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Abstract

Description Logics, and in particular the web ontology
language OWL has been proposed as an appropriate ba-
sis for computing matches between structured objects
for the sake of information integration and service dis-
covery. A drawback of the direct use of subsumption
as a matching criterion is the inability to compute par-
tial matches and qualify the degree of mismatch. In this
paper, we describe a method for overcoming these prob-
lems that is based on approximate logical reasoning. In
particular, we approximate the subsumption relation by
defining the notion of subsumption with respect to a
certain subset of the concept and relation names. We
present the formal semantics of this relation, describe a
sound and complete algorithm for computing approxi-
mate subsumption and discuss its application to match-
ing tasks.

Introduction

Description Logics are becoming more and more popular as
a formalism for representing and reasoning about conceptual
knowledge in different areas such as databases and seman-
tic web technologies. In particular, subsumption reasoning
for expressive ontologies has been used to compute matches
between conceptual descriptions in the context of different
real world tasks including information integration (Stuck-
enschmidt and van Harmelen 2004), product and service
matching (Li and Horrocks 2004) and data retrieval (Bech-
hofer et al. 2005). In practical situations, however, it often
turns out that logical reasoning is inadequate in many cases,
because it does not leave any room for partial matches.
Recently, there are some efforts that try to address this
problem by combining description logics with numerical
techniques for uncertain reasoning in OWL, in particular
with techniques for probabilistic (Giugno and Lukasiewicz
2002) and fuzzy reasoning (Straccia 2005). These ap-
proaches are able to compute partial matches by assigning
an assessment of the degree of matching to the subsumption
relation. This degree of matching normally is a real num-
ber or an interval between zero and one and therefore allows
some ordering of the solutions. Although, in principle this
is a solution to the problem of computing the best partial
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match but defining an interpreting numerical assessments of
uncertainty is a difficult problem. Further, the reduction to
a single numerical assessment of the mismatch does not al-
low different users to discriminate between different kinds
of mismatches.

In this paper, we propose a notion of approximate sub-
sumption that supports the computation of partial matches
between complex concept expressions without relying on a
single number to represent the degree of mismatch. Instead,
the approach describes the degree of matching in terms of a
subset of the aspects of the request that are met by the solu-
tion. This approach allows the user to decide whether to ac-
cept a partial match based on whether important aspects are
missed or not. In order to implement this approach we bor-
row from the area of approximate deduction. In particular,
we extend the notion of S-Interpretations of propositional
logic proposed in (Schaerf and Cadoli 1995) to description
logics and use the result notion of a non-standard interpre-
tation of concept expressions to define an approximate sub-
sumption operator that computes subsumption with respect
to a particular subset of the vocabulary used.

Our approach is similar to the notion of approximate
entailment for description logics proposed in (Cadoli and
Schaerf 1992). Our work extends this work different ways:

e Previous work was restricted to rather inexpressive de-
scription logics, in particular ALC. We extend this to
expressive description logics. In particular, our approach
includes qualified number restrictions.

e We provide a more natural way of approximating con-
cept descriptions based on the set of concept and relation
names.

e While the work of Cadoli and Schaerf relied on a rather
complicated formalization in terms of the Herbrand Uni-
verse of the first-order translation of description logics,
we provide a direct model theoretic semantics for approx-
imatelsubsumption and show that is has the required prop-
erties

Approximation based on Sub-Vocabularies

In propositional logic, the vocabulary of a formula consists
of a set of propositional letters. A formula consists of a
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Boolean expression over these letters. A classical interpre-
tation [ assigns to each letter either the value true or false.
The semantics of negation now implies that a letter and its
negation cannot have the same truth value, in particular, for
all propositional letters p one of the following :

I(p A —p) = false
I(pV —p) = true 1

Checking satisfiability of a formula relies on showing that
there is no assignment of truth values that satisfies this con-
dition and makes the whole formula true. A possible way for
approximating satisfiability testing for propositional logic is
now to restrict the condition above to a subset of the propo-
sitional letters. This subset is denoted as S and the corre-
sponding interpretation is called an S-interpretation of the
formula (Schaerf and Cadoli 1995).

Depending on how the letters not in S are treated, an S-
Interpretation is sound or complete with respect to the clas-
sical interpretation. One kind of non-standard interpretation
called S-3 Interpretation assigns both, a letter and its nega-
tion to frue.

