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Abstract. We propose a framework for automated multi-attribute deci-
sion making, employing the probabilistic non-monotonic description log-
ics proposed by Lukasiewicz in 2008. Using this framework, we can model
artificial agents in decision-making situation, wherein background knowl-
edge, available alternatives and weighted attributes are represented via
probabilistic ontologies. It turns out that extending traditional utility
theory with such description logics, enables us to model decision-making
problems where probabilistic ignorance and default reasoning plays an
important role. We provide several decision functions using the notions
of expected utility and probability intervals, and study their properties.

1 Introduction

Preference representation and its link to decision support systems is an ongoing
research problem in artificial intelligence, gaining more attention every day. This
interest has led on the one hand to the analysis of decision-theoretic problems
using methods common in A.I. and knowledge representation, and on the other
hand to apply methods from classical decision theory to improve decision support
systems. In this regard there has been a growing interest over the last decade in
the use of logics to model preferences, see [1,3,14–19].

Description Logics (DLs) are a family of knowledge representation languages
that are based on (mostly) decidable fragments of first order logic. They were
designed as formal languages for knowledge representation becoming one of the
major formalisms in this field over the last decade. Alongside this and from a
more practical point of view, they formally underpin semantic web OWL Web
Ontology Language1, the semantic web key representation and ontology standard
(defined by the World Wide Web Consortium).

In this work, we propose a formal framework which is based on expressive
probabilistic DLs [13], viz., the non-monotonic P-SHOIN (D) family of DL lan-
guages, designed to model uncertainty and uncertain, non-monotonic reasoning.

In such languages one can express objective (statistical) uncertainty (ter-
minological knowledge concerning concepts), as well as subjective (epistemic)
uncertainty (assertional knowledge concerning individuals). Furthermore, due to
their non-monotonicity, one can represent and reason with default knowledge.
1 http://www.w3.org/TR/owl-features/.
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Also, their probabilistic component employs imprecise probabilities to model
uncertainty, which in turn allows to model probabilistic ignorance with consid-
erable flexibility, in contrast to classical probability theory.

We show that our framework can represent decision-theoretic problems and
solve them using DL inference services, taking advantage of imprecise proba-
bilities and background knowledge (as represented by ontologies) to compute
expected utilities in a fine-grained manner that goes beyond traditional deci-
sion theory. One reason why this is possible within a DL-based decision making
framework, is because one can express the various dependency relations between
attributes/decision criteria with rich DL concept hierarchies and evaluate there-
after alternatives in terms of their logical implications.

Our framework can be interpreted as modeling the behavior of an agent, or
as a model for systems that support group decisions. In this work, we pursue
the former interpretation and focus on modeling artificial agents where each
attribute/decision criterion has an independent local utility value (weight). We
consider available alternatives in the form of DL individuals, and attributes in
the form of DL concepts. Finally, we represent the agent’s background knowledge
and beliefs via a probabilistic DL knowledge base.

In this work, we present several decision functions in order to model agents
with different characteristics. Furthermore, the employed logic’s use of impre-
cise probabilities to model uncertainty, allows considerable expressive power to
model non-standard decision behaviour that violate the axioms of (classical)
expected utility e.g., Ellsberg paradox. Using the framework, we show that it
is straightforward to provide decision functions which model ambiguity averse
decision-making. In so doing, we investigate the various properties of such deci-
sion functions as well as their connection to ontological knowledge.

2 Preliminaries

Preferences and Utility. Traditional utility theory [10] models the behavior
of rational agents, by quantifying their available choices in terms of their utility,
modeling preference (and eventual courses of action) in terms of the induced
partial orders and utility maximization.

Let A = {a1, . . . , an} be a set of alternatives, and a (rational) preference is
a complete and transitive binary relation � on A. Then, for any ai, aj ∈ A for
i, j ∈ {1, . . . , n}, strict preference and indifference is defined as follows: ai � aj

iff ai � aj and aj �� ai (Strict preference), ai ∼ aj iff ai � aj and aj � ai

(Indifference).
It is said that, ai is weakly preferred2 (strictly preferred) to aj whenever

ai � aj (ai � aj), ai is indifferent to aj whenever ai ∼ aj . Moreover, ai, aj are
incomparable iff ai || aj ⇐⇒ ai �� aj and aj �� ai, which implies that � is a
partial ordering.

2 It is also called preference-indifference relation, since it is the union of strict prefer-
ence and indifference relation.
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In order to represent the preference relation numerically one introduces the
notion of utility, which is is a function that maps an alternative to a positive real
number reflecting its degree of desire. For a decision theoretic framework, two
questions are essential; given a (finite) set of alternatives (i) which alternative
is the best one(s)? (ii) How does the whole preference relation look like i.e., a
complete list of order of alternatives (e.g., a1 � a3 � . . . ). Throughout the paper,
these two main questions will also be of our concern, along with a restriction to
single (non-sequential) decisions.

Formally, given a finite set of alternatives A = {a1, . . . , an}, and preference �
on A, u : A → R is a utility function iff for any ai, aj ∈ A with i, j ∈ {1, . . . , n},
ai � aj ⇐⇒ u(ai) > u(aj), ai � aj ⇐⇒ u(ai) ≥ u(aj), ai ∼ aj ⇐⇒ u(ai) =
u(aj).

For the proof that such a function exists, we refer the reader to the so-called
representation theorems in [7].

