,
‖S1, S2‖B is defined by

inf{δ ∈ R | ∀P1 ∈ S1∃P2 ∈ S2 : ‖P1, P2‖1 ≤ δ and
∀P2 ∈ S2∃P1 ∈ S1 : ‖P2, P1‖1 ≤ δ}

Generalized Entailment is continuous in the following sense:
If the generalized models of K1 are close to the generalized
models of K2 with respect to the Blaschke distance, then the
entailment results will be close [Potyka and Thimm, 2015].
In order to talk about the influence of minor changes in the
utilities, we define the distance between two knowledge bases
over the same set of agents, alternatives, and criteria by mea-
suring the difference in the extensional knowledge and in the
utilities.
Definition 6 (Distance between Decision Bases). Let D =
(〈K0, . . . ,Kn〉,A, C, U), D′ = (〈K′0, . . . ,Kn′〉,A, C, U ′)
be decision bases over a set of agents N . Let M,M′ be
defined as in Definition 2 for D and D′, respectively. The
distance between D and D′ is

d(D,D′) = ‖GModK0(M),GModK′
0
(M′)‖B + ‖U,U ′‖,

where ‖U,U ′‖ =
∑
i∈N

∑
C∈C |ui(C)− u′i(C)|.

The next proposition intuitively states that if a decision
base is close to another decision base, then the expected util-
ities will also be close.
Proposition 3 (Continuity of Expected Utilities). Let D =
(〈K0, . . . ,Kn〉,A, C, U), Dl = (〈K0,l, . . . ,Kn,l〉,A, C, Ul)
for l ∈ N. Let EU,EU ′ denote some expected utility (in-
dividual or group for some arbitrary alternative). Then
EU → EU ′ whenever Dl → D.

Now suppose that a decision base contains only minor con-
flicts in the sense that it is close to a conflict-free decision
base. Then Continuity implies that Consensus and Cautious
Dominance will almost hold. That is, the expected utility in-
terval for the group will not significantly exceed the averaged
expected utility interval of the individual agents. Further-
more, if alternative a was significantly preferred over b (the
difference EU(a) − (EU(b) + σ(b) ) is not too small) then
a will still be preferred over b in the group.

If our decision base decomposes into independent parts, we
can reduce the problem of computing expected utilities for
the group to two smaller problems. A sufficient condition is
given in the following proposition. To exclude dependencies,
we assume that the agents decompose into two groups that
have only beliefs about distinct criteria.

Proposition 4 (Decomposition of Utility). Let D =
(〈K0, . . . ,Kn〉,A, C, U) be a decision base over a finite set
of agents N . Suppose that N = N1 ]N2, K0 = K0,1 ]K0,2,
C = C1 ] C2 and that K0,1 ∪ Ki contains only criteria from
C1 for i ∈ N1 and K0,2 ∪ Ki contains only criteria from C2
for i ∈ N2. Let U |Ci denote the restriction of U to Ci for
i ∈ {1, 2} and let Di = (K0,i t 〈Kj | j ∈ Ni〉,A, Ci, U |Ci)
denote the restricted decisions bases for the agents inNi. For
a ∈ A, let EUG(a) denote the expected group utility with re-
spect to D and EUiG(a) the expected group utility of alterna-
tive a with respect to Di. Then

EUG(a) =
|N1|
|N |

EU1
G(a) +

|N2|
|N |

EU2
G(a) + IU(a),

where IU(a) denotes the agents’ utility that is independent of
their beliefs:∑
i∈N2

∑
C∈C1
B1G(C(a)) · ui(C) +

∑
i∈N1

∑
C∈C2
B2G(C(a)) · ui(C)

|N |
.

Besides the computational benefits, Decomposition has
also an interesting intuitive interpretation. Suppose that a sub-
set of agents is completely indifferent with respect to a subset
of criteria in the sense that the agents do not have any knowl-
edge about these criteria and their utility for these criteria is
0. Then the expected utility of the group will be a weighted
sum of the expected utilities of the subgroups as shown in the
following corollary.
Corollary 1 (Modularity). In addition to the assumptions
made in Proposition 4, assume that ui(Cj) = 0 whenever
i 6= j for i, j ∈ {1, 2}. Then

EUG(a) =
|N1|
|N |

EU1
G(a) +

|N2|
|N |

EU2
G(a), (3)