I(p A —p) =true,p & S @

When applying this interpretation to the satisfiability prob-
lem, we observe that formulas that were unsatisfiable before
now become satisfiable. This means that the resulting cal-
culus is sound, but incomplete, because some results that
could be proven using the principle of proof by refutation
can not be proven any more, because the conjunction of the
knowledge base with the negation of the result to be proven
becomes satisfiable under the new interpretation. The coun-
terpart of S-3 interpretation are S-1 Interpretations that as-
sign false to both a letters and their negation if the letters are

not in the set S.
I(pV —-p) = false,p & S 3)

Following the same argument as above, S-1 Interpretations
define a complete but unsound calculus for propositional
logic. In both cases, the advantage of the approach is that
we can decide which parts of the problem to approximate by
selecting an appropriate set of letters S. Therefore the ap-
proach provides a potential solution to the problem of partial
matching described above.

The idea of our approach is now to apply the underlying
idea of S-Interpretations to the Description Logic SHZQ
which covers most of the expressive power of OWL in order
to support approximate subsumption reasoning where parts
of the vocabulary are interpreted in the classical way and
other parts are approximated. In fact, Cadoli and Schaerf
do propose an extension of S-Interpretations to Description
logics, but they define S not in terms of a subset of the vo-
cabulary, but in terms of the structure of the concept expres-
sion (Cadoli and Schaerf 1992). In (Groot et al. 2005) it
has been shown that this way of applying S-Interpretations
to description logics does not produce satisfying results on
real data. In this paper, we therefore propose an alterna-
tive way of defining S-Interpretations for description logics
which is closer to the notion of S-Interpretations in propo-
sitional logic. The idea is to interpret description logics as
an extension of propositional logic, where class names cor-
respond to propositional letters?. As for propositional logic,
we select a subset of the class names that is interpreted in the

*In fact, a description logic that just contains the Boolean oper-
ators is equivalent to propositional logic.

classical way and approximate class names not in this set. In
particular, a classical interpretation (AT, T) of class names
requires that a concept name and its negation form a disjoint
partition of the domain:

ctn-o) 0

cfu-o)f = a% @

We can now define approximations for description logics
by relaxing these requirements for a subset of the concept
names. The corresponding S-3 and S-1 Interpretations are
very similar to the ones for propositional logic. In particular,
for S-3 Interpretations we have.

cITn-oyf =a%,c¢s 4

This means that both, C' and —~C' are mapped to AT by
the interpretation. As a consequence, the concept name C'
cannot cause a clash in a tableaux proof and therefore, con-
straints that force a certain value to be of type C' will be
ignored in a subsumption proof. The resulting subsumption
operator is sound, but incomplete. For S-1 Interpretations,
we have

cTu-ayt =0,c¢s ©
which means that both C' and —=C' are mapped to the empty
set. In a tableaux proof, all attempts to construct a model
that involves a variable of type C' will fail. The correspond-
ing subsumption operator is complete, but unsound with
respect to classical subsumption.

While approximation based on concept names is a
straightforward application of the notion of S-1 and S-3 in-
terpretations, things become more complicated if we want to
extend the approach to relation names. In Description Log-
ics relations are used to formulate constraints that apply to
all members of a certain class. The most general formula-
tion of these constraints is in terms of qualified number re-
strictions. Qualified number restrictions have the following
form (< nr.C) or (> nr.C') where n is a positive natural
number (including zero ), r is the name of a binary relation
and C' is a concept expression. In a tableaux these qualified
number restrictions are a second potential source of incon-
sistency besides the negation operator. In particular, we have

(< TLT.C)I N> mr.C)I = Qforalln < m
on the other hand, we have
(< nT.C)I U (> mT.C)I = AT foralln >m

We can use this analogy to extend the notion of S-1 and S-3
interpretations to qualified number restrictions in the follow-
ing way. For S-3 Interpretations we define that

(<nr.c)P U mr.o)t = AT forallr ¢ S )

In particular, we weaken the condition for the expression to

become the universal concept by making it independent of
the values for m and n. Further, we claim that the conjunc-
tion of qualified number expressions can never be the empty
concept, i.e.