The basic principle in utility theory is that a rational agent should always
try to maximize its utility, or should take the choice with the highest utility.
Utility functions modeling behaviours based on more than one attribute (i.e.,
n-ary) are called multi-attribute utility functions. Let X = {X1, . . . , Xn} be
a set of attributes where n ≥ 2, and Ω = X1 × · · · × Xn be the set of
outcomes over which the agent’s preference relation is defined. An alterna-
tive/outcome is a tuple (x1, . . . , xn) ∈ Ω. Let � be the preference relation defined
over X, then u is a multi-attribute utility function representing � iff for all
(x1, . . . , xn), (y1, . . . , yn) ∈ Ω, (x1, . . . , xn) � (y1, . . . , yn) ⇐⇒ u(x1, . . . , xn) ≥
u(y1, . . . , yn). For an introductory text on multi-attribute utility theory, see [10].

Moreover, a utility function u is said to be unique up to affine transformation
iff for any real numbers m > 0 and c, u(x) ≥ u(x′) iff m ·u(x)+ c ≥ m ·u(x′)+ c.

Along the paper, we will use two running examples to point out two important
limitations of traditional decision theory that we will overcome with description
logics. theoretic: Ellsberg’s Paradox and a a touristic agent example.

Ellsberg’s Paradox. Assume that there is an urn, full with three different
colours of balls, namely red, blue and yellow. You know only that 1/3 of the
balls are red, and the blue and yellow balls together make up the remaining
2/3. However, it is possible that either there is no single blue ball (that is all of
them are yellow) or that all of them are blue. Now, before randomly picking up
a ball from the urn, you are asked to make a guess, choosing red or blue with
the following two gambles:
1st Gamble: If you guess correctly, you get the prize.
2nd Gamble: If you guess correctly, or the ball is yellow, you get the prize.

If you prefer to choose red to blue (i.e., red � blue) in Gamble A, then
following the sure-thing principle, you are supposed to also have red � blue in
Gamble B, since

U(red) · Pr(red) > U(blue) · Pr(blue)
=⇒

U(red) · (Pr(red) + Pr(yellow)) > U(blue) · (Pr(blue) + Pr(yellow)).



Towards Decision Making via Expressive Probabilistic Ontologies 55

However, people usually choose red � blue in the first gamble, and blue � red in
the second. This particular situation is called Ellsberg’s paradox [6] and is not
compatible with the preferential predictions that ensue from subjective utility
theory (which we will not mention here (see [7] for details)), and arises in the
presence of ambiguity in probabilities [6].

The Tourist Example. Imagine a tourist trying to decide in which hotel to
stay. He/she would rather stay at a 5 star hotel, rather than a 4 star hotel (among
other features he may desire). But what if the hotel suggested in his trip has a
bad reputation? Intuitively, we know that this has a negative impact, but how
do we factor in background knowledge about, say, hotels? This example will be
used to motivate the importance of using structured knowledge (e.g., ontologies,
concept hierarchies) in decision making in order to perform logical reasoning.

The P-SHOIN (D) Probabilistic DL. Lukasiewicz’s probabilistic description
logics (DLs), see [13], extend classical DLs with probabilistic, non-monotonic
reasoning. DLs are logics –typically fragments of first order logic– specifically
designed to represent and reason on structured knowledge, where domains of

Table 1. Syntax and semantics of the DL SHOIN (D). Notice that D refers to concrete
domains. The first block introduces individuals. The second block recursively defines
concepts (others can be introduced by explicit definition), while the third does it with
roles. The fourth formally introduces terminological statements, resp., concept (ISA)
and role inclusion statements. Finally, the fifth block introduces assertional facts a.k.a.
membership assertions, resp. concept and role membership assertions. A TBox T is a
set of terminological statements, an ABox A is a set of assertions, and a KB is a pair
T = (T , A). Entailment and satisfiability are defined in the usual way. The syntax and
semantics of P-SHOIN (D) extend this definition.

Syntax Semantics w.r.t. classical interpretation I = (ΔI , ·I)

i iI ∈ ΔI

A AI ⊆ ΔI

D DI ⊆ D = Num ∪ String

OneOf (i1, . . . , in) (OneOf(i1, . . . , in))I := {i1, . . . , in}
¬φ (¬φ)I := ΔI \ φI

∃r.φ (∃r.φ)I := {d | exists e s.t. (d, e) ∈ rI and e ∈ φI}
∃≤kr (∃≤kr)I := {d | exists at most kes s.t. (d, e) ∈ rI}
φ1 � φ2 (φ1 � φ2)

I := φI ∩ φ′I

p pI ⊆ ΔI × ΔI

r− (r−)I := {(d, e) | (d, e) ∈ rI}
Tr(r) (Tr(r))I := the transitive closure of r in ΔI × ΔI

φ1 � φ2 I |= φ1 � φ2iffφI
1 ⊆ φI

2

r1 � r2 I |= r1 � r2iffrI
1 ⊆ rI

2

φ(i) I |= φ(i)iffiI ∈ φI

r(i, j) I |= r(i, j)iff(i, j)I ∈ rI
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interest are represented as composed of objects structured into: (i) concepts,
corresponding to classes, denoting sets of objects; (ii) roles, corresponding to
(binary) relationships, denoting binary relations on objects. Knowledge is pred-
icated through so-called assertions, i.e., logical axioms, organized into an inten-
sional component (called TBox, for “terminological box”), and an extensional
one (called ABox, for “assertional box”), viz. the former consists of a set of uni-
versal statements and the latter of a set of atomic facts. A DL knowledge base
(KB) is then defined as the combination of a TBox and an ABox.

For simplicity, we restrict the discussion in this paper to the P-SHOIN (D)
family of probabilistic logics, which is an extension of the known SHOIN (D) DL
whose syntax and semantics we briefly recall in Table 1. SHOIN (D) underpins
the OWL-DL fragment of OWL (in the OWL 1.1 standard).