Let us now investigate the influence of majority beliefs.
That is, if a overwhelming majority of agents share the same
beliefs, how does this influence the group beliefs and the cor-
responding expected utilities? The answer depends on the
norm that we use for generalized entailment. We formalize
the notion of majority beliefs by adding copies of a particular
agent. Intuitively, this agent can be understood as a represen-
tative of a fraction sharing common beliefs. We are interested
in what happens if the fraction grows. Given some decision
base D, we let Dsk denote the decision base that is obtained
from D by adding k copies of some agent s ∈ N . Formally,
if D = (〈K0, . . . ,Kn〉,A, C, U), then

Dak = (〈K0, . . . ,Kn,Ks, . . . ,Ks︸ ︷︷ ︸
k times

〉,A, C, U ′),

where for n < l ≤ n+ k,u′l(C) = u′s(C) for all C ∈ C.
The following proposition states that the size of the fraction

has no influence whatsoever on the outcome when using the
maximum norm.
Proposition 5 (Maximum-Norm Majority Ignorance). Let
D = (〈K0, . . . ,Kn〉,A, C, U) be a decision base over a fi-
nite set of agents N , let s ∈ N and let BkG denote the group
belief function w.r.t. Dsk.
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Figure 1: Our group belief approach (solid lines) versus the
qualitative social choice approach (dashed lines)

Suppose that BG is defined with respect to the maximum
norm, and let φ ∈ L be a formula. Then BkG(φ) = BG(φ) for
all k ∈ N. In particular, for all a ∈ A, EUkG(a) = EUG(a).

When applying p-norms other than the maximum norm,
intuition suggests that the group beliefs will converge to the
majority beliefs. However, we have to rule out some excep-
tions. Even though we could not find a proof so far, there is
some empirical evidence that the following conjecture is true.

Conjecture 1 (p-Norm Majority Sensitivity). Let D =
(〈K0, . . . ,Kn〉,A, C, U) be a decision base over a finite set
of agents N let s ∈ N and let BkG denote the group belief
function w.r.t. Dsk.

Suppose thatBG is defined with respect to a p-norm, where
1 ≤ p <∞. Let φ ∈ L be a formula such thatBs(φ) 6= [0, 1].
Then BkG(φ) approaches Bs(φ) as k →∞.

5 Related Work
There exist various methods in the literature to make group
decisions. Many frameworks and their properties have been
discussed extensively in the economic literature, see, for in-
stance, [Gilboa et al., 2004; Chambers and Hayashi, 2006;
Nehring, 2007; Gajdos et al., 2008; Crès et al., 2011]. Some-
times group decision making is regarded as a dynamic pro-
cess, in which agents reason about other agents’ mental states
and try to increase other agent’s cooperativeness towards joint
decisions in their own interest, see, for instance, [Wooldridge
and Jennings, 1999; Panzarasa et al., 2002]. In a similar
spirit, group decision making can be regarded as an argu-
mentation problem [Amgoud and Prade, 2009; Fan et al.,
2014] Another popular approach is to compute agent pref-
erences individually and to apply voting rules afterwards to
make a group decision [Shoham and Leyton-Brown, 2008;
Brandt et al., 2012]. Our approach is closer to the latter
methodology, but instead of deriving individual preferences
first and then merging them into group preferences, we start
by merging the individual beliefs to derive group preferences
from the group beliefs. We illustrate this in Figure 1.

There are other belief merging approaches that we could
apply to derive the group beliefs, see [Konieczny and Pérez,
2011] for classical approaches or [Kern-Isberner and Rödder,
2004; Adamcik, 2014; Wilmers, 2015] for some probabilis-
tic alternatives. An approach very closely related to gener-
alized entailment was introduced in [Daniel, 2009]. Daniel
also considered probability functions that, in another sense
minimally violate an inconsistent knowledge base. However,
generalized entailment has some computational advantages,

see [Potyka and Thimm, 2014; 2015] for a more detailed dis-
cussion.

The properties discussed in Section 4 are inspired by the
literature on social choice and probabilistic logic. In par-
ticular, Dominance and Condorcet-Consistency correspond
to social-choice-theoretic properties [Shoham and Leyton-
Brown, 2008], whereas Continuity and Modularity corre-
spond to properties considered for probabilistic logics [Paris,
1994; Adamcik, 2014; Wilmers, 2015].