(< nnC)I n(> mr.C)I # (Qforallr ¢ S 8)

This leaves us with a weaker interpretation, because incon-
sistencies arising from the relations not in the set S cannot be
detected. For S-1 interpretations, we make analogous claim
by demanding that the union of two qualified number restric-
tions can never be the universal concept

(<nr.0)? U (> mr.o)? £ AT forallr g S ©)



Further, we strengthen the interpretation by claiming that
the intersection of the two qualified number restrictions on
the same relation and concept is always inconsistent

(< nr.C)Iﬁ(z mr.C)I:V)forall'rQS (10)

This gives us a stronger version of the semantics, because
any two assertions using this relation in combination with
the same concept expression C leads to an inconsistency>.
The result is a complete but unsound subsumption opera-
tor. This unsound approximation operator is exactly what
we need for specifying the notion of a partial match, because
it forces a match on the constraints involving class names
from S and treats constraints involving classes not in .S as
optional. Using subsumption operators with different sets S,
we can focus on different aspects of the matching task and
also rank results based on the number of requirements met.
In the following, we will therefore concentrate on complete,
but unsound approximations of subsumption reasoning for
concept expressions based on the idea described above. In
particular, we will formally specify non-standard interpreta-
tions and define a family of approximate subsumption oper-
ators that can be used to compute partial matches.

Non-Standard Semantics

In the following, we introduce a non-standard interpretation
for concept expressions in the logic SHZ Q. Details about
the language can be found in (Tobies 2001). A limited vo-
cabulary is a subset S C V of the concept and relation names
occurring in a concept expression. Our aim is to define ap-
proximate reasoning in Description Logics based on such a
subset of the vocabulary. For this purpose, we define an up-
per and a lower approximation of an interpretation Z with
respect to a set S referred to as I;“ and Zg respectively. We
call Igf an upper approximation and 75 a lower approxima-
tion of Z with respect to .S.

Definition 1 (Lower Approximation) A lower approxima-
tion of an interpretation T with respect to S is a non stan-
dard interpretation (AT, Ig) such that:

zg AT Aes
S =
A { 0 otherwise an
- +
(-c)%s AT —cts 12)
(¢ nDyfs cTs npTs 13
(Cu D)I;' - ¢%s up®s (14)
— T Io
(>nrco)fs = {z|#{y.(z,y) €r" ANy € C f}Zn} res (1s)
{z|#{y.(z,y) € rZ A y E CIS } > oo} otherwise
+
- A T
(<nrc)ls = {zl#{yl(z,y) € " Ay € C i}gn} res a6
{z|#{yl(z,y) € rT A y € CIS } <o} otherwise

where (A% ,I;f) is an upper approximation as defined in
definition 2

Definition 2 (Upper Approximation) An upper approxi-
mation of an interpretation I with respect to S is a non stan-

3As we will see later, it is sufficient if the two restrictions use
concept expressions that are logically equivalent

dard interpretation (AT, TE) such that:

+ z
T A AecS
ATS = 17
{ AT otherwise an
+ -
-oyfs = af-c’s (18)
+ + +
(cnnyfs = c*s npls (19)
+ + +
(cunyfs = c*s upts (20)
+
T
<2n7ﬂ_c)1; _ {z|#{y.(z,y) €T Ay € C i} >n} res @n
{z|#{y.(z,y) e rT Ay € c*s } >0} otherwise
-
(<nr4C)Ij9r {z|#{yl(z,v) erT AyeCist<n} res )
{o|#{yl(z,y) e rZ Ay e CTS } < oo}  otherwise

where (A%, T < ) is a lower approximation as defined in def-
inition 1

Negation normal forms play an important role with re-
spect to tableaux-based algorithms for description logics.
The ability to compute the negation normal form as a basis
for a tableaux proof relies on the following transformation
rules.
Lemma 1 (Equivalent Transformations) 7he follow-
ing equivalence rules also hold under the non-standard
interpretations I;' andIg.

~(CnD) = (~C)u(-D) 23)
-(CuD) = (=-C)n(=D) (24)
—(>nr.C) = (€n—-1r.0)) (25)
“(<nr.C) = (>n+1r.C)) (26)

The fact that these equivalences also hold under the non-
standard interpretations implies that we can translate every
concept expression into its negation normal form without
changing the non-standard interpretation. This result is for-
malized in the following theorem.