Example 1. DLs KBs can be used to formally model domain knowledge, and
formally reason over it. Consider the hotel domain. Consider now the KB with
TBox T = {OneStarHotel � Hotel � ∃hasService.ExtendedBreakfast}, which
states that every one star hotel is an hotel and there is an extended break-
fast service, and ABox A = {OneStarHotel(tapir)}, which says that Tapir
is a one star hotel.3 Following SHOIN (D) semantics, we will conclude that
Tapir is a hotel and it has an extended breakfast service (T,A) |= Hotel �
∃hasService.ExtendedBreakfast(tapir). ♣

Given that the semantics of the P-SHOIN (D) family is very rich, we avoid
giving a full description of it (which would go beyond the scope of this paper),
and provide, rather a basic overview of their syntax and semantics, and cover its
main properties (on which our results rely) in a succinct Appendix. For its full
definition and properties, we refer the reader to [13]. A general remark is that the
framework that we present here is (w.l.o.g.) independent from a particular choice
of P-DL, provided they cover numeric domains (more in general, data types).

Syntax. The P-SHOIN (D) family extends the syntax of SHOIN (D) with the
language of conditional constraints defined as follows: IP is the set of probabilistic
individuals o, disjoint from classical individuals IC = I\IP , C is a finite nonempty
set of basic classification concepts or basic c-concepts, which are (not necessarily
atomic) concepts in SHOIN (D) that are free of individuals from IP . Informally,
they are the DL concepts relevant for defining probabilistic relationships. In what
follows we overload the notation for concepts with that of c-concepts.

In addition to probabilistic individuals, TBoxes and ABoxes can be extended
in P-SHOIN (D) to probabilistic TBoxes (PTBoxes P ) and ABoxes (PABoxes
Po), via so-called conditional constraints, expressing (or encoding) uncertain,
default knowledge about domains of interest. A PTBox conditional constraint
is an expression (ψ|φ)[l, u], where ψ and φ are c-concepts, and l, u ∈ [1, 0].
Informally, (ψ|φ)[l, u] encodes that the probability of ψ given φ lies, by default,
within [l, u]. A PABox constraint (ψ|φ)[l, u] ∈ Po however, relativizes constraint
(ψ|φ)[l, u] to the individual o.
3 By convention, objects are written with lower case.
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A probabilistic KB K := (T, P, (Po)o∈IP ) consists of T a classical KB4, P
a PTBox (a set of conditional constraints), and a collection of PABoxes, each
of which is a (possibly empty) set of relativized conditional constraints for each
probabilistic o ∈ IP .

Semantics. A world I is a finite set of basic c-concepts φ ∈ C such that {φ(i) |
φ ∈ I} ∪ {¬φ(i) | φ ∈ C\I} is satisfiable, where i is a new individual (intuitively
worlds specify an individual unique up to identity), whereas IC is the set of
all worlds relative to C. I |= T iff T ∪ {φ(i) | φ ∈ I} ∪ {¬φ(i) | φ ∈ C\I} is
satisfiable. I |= φ iff φ ∈ I. I |= ¬φ iff I |= φ does not hold. For c-concepts φ and
ψ, I |= ψ � φ iff I |= ψ and I |= φ. Note that above notion of satisfiability based
on worlds is compatible with the satisfiability of classical knowledge bases, that
is, there is a classical interpretation I = (ΔI , ·I) that satisfies T iff there is a
world I ∈ IC that satisfies T .5

A probabilistic interpretation Pr is a probability function Pr : IC → [0, 1]
with

∑
I∈IC Pr(I) = 1. Pr |= T , iff I |= T for every I ∈ IC such that Pr(I) > 0.

The probability of a c-concept φ in Pr is defined as Pr(φ) =
∑

I|=φ Pr(I). For
c-concepts φ and ψ with Pr(φ) > 0, we write Pr(ψ|φ) to abbreviate Pr(ψ �
φ)/Pr(φ). For a conditional constraint (ψ|φ)[l, u], Pr |= (ψ|φ)[l, u] iff Pr(φ) = 0
or Pr(ψ|φ) ∈ [l, u]. For a set of conditional constraints F , Pr |= F iff Pr |= F
for all F ∈ F . Notice that T has a satisfying classical interpretation I = (ΔI , ·I)
iff Pr |= T 6. We provide further technical details in the Appendix.

Satisfaction and entailment in SHOIN (D) can be extended to probabilis-
tic interpretations Pr, see the Appendix. More important for our purposes are
the defeasible entailment relations induced by P-SHOIN (D), viz., lexicographic
entailment ||∼lex and tight lexicographic entailment ||∼lex

tight. Probabilistic KBs
in general and conditional constraints in particular encode as we said probable,
default knowledge, and tolerate to some degree inconsistency (w.r.t. classical
knowledge). Lexicographic entailment supports such tolerance by intuitively: (i)
partitioning P (ii) selecting the lexicographically least set in such partition con-
sistent with T . See the Appendix for the technicalities.

Reasoning Problems. A reasoning problem that will be of our interest is
probabilistic membership PCmem (probabilistic concept membership): given a
consistent probabilistic KB K, a probabilistic individual o ∈ IP , and a c-concept
ψ, compute l, u ∈ [0, 1] such that K ||∼lex

tight (ψ|�)[l, u] for o.

3 Representing Decision Making Problems

In this section we introduce probabilistic DL decision bases. Regarding notation,
we will try to stick to that in [13] as much as possible, to give the reader easy
access to the referred paper.
4 Note that T is not used to denote a classical TBox anymore but rather the whole

classical knowledge base, TBox and ABox.
5 See Proposition 4.8 in [13].
6 See Proposition 4.9 in [13].
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Attributes and Preferences. We define the non-empty set of attributes as a
subset of c-concepts derived from basic c-concepts C. Informally, every world I
determines a subset of attributes that is to be satisfied. We will assume that the
set of attributes X possibly contains redundancies.