Our decision-theoretic framework extends the single agent
framework from [Acar et al., 2015] to several agents. Since in
multi-agent settings very different problems arise, the proper-
ties analyzed here are very different from those considered in
[Acar et al., 2015]. Some properties like Continuity and De-
composition are, however, related to corresponding properties
of generalized entailment [Potyka and Thimm, 2015].

6 Conclusions and Future Work

We proposed a probabilistic-logical framework for group
decision making and introduced three preference relations.
Our decision making approach provides several guarantees
as discussed in Section 4. If there are no conflicts among
the agents’ beliefs, our approach satisfies the social-choice-
theoretic properties Dominance and Condorcet-Consistency
when using the cautious preference relation. Proving these
properties for optimistic and pessimistic preference is part of
future work. Continuity of our framework guarantees that
Dominance and Condorcet-Consistency remain true when
there are only minor conflicts. We are also planning to in-
vestigate the general case in more detail to provide more rig-
orous statements for the case of conflicts. The decomposition
properties of our framework are independent of this question
and can be used to solve larger decision problems by decom-
posing them into smaller, independent parts. By applying dif-
ferent p-norms, we can control the influence of large interest
groups. Proposition 5 states that the size of the group has no
influence at all when we let p = ∞. Understanding gener-
alized entailment as a norm minimization problem suggests
that, for other choices of p, the group belief will converge to
the beliefs of growing interest groups. The reason is that the
violation vector will eventually be dominated by entries from
the large interest group. Currently, p-norm Majority Sensitiv-
ity for p < ∞ is only supported by empirical evidence and
intuition, a formal proof is part of future work. In practice,
p = ∞ might be a good choice when majority ignorance is
desired, p = 1 or p = 2 when majority sensitivity is desired.
A discussion of the computational implications of the choice
of p can be found in [Potyka and Thimm, 2015].

We are also going to consider aggregation functions that
are based on point probabilities rather than on probability in-
tervals. To this end, we can determine the group beliefs by
means of a best generalized model like the one maximizing
entropy [Daniel, 2009; Adamcik, 2014; Potyka and Thimm,
2014; Wilmers, 2015]. This approach will, in particular, al-
ways yield point utilities instead of utility intervals. We are
also planning to provide a direct comparison between our ap-
proach and social choice approaches.
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Ramón Pino Pérez. Logic based merging. J. Philosophi-
cal Logic, 40(2):239–270, 2011.

[Lukasiewicz, 1999] Thomas Lukasiewicz. Probabilistic de-
duction with conditional constraints over basic events.
Journal of Artificial Intelligence Research, 10:380–391,
1999.

[Nehring, 2007] Klaus Nehring. The impossibility of a pare-
tian rational: A bayesian perspective. Economics Letters,
96(1):45–50, 2007.

[Nilsson, 1986] Nils J. Nilsson. Probabilistic logic. Artificial
Intelligence, 28:71–88, February 1986.

[Panzarasa et al., 2002] Pietro Panzarasa, Nicholas R. Jen-
nings, and Timothy J. Norman. Formalizing collaborative
decision-making and practical reasoning in multi-agent
systems. J. Log. Comput., 12(1):55–117, 2002.

[Paris, 1994] J.B. Paris. The uncertain reasoner’s compan-
ion – A mathematical perspective. Cambridge University
Press, 1994.

[Potyka and Thimm, 2014] N. Potyka and M. Thimm. Con-
solidation of probabilistic knowledge bases by inconsis-
tency minimization. In Proceedings ECAI 2014, pages
729–734. IOS Press, 2014.

[Potyka and Thimm, 2015] N. Potyka and M. Thimm. Prob-
abilistic reasoning with inconsistent beliefs using incon-
sistency measures. International Joint Conference on Ar-
tificial Intelligence 2015 (IJCAI’15), pages 3156–3163,
2015.

[Potyka, 2014] N. Potyka. Linear programs for measuring
inconsistency in probabilistic logics. In Proceedings KR
2014, pages 568–578. AAAI Press, 2014.

[Shoham and Leyton-Brown, 2008] Yoav Shoham and
Kevin Leyton-Brown. Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge
University Press, New York, NY, USA, 2008.

[Wilmers, 2015] George Wilmers. A foundational approach
to generalising the maximum entropy inference process to
the multi-agent context. Entropy, 17(2):594–645, 2015.

[Wooldridge and Jennings, 1999] Michael Wooldridge and
Nicholas R. Jennings. The cooperative problem-solving
process. J. Log. Comput., 9(4):563–592, 1999.