Corollary 1 (Negation Normal Form) For every concept
expression C there is an expressionnn f (C') in negation nor-
mal form such that nnf(C)%s = C%s and nnf(C)I;r =
cZs

Based on the negation normal form, we can define a sim-
plified version of the semantics with respect to negation.
Instead of the general definition of negation, we can use a
special rule for negation with respect to negation of atomic
concept names. In particular, for a concept expression in
negation normal form equation 12 can be replaced by the
following equation:

z7 _ [ AT Aes
CA7s = { 0 otherwise @n
Analogously, equation 18 can be replaced by the following
equation:
¥ _J AT Aes
A)7s = { AT otherwise @

The main implication of the existence of an equivalent nega-
tion normal form is the possibility to define inference mech-
anisms that work on this normal form. In particular, this
allows us to use tableaux-style proof procedures to deter-
mine the satisfiability of a concept expression under the non-
standard semantics.

From the negation normal form it is easy to see that the
upper and lower approximation of the interpretation satisfies



equations 5 and 6. We can also easily show that the other
intuitions about the generalization of S-Interpretations are
satisfied.

Theorem 1 (Properties of approximate interpretations)
The upper approximation of an interpretation I with respect
to a sub-vocabulary S satisfies equations 5, 7 and 8. The
lower approximation satisfies equations 6, 9 and 10.

Another useful property of the non standard interpretation
is that it makes concept expressions strictly more general for
upper and strictly more specific for lower approximations.
This property which we call monotonicity is important in
order to be able to guarantee formal properties of approxi-
mation methods defined based on this interpretation. There-
fore the following theorem describes a central property of
approximation in description logics.

Lemma 2 (Moneotonicity) Given a non-standard interpre-
tation as defined above, the following equation holds for all
concept expressions C':

c%s c ¥ c oTS 29)
We can generalize the theorem by observing that the stan-
dard interpretation is an extreme case of the non-standard
interpretation with S = V. In particular, the general version
of monotonicity says that for upper approximations remov-
ing names from the set .S will make concepts expressions
strictly more general. Conversely, for lower approximations
concept expressions become less general when we remove
concept or relation names from the set S. The corresponding
general property is defined in the following theorem:

Lemma 3 (Generalized Monotonicity) Given a non-
standard interpretation as defined above and two sub-
vocabularies S1 and Sy with S1 C Sy, the following
equations hold for all concept expressions C':

+ +
T z
c %1 CccT52 (30)

chl 5 CI§2
The generalized monotonicity property is interesting, be-
cause it allows us to successively compute more precise up-
per and lower approximations of a concept by adding names
to the set S. This is convenient in cases where users provide
a preference order over the vocabulary indicating the relative
importance of different aspects of a concept. In this case, use
the preference relation provided by the user to determine a
sequence of approximations to be used in the matching pro-
cess.

An Approximate Subsumption Operator

Up to now, we have only considered interpretations as such.
As our aim is to develop approximate notions of subsump-
tion as a basis for approximate matching, we now have to
define the notion of approximate subsumption based on the
non-standard interpretation defined above. It turns out, that
this can be done in a straightforward way using the standard
definition of the subsumption operator as:

VI:Tl=CLC D& (Cn-D) =0

The idea is now to use this definition and replace the stan-
dard interpretation Z by a the lower approximation Zy with

respect to a certain sub-vocabulary S. Based on the choice of
S, this defines different subsumption operators with certain
formal properties that will be discussed in the following.

Definition 3 (Approximate Subsumption) Let S C V bea
subset of the concept names and (AT, T 5 ) a lower approx-

imation, then the corresponding approximate subsumption
relation T is defined as follows
S

VI:ZT|=(CLCD) ©aqey (CN-D)Ts =0 G
= .

We say that C is subsumed by D with respect to sub-
vocabulary S.

The monotonicity of the non-standard interpretation has
an impact on the formal properties of the approximate sub-
sumption operator. In particular, we can establish a rela-
tion between the subset of the vocabulary considered and the
strength of the subsumption operator. The more concepts we
exclude from the set S the weaker the subsumption operator
as well as the matches we can compute get. This implies
that if we can prove subsumption with respect to a particu-
lar set S' the subsumption relation also holds for all subsets
of S. Conversely, if we fail to prove subsumption with re-
spect to a set S, we can be sure that the subsumption relation
does also not hold with respect to any superset of .S. These
properties are stated formally in the following theorem.

Theorem 2 (Properties of Approximate Subsumption)
Let f be a lower approximation, then the following equation

holds:
(c C D) = (c C D) for S1 C Sa (32)
Sa S1
(c Z D) = (c v D) for S1 C Sa (33)
Sh So

These properties allow us to develop approximation
strategies by successively selecting smaller subsets of con-
cepts to be considered for matching and trying to compute
the corresponding subsumption relation until we succeed.