Decision Base. We define a decision base that models an agent in a deci-
sion situation; background knowledge of the agent is modelled by a probabilistic
knowledge base, the finite set of available alternatives are modelled by a set of
individuals, and a weight function that is defined over the set of attributes which
will be used to derive the preference relation of the agent.

Definition 1 (Decision Base). A probabilistic description logic decision base
is a triple D := (K,A,U) where:

– K = (T, P, (Po)o∈IP ) is a consistent probabilistic KB encoding background
knowledge,

– A ⊆ I is the set of alternatives,
– U is UBox, that is a finite graph of a bounded real-valued function w : X −→

R
+ with w(⊥) = 0. †

Informally, the role of K is to provide assertional information about the alter-
natives at hand, along with the general terminological knowledge information
that the agent may require to reason further over alternatives; indeed X is the
set of concepts φ such that K logically entails φ(a). Moreover, U can be defined
to include negative weights as well, (i.e., w : X −→ R instead or R

+) to model
undesirable outcomes or punishments.7 However, for the sake of brevity, we will
consider here only positive weights.

Alternatives with Classical Knowledge. In this particular setting, we
assume we are in possession of certain information about the alternatives, and
consider only the certain subsumption relations between concepts. We do this by
providing a value function for alternatives, defined over the classical component
of the framework (i.e., the classical DL KB T in the decision base).

Definition 2 (Utility of an Alternative). Given a decision base D =
(K,A,U), the utility of an alternative a ∈ A is,

U(a) :=
∑

{w(φ) | T |= φ(a) ∧ φ ∈ X}. (1)

where K = (T, P, (Po)o∈IP ) and a ∈ IC . †

7 Alternatively, U can be studied in two partition, that is, the set of pairs with non-
negative (denoted U+) and negative weights (denoted U−). In extreme cases, U = U+

when U− = ∅ (similarly for U = U+).
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In this work, for the sake of simplicity, we define U as a summation. Note however
that U can be potentially any utility function, such as, e.g., U(a) = 2(p1w(φ) ·
p2w(ψ)) + p3 exp(w(γ)) + c, were a to satisfy ψ, φ, γ ∈ X, where pi, c ∈ R,
for i = 1, 2, 3. Furthermore, we assume that w is defined without knowing the
exact knowledge base and its transitive closure on subsumption, without having
complete knowledge about the ontological relations between attributes.

Notice that each alternative corresponds to an outcome. Using U , we define
the preference relation � over alternatives A = {a1, . . . , an}: ai � aj iff U(ai) >
U(aj), for i, j ∈ {1, . . . , n}; � and ∼ are defined similarly.

Definition 3 (Optimal Choice). Given a decision base D = (K,A,U), the
optimal choice w.r.t. D is,

Opt(A) := arg max
a∈A

U(a) (2)

That is, an alternative gets a reward for satisfying each attribute independently.
†

Intuitively, the function U measures the value of an alternative with respect
to the concepts (possibly deduced) that it belongs. The following proposition is
an immediate result of that.

Proposition 1. Let T be a classical part of the knowledge base of D and a1, a2 ∈
A be any two alternatives. If for every φ ∈ X with T |= φ(a1), there is a ψ ∈ X
with T |= ψ(a2) such that T |= φ � ψ, then a1 � a2.

Proof. ψ be any basic c-concept such that T |= ψ(a2) and (ψ,w(ψ)) ∈ U , then
U(a2) ≥ w(ψ). By assumption, there is a φ ∈ X such that T |= φ � ψ and
T |= φ(a), hence T |= ψ(a). It follows that U(a1) ≥ w(ψ), therefore a1 � a2. �

Intuitively, ceteris paribus (everything else remains the same) any thing that
belongs to a subconcept should be at least as desirable as something that belongs
to a superconcept; for instance, a new sport car is at least as desirable as a
sport car (since anything that is a new sport car is a sport car i.e., new sport
car � sport car).8 The following results says that two alternatives are of same
desirability if they belong to exactly the same concepts.

Corollary 1. Let D be decision base with a classical knowledge base T and
a set of alternatives A. Then for any two alternatives a, a′ ∈ A, a ∼ a′ iff
{ψ | ψ ∈ X,T |= ψ(a)} = {φ | φ ∈ X,T |= φ(a)}.
Proof. By applying Proposition 1 in both directions (i.e., a ∼ a′ =⇒ a � a′

and a′ � a). �

8 Recall that we concern ourselves with desirable attributes, i.e., weights are non-
negative.
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The intuitive explanation for Corollary 1 is that we measure the desirability
(and non-desirability) of things, according to what they are, or to which concepts
they belong. This brings forward the importance of reasoning, since it might
not be obvious at all that two alternatives actually belong to exactly the same
concepts w.r.t attributes.

Example 2. Consider the following decision base about choosing a trip:

T={ hasHotel(trip1,merdan), hasHotel(trip2, armada),FiveStarHotel(meridian),
Expensive � ¬Economic,∃hasHotel.FiveStarHotel � Expensive,
∃hasHotel.ThreeStarHotel � Economic,ThreeStarHotel(armada)}

U={ (Expensive, 10), (Economic, 15)} A = {trip1, trip2}
Here U(trip1) = 10, since the agent knows that trip1 has a five star hotel, it is
an Expensive trip. Similarly, U(trip2) = 15, therefore trip2 � trip1. Opt(A) =
trip2. ♣

Properties of the Utility Function. Since every individual is corresponds
to a subset of attributes that it satisfies, in this section we will treat U as if it
was formally defined over the set of attributes X rather than that of individuals
so that we can discuss some common properties of U following the definitions
given in [3].