Applying the Approximation
A nice feature of our approach is that it can actually be im-
plemented by simply performing syntactic modifications on
concept expressions. In particular, in order to check whether
a statement C' C D holds, we take the expression (C' M —D)
S

and transform it into a concept expression that simulates the
non-standard interpretation. For the lower approximation,
the corresponding transformation (.)~ is defined as follows
(A~ — LifAes
(~A)” — LifAes
(=)~ = =(&)*F
(CnD)” = (@)~ n(©)"
(CuD)™ = (C)"u(©)~
(EnrC)” > (<0or(C)N)ifres
(£nrC)” = (<nr(C)N)ifrgs
(>nrC)” — (> mazr.(C) )ifre S
(ZnrC)” = (2nr(C))irgs
Here maz is an integer number that is larger than any
other number occurring in any qualified number restriction



in the concept expression. This is sufficient to model the
interpretation that requires less than an infinite number of
r-successors. Analogously, we define a transformation func-
tion (.)T that creates a concept expression that simulates the
upper approximation of a concept expression. This transfor-
mation is defined as follows:

(AT 5 TifAe s
At - TifAes
(~C)t — ~(©)~
@enp)yt - @ neyt
(cunp)yt — @ u©o?t
(<nr.C)t = (< maz—17.(C)7)ifre s
(<nr.0)t = (K nr(C)7)ifrgs
nro)yt 5 Gir@tiftres
Gnro)t - G nr@)iftrgs

We again use the number maz for modeling an infinite
number of r-successors. Further, we have to use the condi-
tion > 1 instead of < 0 which is equivalent. It can be shown
that these rewriting rules provide a way for computing ap-
proximate subsumption as stated by the following theorem.

Theorem 3 (Syntactic approximation I) Let C and D be
concept expressions in SHIQ, then T = C T D if and
s

only if (C M —D)~ is unsatisfiable.

It turns out that the equivalence of a concept expression
and its normal form and the symmetry of upper and lower
approximation with respect to negation can be used to define
an alternative way of computing approximate subsumption
based on the syntactic manipulations shown above

Theorem 4 (Syntactic approximation II) Let C and D be
concept expressions in SHIQ, then T = C T D if and only
S

T (C) C (D)

This means that we have two rather straightforward ways
of computing approximate subsumption using standard DL
reasoners.

Information Integration

Our first example of the potential use of the approximate
subsumption operator for partial Matchmaking is taken from
chapter 4 of (Stuckenschmidt and van Harmelen 2004). The
problem addressed is the integration of different land-use
classification schemes (ATKIS and CORINE) for supporting
the automatic update of official registry records with satel-
lite image data. As an example, we take the land-use class
’Mixed-Forest’ from the ATKIS catalogue which is defined
as a region that has a vegetation composed of coniferous and
broad-leaved plants that are all trees or shrubs. The corre-

sponding concept expression is the following*.

Mized — Forest = Region 1M
> 1 vegetation.Magnoliophyta M
> 1 vegetation.Coniferophyta M

< 0 vegetation.—(trees Ll shrubs)

*We already transformed existential and universal quantifiers
into qualified number restrictions

When matching this description with the CORINE clas-
sification using standard subsumption, the most specific
CORINE concept that subsumes Mixed Forest is the con-
cept Vegetation Area which is defined by the presence of
some vegetation:

Vegetation = Region M (> 1 vegetation.T)

. This result is somewhat disappointing as there are more
specific classes in CORINE that we would have expected
to also match. In particular, there is a concept *Forest’ that
would qualify as the correct solution to the integration prob-
lem from a commonsense point of view. Looking at the def-
inition of the Forest Concept in CORINE reveals that the
problem is caused by the fact, that the definition does not

mention shrubs as a possible form of vegetation of forest
areas

Forests = Vegetation M (< 0 vegetation.(—trees))

Using the algorithm given above, we can show that

Mixed — Forest C Forests holds. This also
V—{shrubs}

shows the main advantage of our approach over existing pro-
posals for partial matching: the result of our method clearly
states what aspects of the two concepts did not match; in
or case the presence of shrubs. The importance of this fea-
ture becomes clear when we look at the other concepts in the

ORINE clasfsiﬁ.cation that are candid?tes for a match with
the concept of mixed forest. In particular, there is a concept

that specifies herbaceous and shrub areas. This concept is
defined as follows:

Herbaceous = Vegetation M (34)
(< 0 vegetation.—(shrubs U herbs))

If we apply our partial matching approach with respect
to this concept expression, we can find out that Mixed —

Forest C Herbaceous In order to determine the
V—{trees}

best match, we can ask the user which concept she considers
to be more important with respect to determining a match for
mixed forest. In this case most users will decide that the con-
cept tree is more significant with respect to matching mixed
forest than shrub and therefore should not be excluded from
S and therefore lead the system to prefer the *natural’ match
between mixed forest and forest.