Proposition 2. Suppose that U is a value function. Then U is (a) normalized,
(b) non-negative, (c) is monotone, (d) concave, (e) sub-additive, (f) unique up to
positive affine transformation.

Proof. We deal with each property separately:

(a) This holds when the individual does not satisfy any attributes, whence
U(∅) = 0.

(b) Follows from Proposition 1 and property (a).
(c) Follows from Proposition 1.
(d) Let Y,Z, T ⊆ X with Z ⊆ Y . Since the classical part of the logic is monotonic

and weights are positive, whenever I |= Y , I |= Z, which implies U(X ∪
Y ) − U(Y ) ≤ U(X ∪ Z) − U(Z).

(e) Follows from (d).
(f) Let Y,Z ⊆ X with U(Y ) ≥ U(Z) and M(x) = ax + b with a > 0 and b,

M(U(Y )) ≥ M(U(Z)) ⇐⇒ a · ∑
ψ∈Y w(ψ) + b ≥ a · ∑

ψ∈Z w(ψ) + b

⇐⇒ ∑
ψ∈Y w(ψ) ≥ ∑

ψ∈Z w(ψ). �

Decisions with Default Ontological Reasoning. In many situations, prefer-
ential statements that are done by human agents are not meant to be strict state-
ments, say, as in the formal sciences, nor do they take full ontological knowledge
into account. When someone asserts that she prefers a suite to a standard room
(i.e., suite � standard room), it is often the case that the statement is not meant
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to hold for every suite e.g., a a burned suite (burned suite �� standard room).
We would like to model such preferential statements in our framework, but they
potentially violate Proposition 1. Indeed, the decision rule for classical ontologies
(Definition 3) cannot deal with such cases. To do this we need to go beyond clas-
sical KBs, and consider full P-SHOIN (D) KBs and their reasoning techniques.

Example 3. (cont’d) Now consider the previous example extended with the fol-
lowing knowledge P and T :

T = {BadFamedFiveStarHotel � FiveStarHotel}
P = {(Desirable|∃hasHotel.FiveStarHotel)[1, 1],

(¬Desirable|∃hasHotel.BadFamedFiveStarHotel)[1, 1]}
U = {(Desirable, 10)}

which encodes the following knowledge: A bad famed five star hotel is a five star
hotel. Generally, a trip which has a five star hotel is desirable. Generally, a trip
which has a bad famed five star hotel is undesirable. ♣

With classical SHOIN (D) reasoning, it follows that any trip that has
a bad famed five star hotel is a trip that has five star hotel, in symbols
∃hasHotel.BadFamedFiveStarHotel � ∃hasHotel.FiveStarHotel. Note that in the
light of this information, it is entailed that trip1 is desirable. However, if the
agent also learns (added to its knowledge base) that meridian is a bad famed
five star hotel, then trip1 will not be desirable anymore9.

Decisions with Ontological Probabilistic Reasoning. In this section, we
will generalize our previously introduced choice functions with probabilities, that
will result in different behavioral characteristics in the presence of uncertainty.
Those behavioral characteristics can be interpreted as different types of agents
(optimistic, pessimistic etc.), or a decision support system that orders alterna-
tives with respect to different criteria (best possible uncertain outcome, worst
possible uncertain outcome etc.) and user preferences.

A remark on notation before defining expected utility intervals: we will use
the notation [PCmem(K, a, φ)] to denote the tight interval [l, u] that is the
answer to the query PCmem, with regard to knowledge base K, individual a ∈ IP
and c-concept φ. Moreover, l = �PCmem(K, a, φ)� and r = �PCmem(K, a, φ)�

As we have a set of probability functions instead of a single probability func-
tion which results in probability intervals, we get an interval of the expected
utilities. That is, EU(a) =

∑
φ∈X Pr(φ) ·w(φ) is the expected utility of an alter-

native a w.r.t. Pr, and EI is the expected utility interval defined as follows.

9 This is done via Lehmann’s lexicographic entailment; in this particular example
z-partition is (P0, P1) where P0 = {(¬Desirable|∃hasHotel.FiveStarHotel)[1, 1]} and
P1 = {(Desirable|∃hasHotel.FiveStarHotel)[1, 1]} that is, (T, P )∪BadFamedFiveStar
Hotel(meridian) ||∼lex ¬Desirable(trip1).
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Definition 4 (Expected Utility Interval of an Alternative). Given a deci-
sion base D, the expected utility interval of an alternative a ∈ A is,

EI(a) :=
[ ∑

φ∈X

�PCmem(K, a, φ)� · w(φ),
∑

φ∈X

�PCmem(K, a, φ)� · w(φ)] (3)

Notice that each element in the interval is an expected utility, defined via a
(potentially) distinct probability distribution. For simplicity we will denote by
EI(a) the infimum and EI(a) the supremum of EI(a) (i.e., the extrema of
EI(a)). †

Now, using expected utility intervals we will define some decision functions
(mainly from the literature of imprecise probabilities) which generalize the notion
of choices by maximum expected utility. A decision function δ maps non-empty
sets of alternatives A to a subset of A where a ∈ δ(A) iff a � a′ for every a′ ∈ A10.

We proceed to define decision functions characterizing different kinds of ratio-
nal agents. In terms of their use of intervals, they are similar to the Γ -maximax,
Γ -minimax, Interval Dominance and E-admissibility in the literature of impre-
cise probabilities [8].