Service Discovery

Our second example for the use of approximate subsumption
as a basis for partial matchmaking is the problem of service
discovery based on matchmaking between service profiles
and service requests. We base our example on the descrip-
tion logic framework for service discovery proposed in (Li
and Horrocks 2004) where numerical attributes are encoded
as qualified number restrictions.

We assume a request asking for a Sales service that offers
PCs or Laptops with at least 512 MB main memory, at least
256 MB Cache Memory and a price of at most 500 Dollars.
The corresponding request can be formulated using the fol-
lowing concept expression:

request = Sales
Vitem.(PC U Lapto > 512 has — memory.Main
ptop 2 Y
(> 256 has — memory.Cache)

(< 500 price.Dollar)))



We further assume a sales service offering PCs with 256 MB
main memory and 256 MB Cache Memory at a price of 450
Dollars and Laptops with 512 MB Main Memory and 256
MB Cache Memory at a price of 650 Dollar. This service
can be described using the following concept expression:

advertl = Sales M
(Vitem.(PC M (> 256 has — memory.Main)

m (> 256 has — memory.Cache)
M (< 450 price.Dollar))

advert2 = Sales I

(Vitem.(Laptop M (> 512 has — memory.Main)
M (> 256 has — memory.Cache)
M (L 650price.Dollar))))

It is easy to see that neither advertl C request nor
advert2 C request holds. The both adverts satisfy the con-
dition of being a sales service, it also offers the right kinds
of items - PCs or Laptops, but each of the items offered fails
to satisfy one of the requirements. While the PCs do not
have enough main memory, the Laptops are too expensive.
The reasoner is unable to detect a clash in the expression
advert 1N —request. In particular, it fails to detect a clash
between the expressions (< 511 has — memory.Main)
and (> 256 has — memory.Main) in the case of PCs and
between (< 650 price.Dollar) and (> 501 price.Dollar)
for the case of Laptops. Existing approaches for approx-
imate deduction cannot solve this problem, as the prob-
lem involves qualified number restrictions. Using our ap-
proach, excluding has — memory from the set S leads to
a re-formulation of the problem where (< max — 1 has —
memory.Main) and (> max has — memory.Main) are
compared. As a consequence

advertl C request
V—{has—memory}
holds. In the second case, using our approach will re-write
the problem to (< 0 price.Dollar) and (> 1 price.Dollar)
which also leads to a clash. Thus we also have
advert2 [ request
V—{price}

for the Laptop case. As in the case of information integra-
tion, the subset of the vocabulary chosen provides the user
with valuable feedback with respect to the relevance of the
different matches. In particular, the user can decide whether
the original constraint on the price or on the memory should
be relaxed.

Discussion

We presented an approach for computing approximate sub-
sumption between concept expressions in SHZQ based on
a subset of the vocabulary used in the expressions. The ap-
proach solves some of the problems of classical reasoning in
description logics, in particular, the inability to accept im-
perfect matches between concepts without having to leave
the realms of formal logic. As a side-effect, the subset of
the vocabulary also provides us with a qualitative character-
ization of the mismatch between the expressions, which is
clearly an advantage over numerical approaches for dealing
with imperfect matches. An approach for partial matching
in description logics that is more similar to ours is reported

in (Di Noia et al. 2003). This approach, however, cannot
deal with disjunction and qualified number restrictions.

Another advantage of your approach is the fact, that it
does not only cover subsumption between concept expres-
sions, but that it also provides us with the possibility to ap-
proximate subsumption with respect to a background termi-
nology. In particular, SHIQ allows for the internalization of
TBoxes into a single concept using a universal role, which
is a transitive super-role of all roles (Tobies 2001). Internal-
ization allows reduce subsumption with respect to general
TBoxes and role hierarchies to unsatisfiability of concepts
with respect to role hierarchies. This means that we can ap-
proximate subsumption reasoning with general TBoxes by
approximating the satisfiability of the resulting concept ex-
pression.
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