Definition 5 (Optimistic, Pessimistic Choices). Given a decision base D =
(K,A,U), and EI(a) = [EI(a), EI(a)] for any a ∈ A w.r.t. D, then δ is, resp.
optimistic or pessimistic iff

Opt(A) := arg max
a∈A

EI(a) or Opt(A) := arg max
a∈A

EI(a). (4)

We denote the preference order w.r.t. optimistic and pessimistic choice with �opt,
�opt respectively. Strict orders are defined accordingly. †
Definition 6 (Cautious Choice). The decision function δ is said to be cau-
tious iff δid(A) := {a ∈ A | EI(a) ≥ EI(a′) for all a′ ∈ A}. †

We will denote the preference ordering of cautious choices with �id (id for
interval dominance). Interval dominance offers a formalisation for incomparabil-
ity; that is, if two alternatives a and a′ have neither overlapping expected utility
intervals (i.e., EI(a) �= EI(a′)), nor dominate each other (which means that an
agent cannot decide between them), then a1 || a2. Notice that �id is a partial
weak order whereas �opt and �opt are total-weak orders.

Example 4. Consider an hotel choosing agent and KB K where

T = {GoodHotel � ¬BadHotel,Hotel � FourStarHotel � OneStarHotel}
P = {((GoodHotel|FourStarHotel)[1, 1], (BadHotel|OneStarHotel)[1, 1]}

Pritz = {(FourStarHotel|�)[0.5, 0.7], (Hotel|�)[1, 1]}
Ptivoli = {(FourStarHotel|�)[0.3, 0.1](Hotel|�)[1, 1]}

Pholiday = {(OneStarHotel|�)[0.1, 0.3], (Hotel|�)[1, 1]}
10 Note that this definition essentially coincides with that choice functions in the impre-

cise probability literature [8], with the exception that it is allowed to return an empty
set.



Towards Decision Making via Expressive Probabilistic Ontologies 63

According to K our agent knows that a good hotel is not a bad hotel (symmetri-
cally), that usually a four star hotel is a good hotel, and usually one star hotel is
a bad hotel, that tivoli is a four star hotel with a probability of at least 0.3, and
so on. For the sake of simplicity, it is further assumed that an hotel is either four
star or one star hotel. Assume that the agent can choose among three courses
of action, viz., among alternatives A = {ritz, tivoli, holiday}, relatively to the
UBox U = {(GoodHotel, 10), (BadHotel, 0)}. If the agent is pessimistic, she will
choose holiday since it is a Good Hotel with probability of at least 0.7, (his
preference being holiday �opt ritz �opt tivoli). An optimistic agent will instead
choose tivoli (i.e., tivoli �opt ritz �opt holiday). Finally, a cautious agent prefers
holiday to ritz. However, in general it cannot make a choice, since tivoli || ritz
and tivoli || holiday. ♣

Notice that interval dominance is a very strict restriction that is not very
helpful in normative settings. We give a less strict version based on Levi’s notion
of E-admissibility in [8,12] (E for expected).

Definition 7 (E-Admissible Choice). An alternative a ∈ A is E-admissible
(a ∈ δe(A)) iff for every φ ∈ X, there is a Pr(φ) ∈ [l, u] s.t. K ||∼lex

tight a : φ[l, u],
and for every a′ ∈ A\{a} and for every Pr′(φ) ∈ [l′, u′] s.t. K ||∼lex

tight a′ :
φ[l′, u′], Pr(φ) > Pr′(φ) holds. We denote the preference relation with �e. †

Informally, δe looks for a probability distribution that lets an alternative
weakly dominates every other.

Example 5. Consider alternatives A = {a1, a2, a3} with expected utility intervals
on a single attribute, that are [5, 7], [1, 10] and [1, 8]. Assume that there are two
distributions Pr and Pr′ such that expected utility of each alternatives w.r.t.
Pr is 5, 7, 6, and 6, 7, 8 w.r.t. Pr′. Also assume that there is no Pr′′ such
that EU(a1) ≥ EU(a2) and EU(a1) ≥ EU(a3). Then, δe(A) = {a2, a3}, that is,
a3 ||e a2 and a2 �e a1 as well as a3 �e a1.

Proposition 3. The following statements hold: (i) �opt ⊆ �e and, on the other
hand, (ii) �id ⊆ �opt ∩ �opt.

Proof. We prove each condition separately:

(a) Let (a, a′) ∈�opt. By definition of Opt(A), there is a Pr(φ) ∈ [l, u], (indeed
Pr(φ) = u) such that, on the one hand EI(Opt(A)) = Pr(φ) · w(φ), and
EI(Opt(A)) ≥ EI(Opt(A\Opt(A))) on the other hand. These fact together
imply that (a, a′) ∈ �e.

(b) Let (a, a′) ∈�i; then EI(a) ≥ EI(a′), which means (i) a = Opt(A) and (ii)
a′ = Opt(A), whence (a, a′) ∈ �opt ∩ �opt. �
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Modeling Ambiguity Averse Decisions. As it is commonly motivated by
imprecise probability literature, the classical theory of probability is not able
make distinctions between different layers of uncertainty. One such common
example is that under complete ignorance.

In this section, we will encode the Ellsberg example in our framework and
show that it is possible to model ambiguity averse decisions.

One popular interpretation for the behaviour explained in preliminary section
is that, human agents tend to prefer more precise outcomes to less precise ones.
That is, one feels safer where one has an idea about risk (one is less ignorant
about the outcomes). The theory of imprecise probabilities offers a straightfor-
ward representation of the problem.

Definition 8 (Ellsberg-like Choice). Given alternatives a, a′ ∈ A, a �ebg a′

holds iff (EI(a) + EI(a))/2 = (EI(a′) + EI(a′))/2, and (EI(a) − EI(a)) <
(EI(a′) − EI(a′)). We will denote the corresponding decision function as δebg

and call it an Ellsberg-like choice. †
Informally, such a function chooses a tighter interval where means are

the same. Th reader is invited to verify that the preference relation Ellsberg-
dominates denoted �ebg, behaves accordingly to the experiment scenario given
in Preliminaries (Sect. 2).

Example 6. One possible encoding of the problem is as follows. For convenience,
we will give l, u ∈ Q.

T = {Yellow � ¬Blue,Blue � ¬Red,Yellow � ¬Red
P = {(Red|�)[1/3, 1/3]},A = {choosered, chooseblue}

Pchoosered = {(ChosenRed|�)[1, 1], (ChosenBlue|�)[0, 0]}
Pchooseblue = {(ChosenBlue|�)[1, 1], (ChosenRed|�)[0, 0]}

U = {(Red � ChosenRed, 1), (Blue � ChosenBlue, 1)}
Notice that agent only knows that red balls are one third of the domain (as well
as red, blue and yellow are distinct). The framework automatically infers that
yellow balls are of between 0 and 2/3 (as well as for red), and yellow or blue are
2/3 exactly. Given this information, it is easy to verify that choosered �ebg

chooseblue. Now modifying UBox, i.e., replacing (Red � ChosenRed, 1) with
((Red � Yellow) � ChosenRed, 1), and replacing (Blue � ChosenBlue, 1) with
((Blue � Yellow) � ChosenBlue, 1), agent has the preference chooseblue �ebg

choosered (since EI(choosered) = [1/3, 1] and EI(chooseblue) = [2/3, 2/3]).

Note that it is still too strict, which one may not expect to hold often. Below,
we will give a more tolerant form of this function.

Definition 9 (Ambiguity Averse Opportunist Choice). Given alterna-
tives a, a′ ∈ A, a �ag a′ iff EI(a) ≤ EI(a′), EI(a) ≥ EI(a′) and EI(a) −
EI(a′) ≥ EI(a′) − EI(a). We call the induced choice function an ambiguity
averse choice. †
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Intuitively, it brings an extra condition such that the mean needs to be greater
or equal. The following result shows that �ebg is a special case of �ag.

Proposition 4. Let a, a′ be two alternatives. Then, a �ebg a′ implies a �ag a′.

Proof. Assume that (i) (EI(a) + EI(a))/2 = (EI(a′) + EI(a′))/2 and also (ii)
(EI(a) − EI(a)) < (EI(a′) − EI(a′)). Then by (i), it follows that (EI(a) +
EI(a)) = (EI(a′) + EI(a′)) (iii), that is (EI(a) − EI(a′)) = (EI(a′) − EI(a)),
hence (EI(a) − EI(a′))/(EI(a′) − EI(a)) = 1. We know that EI(a) ≥ EI(a)
and EI(a′) ≥ EI(a′). By (ii), (EI(a) − EI(a′)) < (EI(a′) − EI(a)) (iv), and
by (iii) and (iv), (EI(a′) − EI(a)) ≥ 0, hence EI(a′) ≥ EI(a). Similarly for
EI(a) ≥ EI(a′) �

In a loose sense, one can combine them with the previously mentioned func-
tions (e.g., δe+ag) in order to model more complex behaviours. However, we
leave their compositions and compatibilities, along with subtle connections to
the probabilistic ontologies to future work.

4 Related Work

Our framework can be seen as a part of the literature on weighted logics for
representing preferences [3,11], with an emphasis on agent modeling. Our notion
of UBox to generate utility functions was for instance partially derived from the
notion of goal bases (occasionally defined in terms of multi-sets) as understood
in the literature of propositional languages for preferences [11,19]. There is also
a substantial tradition on defeasible reasoning over preferences, see [2,4,5,9], on
which we have leveraged.

On the DL side, several weighted DL languages have been proposed, albeit
without covering uncertainty over instances [16,17]. In them, constructs similar
to goal bases are used, called “preference sets”, and elements of multi-attribute
utility theory are partially incorporated into their settings.

Further recent works which can be considered to be loosely related (as sensu
stricto non utility-theoretic) recent approaches include: an application of DL-
based ontologies to CP-Nets, see [15], and a probabilistic logic-based setting [14]
based on Markov Logics (precise probabilities) and using Markov networks to
model and reason over preferences.

An uncertainty-based approach which attempts to focus on multi-criteria
decision making (MCDM) problems is [18]; it is mainly based on the applica-
tion of general fuzzy logic to MCDM problems. Although the terms utility and
preference are not explicitly used, it refers to preferences implicitly.

5 Conclusions and Further Work

We have introduced a description logic based framework, to effectively express
and solve non-sequential decision-making problems with multiple attributes.
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As the major part of decision theory literature takes uncertainty into account,
we based our approach on Lukasiewicz’ P-SHOIN (D) family of probabilistic
description logics ([13]). We have shown that it is straightforward to define deci-
sion functions representing ambiguity aversion; a case that violates the axioms
of expected utility. In so doing, one can define preference relations and deci-
sion functions that we believe model decisions by rational (human) agents much
better.

Another major direction is to investigate the value of information (structured
knowledge in this context) in different ontological frameworks, viz., to explore
in which ways and how much prior knowledge influences decisions about to be
taken by agents.

Furthermore, it would be interesting to extend the framework to sequential
decisions (e.g., a Di → Di+1 sequence of decision bases). This is possible, since
the language extensively uses conditional constraints. Once a sequential exten-
sion is defined, one can express strategies and game-theoretic issues. Further-
more, it would be interesting to apply the framework or an appropriate modifi-
cation, to common problems such as fair division, voting, preference aggregation
etc.

We are currently working on the implementation of the framework as a
Protégé11 plug-in. The development of our Protégé plugin is motivated by the
idea to demonstrate the benefits of our approach to a set of different application
scenarios where decision making is involved.

Appendix

Consistency, Lexicographic and Logical Consequence. A probabilistic
interpretation Pr verifies a conditional constraint (ψ|φ)[l, u] iff Pr(φ) = 1 and
Pr(ψ) |= (ψ|φ)[l, u]. Moreover, Pr falsifies (ψ|φ)[l, u] iff Pr(φ) = 1 and Pr(ψ) �|=
(ψ|φ)[l, u]. A set of conditional constraints F tolerates a conditional constraint
(ψ|φ)[l, u] under a classical knowledge base T , iff there is model Pr of T ∪ F
that verifies (ψ|φ)[l, u] (i.e., Pr |= T ∪ F ∪ {(ψ|φ)[l, u], (φ|�)[1, 1]}). A PTBox
PT = (T, P ) is consistent iff T is satisfiable, and there exists an ordered partition
(P0, . . . , Pk) of P such that each Pi (where i ∈ {0, . . . , k}) is the set of all
F ∈ P\(P0 ∪ · · · ∪ Pi−1) that are tolerated under T by P\(P0 ∪ · · · ∪ Pi−1).
Following [13], we note that such ordered partition of PT is unique if it exists,
and is called z-partition. A probabilistic knowledge base KB = (T, P, (Po)o∈IP )

is consistent iff PT = (T, P ) is consistent, and for every probabilistic individuals
o ∈ IP , there is a Pr such that Pr |= T ∪ Po.

For probabilistic interpretations Pr and Pr′, Pr is lexicographically preferable
(or lex-preferable) to Pr′ iff there exists some i ∈ {0, . . . , k} such that |{F ∈ Pi |
Pr |= F}| > |{F ∈ Pi|Pr′ |= F}| and |{F ∈ Pj | Pr |= F}| = |{F ∈ Pj | Pr′ |=
F}| for all i < j ≤ k. A probabilistic interpretation Pr is a lexicographically
minimal (or lex-minimal) model of T ∪ F iff Pr |= T ∪ F and there is no

11 http://protege.stanford.edu/.

http://protege.stanford.edu/
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Pr′ such that Pr′ |= T ∪ F and Pr′ is lex-preferable to Pr. A conditional
constraint (ψ|φ)[l, u] is a lexicographic consequence (or lex-consequence) of a set
of conditional constraints F under a PTBox PT (or F ||∼lex (ψ|φ)[l, u]) under
PT, iff Pr(ψ) ∈ [l, u] for every lex-minimal model Pr of T ∪ F ∪ {(φ|�)[1, 1]}.
Moreover, PT ||∼lex F , iff ∅ ||∼lex F under PT . Note that the notion of lex-
consequence faithfully generalizes the classical class subsumption. That is, given
a consistent PTBox PT = (T, P ), a set of conditional constraints F , and c-
concepts φ and ψ, if T |= φ � ψ, then F ||∼lex (ψ|φ)[1, 1] under PT .

Furthermore, we say that (ψ|φ)[l, u] is a tight lexicographic consequence (or
tight lex-consequence) of F under PT , denoted F ||∼lex

tight (ψ|φ)[l, u] under PT ,
iff l = inf{Pr(ψ) | Pr ||∼lex T ∪ F ∪ {(φ|�)[1, 1]} and u = sup{Pr(ψ) | Pr ||
∼lex T ∪ F ∪ {(φ|�)[1, 1]}. Moreover, PT ||∼lex

tight F iff ∅ ||∼lex F . Note that
[l, u] = [1, 0] (empty interval) when there is no such model. For a probabilistic
knowledge base KB = (T, P, (Po)o∈IP ), KB ||∼lex F where F is a conditional
constraint for o ∈ IP iff Po ||∼lex F under (T, P). Moreover, KB ||∼lex

tight F

iff Po ||∼lex
tight F under (T, P ). A conditional constraint (ψ|φ)[l, u] is a logical

consequence of T ∪ F (i.e., T ∪ F |= (ψ|φ)[l, u]) iff each model of T ∪ F is also a
model of (ψ|φ)[l, u]. Furthermore, (ψ|φ)[l, u] is a tight logical consequence of T ∪F
(i.e., T ∪ F |=tight (ψ|φ)[l, u], iff l = inf{Pr(ψ|φ) | Pr |= T ∪ F and Pr(φ) > 0}
and u = sup{Pr(ψ|φ) | Pr |= T ∪ F and Pr(φ) > 0}. Given a PTBox PT =
(T, P ), Q ⊆ P is lexicographically preferable (or lex-preferable) to Q′ ⊆ P iff there
exists some i ∈ 0, . . . , k such that |Q∩Pi| > |Q′ ∩Pi| and |Q∩Pj | = |Q′ ∩Pj | for
all i < j ≤ k, where (P0, . . . , Pk) is the z-partition of PT. Q is lexicographically
minimal (or lex-minimal) in a set S of subsets of P iff Q ∈ S and no Q′ ∈ S is lex-
preferable to Q. Furthermore, let F be a set of conditional constraints, and φ and
ψ be two concepts, then a set Q of lexicographically minimal subsets of P exists
such that F ||∼lex (ψ|φ)[l, u] under PT iff T ∪ Q ∪ F ∪ (φ|�)[1, 1] |= (ψ|�)[l, u]
for all Q ∈ Q. This is extended to tight case lex-consequence.
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